A REAL-TIME POSITIONING SYSTEM
FOR MOBILE ROBOTS BASED ON
LASER TRIANGULATION

By

Michdle Maie Smi

A thesis submitted to the faculty of
Northwestern University
in patid fulfillment of the requirements for the degree of

Masters of Science
in

Mechanica Engineering

Department of Mechanical Engineering
Northwestern University

December 2000



| would like to dedicate thiswork to my biggest fan, my Mom.
She dways supports me no matter what path in life | choose
and | gtrive everyday to continue to make her proud.



ACKNOWLEDGMENTS

| would like to begin by thanking my Mom and Joe for their endless
encouragement and faith in me. 1 would aso like to thank the rest of my family and
friends for their support during the past year especialy the Rodgers household, which has
become a second home to me.

| would like to thank the members of LIMS for making the lab an atmosphere
where ideas thrive. While there are many people | wish to recognize such as Tanya
Tickel, Carl Moore, Songho Kim, and Cassandra Eggett, | would like to especidly thank
Traveler Hauptman. Traveler has been a continua source of support for me since | got
here at Northwestern for which | am truly grateful.

Ladt, but certainly not least, | would like to express my sncerest gratitude to
Professor Peshkin for giving me the opportunity to work on this project. 1 cannot thank
him enough for giving me a project that would challenge me and force me to learn new
things. Under histutelage, | have become more of an individud thinker and | am truly

fortunate to have had the opportunity to have him as my mentor and advisor.



ABSTRACT

Thisthes's describes a method for determining the position and orientation of a
mobile robot based on laser triangulation. 1t discusses the governing equations and the
numerica method necessary to solve them. Detector devices for sensaing the laser beam

asit sweeps by are discussed dong with the method for manufacturing them. The

position and orientation errors of the system are determined and the results are discussed.



TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt st sneesane e ii
N = 1S ¥ S USRS WY
TABLE OF CONTENTS ...ttt v
TABLE OF FIGURES........oooi ottt st s Vi
CHAPTER 1: INTRODUCTION ..ottt st sre e sae e e nnee s 1
1.1 What @@ CODOS?..... .ttt e ettt e e e e e e et e e e e e e e e e ebbbrae e e e e e e e e esnnbareeeeeens 1
2 O = 0 o] = o SR 2
G I o (o] o A€o = PSPPSR 3
CHAPTER 22 THEORETICAL WORK ..ot 5
2.1 Triangulation EQUELTONS ........cccoiiuiiieeeiiiieeeisiiieeeesieee e s st e e e s ssseeeeessnseeeeesnseeeeannnneeeeennees 5
2.2 NUMENICEl ANBIYSIS. .. eeeiieiiiiie et e e e st e e e et e e e e enneeeeaannreeeeennees 7
2.3 Flash DEECIOr DESION ......oeeiieeeiiieaitieeieee ettt ettt et e e e s sse e e s be e e snreeenbeeeanneeea 8
CHAPTER 3: HARDWARE ..ottt s 12
KN RS L o TSSOSO 12
3.2 SENSOr ElECHIONICS. ...ttt 14
3.3 ENCOEr INLEITACE. ......eeiiieiii e 15
CHAPTER 4: EXPERIMENTAL WORK ..o 18
4.1 EXperimental PrOtOCO .........c.cuiiiieiiiiiie ittt 18
4.2 EXPErimental RESUILS .........ooiiiiiiieie it 18
4.3 Discussion of Experimental Results and Limitations ...........ccoovveeiiieeiiiee e 20
CHAPTER 5: CONCLUSIONS. ..ottt 22
APPENDIX A: Analytical SOIULION......ccccoiiiiiiieeiiseee e 23
APPENDIX B Program.......ccoioieieeesee e 27
APPENDIX C: HOW tO MIFTOMZE ..o 36
APPENDIX D: Encoder Output Amplification Schematic............cccevvvviiivircieennnnns 39
APPENDI X E: Flash Detector Set-up Procedure .........ccocoereeieeieieneneseseseseees 40
APPENDIX F: Tabulated RESUITS.......cccooiriiieieeiereeeseee s 42
BIBLIOGRAPHY ..ttt ettt st n e b e 43



TABLE OF FIGURES

FIGURE 1-1: UNICYCLE COBOT......ccociiiiiniriei e 2
FIGURE 1-2: SCOOTER COBOT ......oiiiiiiiieitiiie st 2
FIGURE 1-3: ONE GLIDE WHEEL ON SCOOTER .......ccciiiiiiieereeieseesee e 3
FIGURE 1-4: SYSTEM OVERVIEW ..ot 4
FIGURE 2-1: CASE OF PURE ROTATION ....cociiiiiiieieeeee e 5
FIGURE 2-2: CASE OF PURE TRANSLATION ..ot 6
FIGURE 2-3: CASE OF ROTATION AND TRANSLATION......ccivtiiireeneere e 7
FIGURE 3-1: HARDWARE SET-UP......ccciiiii s 12
FIGURE 3-2: PN127 SPECTRAL SENSITIVITY CHARACTERISTICS................... 14
FIGURE 3-3: SENSOR CIRCUIT SCHEMATIC ... 15
FIGURE 3-4: BLOCK DIAGRAM ILLUSTRATING WIRING SCHEME.................. 16
FIGURE 4-1: PLOT OF Y-DIRECTION ERROR WITH RESPECT TO POSITIONS 19
FIGURE 4-2: ORIENTATION ERROR RESULTS.......cciiiiieee 20
FIGURE A-1: TRIANGULAR WORKSPACE DIAGRAM .......cooiiirieieeeeie e 23
FIGURE A-2: ISOSCELES TRIANGLES ........ccoi s 24
FIGURE A-3: TRIANGLE SET-UP......ooiiiiiiiiee s 25
FIGURE D-1: SCHEMATIC FOR AMPLIFYING ENCODER OUTPUTS................. 39
FIGURE E-1: FLASH DETECTOR COORDINATE SET-UP.......ccccoiiiiiiiciereee 40
FIGURE F1: TABLE OF TILE VALUESVS. OPTICAL VALUES..........cceeirene. 42

Vi



CHAPTER 1: INTRODUCTION
1.1 What are Cobots?

A *cobot” isarobotic device designed for collaboration with human operatorsin
a shared workspace. As passive haptic devices, cobots are designed to assist users by
providing software-defined guiding surfaces while the operator supplies dl the energy to
the system. Since a cobot does not generate energy, it is unlikely that a human working
with a cobot system will harm themsdlf or damage equipment. 1t isthis passve nature
that makes cobots appropriate in gpplications such as automotive assembly and medica
surgery that require the operator to work side-by-side with arobotic device.

In the Laboratory for Intelligent Mechanicad Systems (LIMS) two types of cobots
have been designed namely whedl based cobots and spherica joint based cobots.
Sphericd joint based cobots will not be addressed in this paper. Several whedled cobots
have aready been designed including a one-whedled cobot called “Unicycle’ and athree-
whedled cobot called “ Scooter” (See Figure 1-1 and Figure 1-2 on the following page).
The unicycle cobot was designed to illustrate some basic cobot concepts. The unicycle
cobot has one whedl, atwo-dimensiond configuration space, and requires arail sysem to
keep it upright. Because of these disadvantages, the three-wheeled cobot, Scooter, was
developed. Scooter is designed to navigate around a workspace and while two whedls
would have been sufficient for this task; an additional whed was added to diminate

sngularities and for balance.



e Sl

1-1: Uﬁni.'(':ycle Cobot N

il

Figure 1-2: écoota Cobot

Sigure
Scooter has been the base concept for cobots that are now being used in indudry.

Scooter’ s technology is currently being used at General Motors to assst operators with

tasks such as removing car doors from empty auto bodies after painting to alow

assembly of therest of the vehicle. It isthis second cobot that is of interest for this

project and will be discussed further in the next section.

1.2 Current Problem

Scooter currently uses three “ glide whedls’ to determine its position/orientation
and velocity. The glide wheds congst of plastic whedslocated at fixed angleswith
respect to Scooter that have encoders mounted to them that measure their rotation. The
rotation of each glide whedl measures the component of Scooter’svelocity initsrolling
direction, while ignoring the component of velocity in the perpendicuar direction

(diding). Scooter’s velocity is then determined using the velocities of the three glide



wheds. Thereaulting velocity isintegrated to determine an approximation of Scooter’s

position (dead-reckoning).

= =

Figure 1-3: One Glide Whed on Scooter

Aswith any system that uses dead-reckoning, error will ways accumulate over
time; such isthe case for Scooter. The error buildup is detrimentd to accurate
representation of avirtua surface because the virtual surface is dependent on Scooter’s
perceived world coordinates. It isfor this reason that the door unloader at Generd
Motors must be zeroed every cycle at the drop off station to eiminate the accumul ated
error. If the position error were diminated, programmable virtual surfaces could enable

more precise materia handling without repesated zeroing.

1.3 Project Goal

The god of this project isto develop a more accurate way of determining position
and orientation of amobile robot. The method explored in this paper is based on
triangulation. A laser mounted on amobile robot, e.g. Scooter. Using a synchronous
motor, the laser beam is swept 360° horizontally around the workspace. Three sensors

are placed at known locations in the workspace to detect the laser beam as it sweeps by.



The angle of the beam at the moment that the flashes are detected is used to triangulate

the position and orientation of the laser source (see Figure 1-4 below).

Sensor 2

Sensor 3

A Sensorl

Figure 1-4: System Overview

There are severd aspects of this design that should be understood and will be

discussad in the subsequent chapters. The next chapter will discuss the devel opment of

triangulation equations and the numerical method used to solve them. The design of

flash detectors will dso be discussed. Chapter 3 will give an overview of the hardware

Set-up, sensor dectronics, and the encoder interface.  Experimenta resultswill be

discussed in Chapter 4, and the final chapter will summarize the project.



CHAPTER 22 THEORETICAL WORK

In order to begin this project, the firgt thing to consder was how triangulation
would work and what would be needed in order to determine position and orientation.
Therefore, the next few sections will discuss the governing equations for triangulation
and the numerical method used to solve the equations. The design of flash detectors that
enable the necessary inputs to be received will also be discussed.
2.1 Triangulation Equations

To define the governing equations for this project, afew variables must be
defined. First, the workspace dimensions must be known. Second, the coordinates of the
flash detectors within the workspace must be determined. The case of pure rotation by
the mobile robot will be consdered fird.

Consgder the workspace shown in Figure 2-1. If the mobile robot’s postionis
(O, 0) and the location of one flash detector is known, (Xr1, Yr1), the orientation, gs, can
be determined if given the angular input, gz, that corresponds to the angle at which the

laser beam sweeps past the flash detector.

(%2, YRr2) A (%1 YR1)

(*=3: YR3) 2

Figure 2-1: Case of Pure Rotation



Therefore, one flash detector resulting in one equation is dl that is necessary to

determine orientation based on the following equation:
- Yr

tan (O, +Q,) where X, and y , areknowns and g is an input

R1

Now considering the case of pure rotation as shown in Figure 2-2. The position

location contains two unknowns, (Xs, Ys), therefore two flash detectors are needed in order

to obtain the necessary equations.
(%2, YR2) (%=1, Yr1)
(%3, Yra) 2
Figure 2-2: Case of Pure Trandation
The equations would be of the form:
tanq, :yR‘—_iS fori =1,2 where Xy and y are knowns and g, is an input
R~ s

Combining the two cases gives the following equation (See Figure 2-3 on the

following page for workspace diagram):

Ri-ys

tan (O, +q,) = y fori =1,2,3 where X, and y are knowns and q; is an input

R - Xs



(%2, YR2) (2 ,i (%1, YR1)

T~ ’/:ﬂag _
0,0 (Y9

~
~

as

7z
7z
4

(%R3, Yr3) 4

Figure 2-3: Case of Rotation and Trandation
Therefore, three equations need to be solved smultaneoudy to determine the three
unknowns. a position (xs, Ys) ad an orientation (qs). Since tangent is't defined at 90°
and 270°, the atan2 function was used when programming in C. The system of equations

can be represented as.

Fi(Xs’ys1qs) = dan2 (yR| " Yo Xg - Xs)_ J. - G; for i =123

2.2 Numerical Analysis

Since the system of equations discussed in the previous section is nonlinear and
not andyticdly invertible, the Newton-Raphson method was used to solve the system of
equations. (For an anaytica solution, see Appendix A.) The Newton-Raphson method
firs caculates F; and the Jacobian, J, by taking initia guessesfor xs, ¥s, and gs. For this

set of equations, the Jacobian matrix would be as follows:



é(le B ys)xs 1 l‘;l
e 2 2 u
é(XRl' XS) -SeC (qs +CI1)(J
é XS XRl l]
eé(sz : ys)xs 1 3
Je e(XRz - Xs)2 'Secz(qs+CI2)l;l
e Xs = Xpo l:l
- yots 1 ;
S Jae -sec” (A5 +0)
é(XRa' Xs) Xs = Xps G
e 8

Once F; and the Jacobian are calculated, the program checks to seeif the sum of the K
solutions (absolute) is within some tolerance vaue. If so, then theinitia guess was
accurate and the program is complete. If not, LU decomposition is performed to obtain
new vaues of K. Again root convergence is checked and if the sum of the absolute
vaues of these solutions is within tolerance, the program is complete. Otherwise, the
entire process is repeated either until asolution is found or the program exceeds a certain
number of loops at which time an error message is given. (See Appendix B for program.)
One problem with the Jacobian defined above, however, it that when either of the
mobile robots coordinates, Xs or ys, are at the same position as a flash detector, X; Or Yri,
the program will not converge to an accurate solution due to zeroes. It wasfor this
reason that the exact solution of the Jacobian as stated above was not used and instead the

Jacobian was solved for usng aforward difference formula

2.3 Flash Detector Design
When congdering how to get the necessary inputs, g, a couple of things had to be
considered. To begin with, itisnot practica to just Smply place sensors around aroom

gnceit isunlikely that the laser beam will be digned perfectly with them. Therefore,



focusing the laser beam seemed like an appropriate method of getting the laser light to a
sensor. While there are lenses that will focus light, they al assume thet the light is
entering “head-on” meaning that the orientation of the incoming light and the focusing
device are the same (paralel). This would mean that the mobile robot would have to be
directly in line with the Sght line of the focusing device. With a mobile robot moving
throughout a workspace, the light will not aways be “head-on”, but perhaps with some
incident angle. Hence, a design was sought that would focus the light onto the sensor at
anagle.

Another concern was “tilt”. The floor on which Scooter rolls may not be ided;
therefore, the detector design needed to account for the light being tilted upwards or
downwards dightly due to deviations present in the floor.

To account for tilting deviations, it was desirable for the detectors to have
congderable height, but minima depth to take up the least amount of space. It wasfor
these reasons that a parabolic shape (See Figure 2-4 on the following page). The
equation of aparabolais asfollows:

wherea = 4i and the focus occurs at (0, €).
C

<
I
R

A focal point, ¢, of 2 inches was chosen and the overal dimensions of the parabola
became 4 inchestall, y, and 2 inches deep, x.

For the light to get to the sensor no matter what the entrance angle was, the Sides
of the parabolic shape and the back side were mirrorized (See Appendix C for mirrorizing
ingructions). This enables the laser beam to essentially ricochet or bounce between the

walls and the back side of the parabolic device until they reach the sensor.



Back Side
Entry Surface

L — Laser Beam
Mirrorized

Sensor

Figure 2-4. Hash Detector Design
Since accuracy is crucid, the width of the entry surface was of grest importance.
The entry width needed to be large enough to ensure proper data collection but small
enough maintain ahigh level of accuracy. Thetime that the laser beam shines on the

sensor, ts, a any given distance, r, awvay from the mobile robot is.

. iW wherec,, = entry widt h, dr = 2pr, and m, = motor speedin rev/sec.
ar*mg

t =

S

Knowing that the sensor (PN127 discussed further in Chapter 3) has a90% rise
time of 2.5 s, thiswill become the ts min. Therefore, the minimum entry width at a
distance of 20 feet with amotor speed of 30 rev/sec (typica for AC synchronous motors)

would be 0.1131 inches. It isfor thisreason that the device has an entry surface only

10



0.125 incheswide. Thiswill provide a sufficient area for the laser beam to enter without
decreasing accuracy. Also, since the laser beam light will be bouncing back and forth
within the device, the size of the sensor and the laser beam should be such that the sensor
detects the laser light no matter itsexit angle. The active sensing area on the PN127 is
half a sphere with a diameter of 0.071 inches (1.8mm). This means that the laser beam
diameter needs to be at least 0.054 inches wide to ensure that the sensor will detect the
laser beam. The laser beam used has a diameter of 0.087 inches, which is more than
sufficient to ensure detection.

The last important aspect of the flash detector design was what materid for it to
be made out of. Glass would have been the optimal choice, however, it has the mgor
draw back of requiring specia equipment in order to cut it; epecidly in the shepe of a
parabola. 1t wasfor this reason that a more manufacturable materid, plexiglass, was used
instead. The parabalic collecting devices were machined in a CNC mill and then buffed
to remove cloudiness that developed during machining.

A magjor drawback to choosing plexiglass over glassisthat glass mirrorizes better.
In performing numerous experiments of mirrorization, it became obvious that the
slvering solution preferred to Stick to glass than to the plexiglass. While the mirrorizing
process did work well on both materids, the reflectivities of the glass specimens were

better than the plexiglass specimens.

11



CHAPTER 3: HARDWARE
3.1 Set-Up

In this section, the gpparatus that alows the laser beam to spin will be discussed.
The laser cannot actualy spin itself for thiswould cause itswiresto knot. Therefore, the

configuration shown in Figure 3-1 below was used.

Right Angle Pristy ——» i Spinning
Laser Beam
. ’\ Hollow Shaft Encoder

Coupler \_*%

Synchronous Motor
with Hollow Shaft

- |

Laser Diode ‘|:—b I J

Figure 3-1: Hardware Set-up

A vigble red laser beam of wavelength 670nm from Edmund Scientific (PN H54022)
shines verticaly up the shaft of an AC synchronous motor from Bodine rated a 1800rpm
(P/N 5246). A synchronous motor was chosen because it is crucid that the laser light be
spun at the most congtant rate possible. This particular motor was chosen, however,
because it has a 5/16” motor shaft, which was large enough to drill ahole for the laser
beam. Another important agpect of this motor was that the end that does not have the
shaft sticking out, does not have a sedled bearing. This was important because a hole was

drilled in the motor casing to dlow the laser light to shine up the motor shaft.



There is ahollow shaft encoder from Hohner (P/N 8895-0100-12500) rated at
12,500 pulses per revolution used to measure how fast the motor is actualy spinning.
This particular encoder was chosen for a number of reasons. Firgt of dl, it came with a
hollow shaft opening of 5/8”. Thiswas important because the opening needed to be large
enough to alow an duminum machined coupler to fit ingde it and <till have enough
materia for ahole big enough to dlow the laser light to pass through.

To ensure that at least 1 encoder count is received when the laser sweeps across

the sensor, the following calculation was done to determine the necessary resolution of

the encoder, &
e = ar wherec,, = collecting device width and ar = 2pr.
c

Knowing that ¢, = 0.125 inches and making the same assumption that r = 20 feet, the
resolution of the encoder has to be at least 12064 ppr in order to get at least one count
when the laser beam sweeps the sensor. By purchasing an encoder with aresolution of
12500ppr, it eiminated the need to interpol ate between encoder counts to determine
when the laser beam shined on the sensor.

A flexible coupler from Sterling Instrument (P/N S50HAA-087H1010) isused to
account for any angular and paralel misalignments between the encoder and the motor.
The coupler attaches directly to the motor shaft a one end and to the machined aluminum
coupler at the other end. At the top of the duminum coupler, thereisaright angle prism
(Edmund Scientific P/N H32331) ingde ad a hole to alow the laser beam to escape
horizontaly from the sst-up. With everything assembled, the laser beam sweeps 360°

around the workspace.

13



3.2 Sensor Electronics

The sensor used to detect the laser beam isa PN127 silicon NPN phototransistor.
This particular sensor was chosen because it had the greatest spectra sengtivity to laser
wavdengthsin the visble red region, namely 670nm, and had the shortest riseffdl times

(2.5ns/ 3.5m¥). Figure 3-2 below shows the sensors spectra senditivity curve.

Vep= 10V
Ta=25"C

Relative sensitivity 5 (%)

/

[
0 /
200 400 il 200 1000 1200
Wavelength A {nm)

Figure 3-2: PN127 Spectra Sengtivity Characteristics
Once the phototransistor detects the laser beam, a L T1221 operationd amplifier,
in conjunction with a RC filter of time constant 1, is used to amplify the output. A
50KW potentiometer, currently setting the threshold to -0.5 volts, feeds into an input of a
LM360 high speed differentid comparator which eliminates noise and produces anice
quarewave. Lastly, a DM74LS123 retriggerable one-shot was used to ensure that the

output pulses were ways long enough for the encoder interface to detect (10 ns). (See

14



Figure 3-3 for the schematic. Please notethat X1 and X2 are the inverting and

noninverting circuit outputs.)

Cl
10pF

+6V
(o]
q
R3
PN127 b LM360
c2 6V 7415123 47K
—— ALl VccH—
LT1221 | A

c3
R Q§(1_|_—|_47OpF

e
8
TTIT]

Figure 3-3: Sensor Circuit Schematic
By using thiscircuit and the flash detectors discussed in Chapter 2, the laser beam can be
detected at incident angles up to 44° at 1 foot away and 27° at 7 feet away. Thisis
because of areduction in the laser beam intengty due to poor reflectivity on the

plexiglass and an increase in the number of ricochets.

3.3 Encoder Interface

Thisis actudly the heart of this project. All of the caculations depend on one
sensory input, . In order to get angles at which the phototransistor detects the laser
beam, an encoder decoder board was used. A 4 channd, differential, quadrature encoder
interface board, PC7266-D, from US Digita was purchased. This particular board uses a
L S7266 counter chip which is able to not only decode encoder counts, but load the

counter value to an output latch whenever an index pulse occurs. It wasthislast feature

15



that made this board especidly useful. Asdemongtrated in Figure 3-4 below, the encoder
has been wired to dl four encoder board channels. All four channels were dso
configured to load the counter value to the output latch when the index location receives
apulse. One encoder board input channd was wired to the encoder completely. The
other three input channd s receive index pulses from the output of the flash detector

cdreuitsin addition to the encoder’ s A, B, A-, and B- pulses.

Interface
CH3 Sensor 3
AlA-
P BB /w
_ X1, X2
CH2 Sensor 2
AlA-
A B/B 11-H
' X1, X2
m
CH1 Sensor 1
A/A-
1/1-H
B/B- X1, X2
CHO
AlA-
I1/1-
B/B- /

Figure 3-4: Block Diagram Illugtrating Wiring Scheme
By loading the counter vaues to the output latch whenever an index pulseis
observed, this alows the computer to come dong at any time and get the encoder counts
for dl four channdls without having to use an interrupt service routine. Once the counter

vaues are latched, the sensor angles measured from zero can be calculated by subtracting

16



the encoder’ sindex count from the phototransistors count value and then Smply
converting encoder counts into angular displacement in radians.

When attempting to drive al four counters with only one encoder, it became
obvious that the encoder’ s signd strength was not great enough to drive al four decoder
channels. Therefore, a high current/voltage darlington driver chip (DS2003) was added to
make the sgnd strong enough for accurate pulse recognition (See Appendix D for

schematic).

17



CHAPTER 4. EXPERIMENTAL WORK
4.1 Experimental Protocol

The god of this experiment was to determine the amount of error that this system
isencountering. The error should be minima and no longer cumulative like the previous

approach.

4.2 Experimental Results

For the experimenta set-up, the three flash detectors are placed so they form an
equilaterd triangle with dl sdes being 119.75 incheslong. The triangle was established
by taking arod of known length and positioning the flash detectors equidistant gpart. In
addition, the flash detectors are angled so their entry surface is gpproximatdly digned
with the center of the triangle lending the maximum amount of area visble by the flash
detectors. The motor assembly is placed a some location within the triangle.

In determining the error of the system for the x and y components, first the error
in the input values of the coordinates of the flash detectors had to be determined. To do
this, ageometrica method was used to determine the gpproximate starting location of the
cobot in relation to the three flash detectors. (The procedure for doing thisis outlined in
Appendix E.) This method showed that thereis a flash detector coordinate error lessthan
0.042 inches and the starting location for the motor assembly is averaged to (57.497,
-57.818).

This average was then compared to the optical triangulation solution determined

by the program. The starting position under this method was (57.465, -58.116). This

18



gives adifference in vaues of 0.032 inches in the x-direction and 0.298 inchesin the y-
direction. Thisisthe measured error of the optical triangulation system.

The next step was to create a map of the workspace. To do this, the floor tiles and
theinitid optica solution pogtion (57.465, -58.119) were used as a guide for
performingl12 inch trandationsin the x and y. The maximum amount of difference
between the tile values and the optica values was 0.188 inches in the x-direction and
0.259 inchesin they-direction. The error asit compared to position in the workspace is

shown in Figure 4-1 below. (See Appendix F for table with data points).

Y-Direction Error with Respect to Tile Positions

O T T T T T T
20 Y 40 60 80 100 1204 140
=
= 40 [ ) ()
[ . . . . . . .
S . °
g 0 .
% 80 R + 0.0-0.1 in eror
I ¢« 0.1-0.15In error
[}
-100 e 0.15-0.2in error
-120 = @ 0.2+ in error
x-direction [in] A Sensors

Figure4-1: Plot of Y-Direction Error with Respect to Pogitions
In order to determine the error in the orientation, five positionsin the workspace
were chosen and at each position the motor assembly was rotated 45°, 90°,
-45°, and -90°. The maximum error was found to be 0.8 degrees. Theresultsare given

in Fgure 4-2 on the next page.

19



Theta vs. Orientation Error
0.9
0.8 —
0.7
A
0.6 hd ® (93.465, -34.116)
B (45.465, -34.116)
0.5
= A (57.465, -58.116)
2 04 ] = ® (81.465, -58.116)
L -
69.465, -70.116
0.3 A ( )
0.2
‘
0.1 A
0 ¥ . . : $
-135 -90 -45 0 45 90 135
q [deg]

Figure 4-2: Orientation Error Results

4.3 Discussion of Experimental Resultsand Limitations

The experimenta results find errors of up to 0.259 inches for postion variables
and 0.8 degreesfor orientation. While these are dightly larger than would be desired, the
error is dill minimal. Seeing that the mgor jJumpsin error occur on the outer edges of the
workspace suggests that the error is probably due to poor data collection by the flash
detectors rather than computationa error.

In this experiment there are many sources of error that could occur. One source
of error isthat the floor tiles are not perfectly 12 inches apart and they are not perfectly
perpendicular to each other. Another source of error istilt in the floor causing the entire
motor assembly to betilted aswell. This, however, means that the base of the motor

assembly is at adifferent location than the top of the assembly where the laser beam

20



actualy exits. Another source of error isthe possibility that the encoder could read a
vaidion of one encoder pulse while the unit is sationary which would trandae into an

error of 0.0048 degrees.

21



CHAPTER 5: CONCLUSIONS

From the results found in the previous section, it is obvious that measuring
position and orientation with this system is not 100% accurate, but since its error does not
accumulate it isfar better than the current positioning syssem. With amaximum error of
0.259 inchesin pogition and 0.8 degreesin orientation, these error values are tolerable
considering the workspace is 10 feet by 10 feet.

Some suggestions for future experiments would be to manufacture the flash
detectors out of glass. Glasswould probably increase the incident angle range a which
the flash detectors are functiond thus alowing for better data collection. Also, sinceitis
intended for the device to be used on a cobot where there is a human operator involved, it
will be necessary to have at least one more flash detector located throughout the
workspace to alow data collection to continue even when the operator is blocking on of

the flash detectors.



APPENDIX A: Andyticd Solution

Three sensors are necessary to determine the cobot’ s position and orientation.
These three sensors at known and fixed coordinates form atriangular workspace (See
points A, B, and C in Figure A-1 below). The coordinates of a point (P) within the
workspace can be determined if the angles between each sensor location are known with
respect to the point namey BDAPB, BDBPC, and BDCPA. Caculaing the postion Pis
possible by finding the intersection of two circles defined by any 2 sensors and the
unknown point (P) on the circleé s perimeter. (Note: Three circles could be used to
determine the same point, but the third circle is unnecessary because while there will be
two solutions, one will dways be a sensor location and the other will be the unknown
point, P.)

Figure A-1. Triangular Workspace Diagram

23



The eguation of acircle that passes through (P, A, B) with center a (Oy, Oy) asshownin
Figure A-2 beow will be:

(x—0x)?+(y -0, =R where R isthe radius of the circle

Figure A-2: Isosceles Triangles

Knowing BAPB and that any triangle made with point O and two other points on
the circl€' s perimeter forms an isosceles triangle, the following reationships are true.

DAOP =180° - 2bAPO
DPOB =180° - 2DbOPB
DBAOP + BPOB = DAOB
DBAPO + BOPB = bBAPB

Combining these equations gives.
DAOB = 360° - 2DAPB

24



Knowing DA OB and the line segment AB, the radius of the circle can be caculated (See
Figure A-3 below for diagram).

Figure A-3: Triangle Set-up

The equation for theradiusis.

ZAB
R :gn%ABQ where AB =,/(A, - B,) +(A, - B,
§ 2 o

O |a:I-I-o:

To determine the coordinates of the center of the circle (O, Oy), the dope of line segment
AB must be determined.

A, - B, - snq,

dopeof AB =
he A, - B, cosq,

Rearranging the equations above gives.

25



% =atan2((Ay ) By)'(Ax } Bx)) ad q,=0q;- 180+M

Therefore,
O, =A, +Rocosq, and O, =A, +Rdnq,
This procedure must be performed for two of the three circles resulting in two

equations that can be solved smultaneoudy in order to determine point P. In order to
determine the cobot’ s orientation, one of the three sensors would be used as areference.

26



APPENDIX B: Program

/*****************************************************************

Triangulation Program: This programsinputs are a user defined *
function (usrfun) that cal culates the system of equations *
(fvec) using aninital guessinput (x[1..n]). After deter- *
mining the Jacobian (fjac) and performing LU decomposition  *
(ludecmp with lubksb), an iterative solution for position *
and orientation (x[]) can be found. *
Programmer: Michelle Simi *
December 13, 2000 *

*****************************************************************/

EE I T R

#include <math.h>
#include <malloc.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define TINY 1.0e-20;

#define FREERETURN {free_matrix(fjac,1,n,1,n);free_vector(fvec,1,n);\
free_vector(p,1,n);free_ivector(indx,1,n);return;}

#define NR_END 1

#define X1 129.75 /* Flash detector coordinates */
#defineY1-10

#define X2 10
#defineY2-10

#define X3 69.875
#define Y 3 -113.706542103

#define Pl 3.14159265359
#define FREQ O
#define BASE 0x300 /* Base address of encoder board */

float xr[4], yr[4];
unsigned long count[4];
double theta[4];

/* Subroutine declarations */

void nrerror (char error_text[]);

float * vector(long nl, long nh);

void free_vector(float *v,long nl,long nh);

float **matrix(long nrl,long nrh,long ncl,long nch);

void free_matrix(float **m,long nrl,long nrh,long ncl,long nch);
int *ivector(long nl,long nh);

void free_ivector(int *v,long nl,long nh);

void ludcmp(float **a,int n,int *indx,float *d);

void lubksb(float **a, int n, int *indx, float b[]);



void usrfun(float var(], int n, float *fvec);
void fdjac(int n, float var(], float *fvec, float **fjac);
void mnewt(int ntrial ,float x[], int n,float tolx, float tolf);

void find_theta();
void encinit();

/*****************************************************************

* MAIN: Uses the Newton-Raphson method for finding an iterative *
* solution for n number of variables by using aninitial

* guess, X, to determine the values of the system of

* equations, fvec, and the Jacobian, fjac. It will perform

* ntrial number of iterations until either the sum of the

* magnitudes of fvec are within tolf tolerance or when the

* sum of the absolute values of the changesin each variable
* islessthan tolx tolerance. *

*****************************************************************/

* % X % % %

void main()
{
int *indx, ntrial=100, n=3; /* Defines number of trials and variables */
float errx, errf, d, *fvec, **fjac, *p;
float tolx=0.00001, tolf=0.00001; /* Setstolerances */
FLOAT X[4]; [* Variables to be solved */

FILE *output;
output=fopen("output.txt", "w");

xr[2]=X1; xr[2]=X2; xr[3]=X3; [* Setsthe flash detector locations */

Y=Y 1, yr[2]=Y2; yr[3]=Y3;
X[1]=57; X[2]=-57.5; X[3]=0.1, /* Initial guess*/
theta[0]=0; theta] 1]=0; theta[2]=0; theta[ 3]=0;

encinit(); /* Initializesthe encoder decoder board */

outp (BASE+1, 0x82); [* resets countersfor Ch. 1 & 2*/
outp (BASE+5, 0X82); /* resets countersfor Ch. 3& 4 */

while ('kbhit())
{
find_theta();
mnewt(ntrial, x, n, tolx, tolf);
printf(" Answer: X=%f\tY =96\t Theta=%f\n", X[1], x[2], X[3]);
fprintf(output, "%.4f\t%.4f\t%.4f\n", x[1], X[2], X[3]);
}

fclose (output);

28



/*****************************************************************

* NRERROR: Prints error messagesiif variables are unsolvable and *
* exitsthe program. *

*****************************************************************/

void nrerror(char error_text[])

{
printf("Numerical Recipesrun-timeerror..\n");
printf("%s\n",error_text);
printf("...now exiting to system...\n");
exit(1);
}

/*****************************************************************

* *VECTOR: Allocates memory space for v[nl..nh] float vector. *

*****************************************************************/

float *vector(long nl, long nh)

{
float *v;
v=(float *)malloc((size_t) ((nh-nl+1+NR_END)* sizeof(float)));
if ('v) nrerror("alocation failurein vector()");
return v-nl+NR_END;
}

/*****************************************************************

* FREE_VECTOR: Frees memory space set aside for *v float vector. *

*****************************************************************/

void free_vector(float *v,long nl,long nh)

free((char*) (v+nl-NR_END));

/*****************************************************************

* **MATRIX: Allocates memory space for m[nrl..nrh][ncl..nch] *
* méatrix. *

*****************************************************************/

float ** matrix(long nrl,long nrh,long ncl,long nch)

{

long i, nrow=nrh+nrl+1, ncol=nch-ncl+1;
float **m,;

m=(float **) malloc((size_t) ((nrow+NR_END)* sizeof(float*)));
if (!m) nrerror (“allocation failure 1 in matrix()");

m+=NR_END;
m-=nrl;



m[nrl]=(float *) malloc((size_t)((nrow* ncol+NR_END)* sizeof(fl oat)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] +=NR_END;

m[nrl] -=ncl;

for(i=nrl+L;i<=nrh;i++) m[i]=m[i-1]+ncol;
return m;

/*****************************************************************

* FREE_MATRIX: Frees memory space set aside for **m matrix. *

*****************************************************************/

void free_matrix(float **m,long nrl,long nrh,long ncl,long nch)

{
freg((char*) (m[nrl]+ncl-NR_END));
freg((char*) (m+nrl-NR_END));

/*****************************************************************

* *|VECTOR: Allocates memory space for v[nl..nh] int vector. *

*****************************************************************/

int *ivector(long nl,long nh)

{
int*v;
v=(int *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(int)));
if ('v) nrerror("allocation failure inivector()");
return v-nl+NR_END;
}

/*****************************************************************

* FREE_IVECTOR: Frees memory space set aside *v int vector. *

*****************************************************************/

void free_ivector(int *v,long nl,long nh)

free((char*) (v+nl-NR_END));

}
/)\'****************************************************************
* LUDCMP: Transforms an by n matrix into rowwise permutation of

* itself using LU decomposition. Used in conjunction with

* LUBKSB.

******************************************************************/

void ludcmp(float ** aint n,int *indx,float *d)
{

int i,imaxj,k;

float big,dum,sum,temp;



float *vv;

vv=vector(1,n);

*d=1.0;

for (i=1;i<=n;i++)

{

}

big=0.000;
for (j=L;j<=n;j++)

if ((temp=fabs(a[i][j])) > big) big=temp;
if (big==0.00) nrerror("Singular matrix routine ludemp");

wI[i]=1.0/big;

for (j=Lj<=n;j++)

}

for (i=Li<j;i++)

{
sum=g[i][j];
for (k=1;k<i;k++) sum -= [i][K]*a[K][j];
di][j]=sum;

big=0.0;

for (i5j;i<=n;i++)

sum=g{i]j];
for (k=1;k<j;k++)
sum -= gi][K]*aK][i];

ai][j]=sum;
if ( (dum=vv[i]*fabs(sum)) >= big)
{
big=dum;
imax=i;
}
}
if (j !=imax)
{
for (k=1;k<=n;k++)
{
dum=g[imax][K];
alimax][K]=&[j] K];
aj][k]=dur;
}
*d = _(* d);
w[imax]=vv(j];
}
indx[j]=imax;
it (@j]00] == 0.0) &j][]=TINY;
if j!=n)
{
dum=1.0/(&[j][j]);
for (i5j+1;i<=n;i++) di][j] *= dum;
}

free_vector(vv,1,n);

31



/*****************************************************************

* LUBKSB: Solvesthe set of n linear equations. *

*****************************************************************/

void lubksb(float **a, int n, int *indx, float b[])
{

inti,ii=0,ip;

float sum;

for (i=Li<=n;i++) {
ip=indx[i];
sum=bYip];
blip]=b{i];
if (i)
for (j=ii;j<=i-L;j++) sum -=&i] [j]*b[j];
eseif (sum) ii=i;
b[i]=sum;
}
for (i=n;i>=1;i--) {
sum=hy[i];
for (j=i+1L;j<=n;j++) sum -= &i][j]*b[j];
b{i]=surva{i]i];

/*****************************************************************

* USRFUN: Calculatesthe system of equations, fvec, given an *
* initial guess, x. *

*****************************************************************/

void usrfun(float var[], int n, float *fvec)

{
inti;
for (i=1; i<=n; i++)

{
}

fveci]= atan2((yr[i]-var[2]),(xr[i]-var[1])) - var[3] - thetali]; /* Fi */

/*****************************************************************

* FDJAC: Findsthe Jacobian matrix, df, using aninitial guess, *
* X, and the system of equations, fvec. *

*****************************************************************/

void fdjac (int n, float x[], float *fvec, float ** df)
{

inti;

float h,temp,* f;



f=vector(1,n);

for(j=1;j<=n;j++)

{
temp=x[j];
h=0.0001 * fabs(tempy);
if (h==0) h=0.0001;
X[j]=temp-+h;
h=x[j]-temp;
usrfun(x,n,f);
X[j]=temp;
for(i=L;i<=n;i++) df[i][j]=(f[i]-fvec[i])/h;

free_vector(f,1,n);

}
/*****************************************************************
* FIND_THETA: Reads all four channels output latches to get *

* encoder countsthat can then be used to find theta[i]. *

-k'k***************************************************************/

void find_theta()

{
inti, n, m, diff[4];
double thetapre[4], delta[4];

diff[1]=12600; diff[2]=12600; diff[3]=12600;
count[1]=0; count[2]=0; count[3]=0;

for (i=1; i<4;i++) thetapreli]=thetali];

while (count[1]==0 || count[2]==0 || count[3]==0)

{
for (i=0;i<4;i++)
{
outp (BASE+(i*2)+1, 0x01); /* Reset byte pointer */
count[i] =inp (BASE+(i*2)); /* Reads the 24bit counter */
count(i] [= ((inp(BASE+(i*2))) << 8);
count[i] |= ((inp(BASE+(i*2))) << 16);
}
for (m=1L,m<4;nr++)
diff[m]=count[m] -count[0];
if (abs(diff[m])>12500) count[m]=0; /* Accounts for missing counts and
when counter rolls over */
}
if (kbhit()) break;
}
FOR (1=1;1<4;1++) /* Thisentire for loop accounts for multiple 360deg
rotations by the maobile robot in either direction */
{

if (count[O] > count[i]) count[i]=count[i]+12500;
diff[i]=count[i]-count[O];



theta{i]=((double)(diiff[i])/12500)* 2 P!;

if (((2*P)-theta[i]) < theta[i]) thetali]=theta[i]-(2* P1);
deltali] =theta{i]-thetapreli];

if ((abs(delta[i])) > P1)
{

if (delta]i] > PI) delta]i]=delta[i] - (2*PI);
else delta[i]=deltafi] + (2*PI);

}
if (delta]i] > Pl delta]i]=deltafi]-(2* PI);
dseif (deltafi] < -Pl) deltafi]=deltafi]+(2* P));

theta]i]=thetapre]i]+delta[i];

/*****************************************************************
* MNEWT: Callsfunctionsto perforM LU decomposition and checks ~ *
* for root and function convergences, tolx and tolf. *

*****************************************************************/

void mnewt(int ntria ,float x[],int n,float tolx,float tolf)
{

int k,i,*indx;

float errx,errf,d,*fvec,**fjac,*p;

indx=ivector(1,n);
p=vector(1,n);
fvec=vector(1,n);
fjac=matrix(1,n,1,n);
for (k=1;k<=ntria;k++)

{
usrfun(x, n,fvec); /* Gets user defined input fvec */
fdjac(n,x,fvec,fjec); /* Calculates the Jacobian, fjac */
errf=0.0;
for (i=1;i<=n;i++) errf += fabs(fvec[i]);
if (errf <=tolf) FREERETURN /* Checksfor function convergence */
for (i=1;i<=n;i++) p[i]= -fvec[i];
ludemp(fjac,n,indx,&d); /* Performs LU Decomposition */
lubksb(fjac,n,indx,p);
erx=0.0;
for (i=1i<=n;i++)
{
errx += fabs(p[i]);
} X[i] +=plil;
if (errx <=tolx) FREERETURN /* Checksfor root convergence */
}
FREERETURN



/*****************************************************************

* ENCINTI: Initializes the encoder board to load the counter *
* value to the output latch whenever the index pul se occurs. *
* It al'so set the count mode to normal and X1. *

*****************************************************************/

void encinit()

{
inti,n, m;
long int Preset=0;
unsigned char ByteVal;

/* Initialize the quad encoder */
outp (BASE+8, 0x11); I* SetsCh.1and 2to LCNTR/LOL */
outp (BASE+9, 0x11); /* SetsCh.3and 4to LCNTR/LOL */

for (i=0; i<4; i++)

{
outp (BASE+(i*2)+1, 0x04); /* Reset error counters*/
outp (BASE+(i*2)+1, 0x06); /* Reset error flags */
outp (BASE+(i*2)+1, 0x02); /* Reset counter */
outp (BASE+(i*2), FREQ); /* Sets FCK frequency */
outp (BASE+(i*2)+1, 0x18); [* Transfersfrequency to filter clock */
[* Configurethe registers*/
outp (BASE+(i*2)+1, 0x20 | 0x08); /* Sets count mode to normal, X1 */
outp (BASE+(i*2)+1, 0x40 | 0x01 | 0x02); /* Load to OL, enable A/B */
outp (BASE+(i*2)+1, 0x60 | 0x01 | 0x02); /* Positive indexing, LOL */
outp (BASE+(i*2)+1, 0x00 | 0x02 | 0x10); /* Reset counter and transfer
counter to output latch */
/* Preset Counter */
outp (BASE+(i*2)+1, 0x01); /* Resets the byte pointer */
for (n=0;n<4;n++)
for (m=0;m<3;m++)
{
ByteVal = (unsigned char) ((Preset >> (m*8)) & OxFF);
outp (BASE+(n*2), ByteVa);
}
outp (BASE+(i*2)+1, 0x08); /* Transfer Preset to the Counter */
}



APPENDIX C: How to Mirrorize

The following instructions are based on the instructions for silvering given by the
Amateur Telescope Making webpage.

(Some notes concerning the mirrorizing process outlined here. After running numerous
trids, some things became apparent. Firgt of al, glass mirrorized better than plexiglassin
the sense that the coating was more uniform and had greeter reflectivity. Also, itis
important to use the nitric acid in the cleaning step because the coating clings better with
aclean surface. When applying afinishing coat to the slvered sdes, make sure that they
everything is completely dry and be cautious about what coating you choose. Some
coatings may react with the slvering solution such as polyurethane. The crucid stepin
getting a good finish, however, is making sure that piece isfully immersed when all of

the solutions are combined. The first couple of seconds of the reaction redly seemto
make a difference in the coating results.)

Materids and Equipment needed
Dishwashing detergent, liquid
Nitric Acid, specific gravity 1.4
Ammonium hydroxide, specific gravity 0.9
Potassum hydroxide, pellet form
Silver nitrate, crysta form
Dextrose
Didtilled weater
4 — 600mL beakers
Graduated cylinder
Glass tirring rod
Glass dropper bottle
Glass funnd for filling dropper bottle
Dish big enough to fit piece to be mirrorized
Scdeto wegh out grams
Rubber gloves (certified to handle the above chemicals)
Apron (certified to handle the above chemicals)
Goggles
Hiers
Can of spray shellac
Cotton bdls
Masking tape

Directions

1) Scrubdl utendls (glassware, pliers, and gloves) with the dishwashing detergent.
Rinse with tap water, then scrub again. Dry everything.

2) Make up the following solutions:
a) Disolve 11 gramsof potassum hydroxide in 185mL of distilled weter.



3)

4)
5)

6)

7)

8)

9)

b) Dissolve 11 grams of dextrosein 90mL of digtilled weter.

c) Dissolve 16.5grams of dlver nitrate in 185mL of digtilled weter.

d) Put 75mL of distilled water in the fourth begker.

Stir each solution until each ingredient is completely dissolved. Let these solutions

gt while doing the rest of the procedures so they can cool. (In the chemical reection
of dissolving the chemicdsin the digtilled weter, the solutions will heat up dightly.)

Use the glass funnd to fill the gass dropper bottle with ammonium hydroxide. Wash
the funnd immediately and make sure the dropper bottle is stoppered until use.

Scrub the piece to be mirrorized thoroughly. Rinse with tap water.

Put some nitric acid on a cotton ball and clean the piece. When done, rinse with large
amounts of water flushing everything down the snk. Concentrated nitric acidisa
dangerous chemical: it will attack anything except glass and rubber, so keep it away
from contact with skin, clothing, or anything else.

Rinse piece with digtilled water and place in the dish. Fill dish with enough water to
cover piece completely.

Now begin to add ammonium hydroxide a couple drops a atime to the Slver nitrate
solution. The whole solution will turn brown. Stir congtantly and continue to add
ammonium hydroxide until the solution shows Sgns of clearing. Asthe solution

clears, add only one drop at atime. When the solution appears grayish or dightly
cloudy, stop. An excess of ammonium hydroxide will ruin all subsequent operations.
No harm is done if the solution contains more Silver nitrate than theory permits, but
too much ammonium hydroxide is fatd.

Add dl of the potassum hydroxide solution to the Slver nitrate / ammonium

hydroxide solution, alittle a atime, with congtant tirring. Goggles should be on for
this operation. Too rapid an addition of the potassium hydroxide may cause an
explosion since a small amount of silver fulminate is formed at this stage. However,
thereislittle likeihood of such an event if the potassum hydroxide is added dowly
enough.

Once more add ammonium hydroxide, until the brown or black appearance of the
solution produced in the previous step begins to clear up. When the clearing darts,
proceed very cautioudy, again adding the ammonium hydroxide drop by drop. You
are aming for asolution that will ook like week tea.and which more than likely will
contain amyriad of smdl black specks. The silvering solution is now complete and

ready to use.

10) Pick up the piece to be mirrorized out of the dish. Put pliers on the end that is not

going to be mirrorized and place masking tape aong the front edge and around to
bottom so they don’t get mirrorized.

11) Place piece, while holding it with the pliers, in the begker that only contains 75mL of

water.

12) Pour the dextrose solution into the beaker.

13) Pour the slvering solution into the beeker.

14) Keep piece from touching the walls, but wiggle the piece dightly.

15) The solution will first turn dark brown, then lighter brown, and then you should be

able to see that the Sides of the besker are sarting to mirrorize. Siver-brown flakes
will form on the solution surface. When the outside of the mirror looks like a good
mirror (about 5 minutes) remove the piece.

37



16) Rinse it with didtilled water and let dry in upright position so that no silverized
portion is touching anything (do not touch Slver, it will flake right off).
17) When dry, spray piece with shellac. When dry, remove tape.



APPENDIX D: Encoder Output Amplification Schematic

+5V
[e
DS2003
N g ~A—
INC  QUTq ~AA
Encoder : _EEE %Ei ’
Jinc  aurd ~AK

Qut put s A—— GNC CW-—-
B_D—r
[eN

—A
B  Anplified Encoder Qutputs
A Ready for Splicing
B-

Figure D-1: Schematic for Amplifying Encoder Outputs

39



APPENDIX E: Flash Detector Set-up Procedure

For an equilaterd triangle with Sde A and the motor assembly as some location
within the triangle, the position of the motor assembly can be calculated. Thisrequires
measuring the distances between the motor assembly and the three flash detectors (B, C

and D) and defining an arbitrary reference frame. (See Figure D-1 below.)

(A2, -119.75*Sin(60))

A D A
3 1 X
(% Ys)
g3 B C
alLX
a2 2
00 '
00 aog >
A
v
y

Figure E-1: Flash Detector Coordinate Set-Up

So using the law of cosines, the necessary angles can be found as follows:

2 2 2
ql=30+ cos'laEE:—+ A-D g
& 2§

£2+A2_C2

q2=cos™
2AB

where qiis in degreesfor i =1,2,3

QI-I1-0:

2 2 2 A
- o

q3 =30+ Cos'lwi
& 288§



Knowing the angles, you can now caculate the position (xs, Ys) using three different

triangles by using the following equations:

Triangle 1:

X; = A- Can(ql)

ys =-Ccos(ql)
Triangle 2

X, = Bcos(q 2)

ys =-Bsn(q2)
Triangle 3:

X, = Bdan(q3)

ys =-Bcos(q3)

These three values can be compared and their difference isthe error in the flash
detector positions. For the set-up, the following measurements in inches were used:
A=119.75, B=67.40625, C=86.65625, D=57.25
The reault is three different coordinates for xs and ys. Using the numbers given above,
the coordinates where (47.479, -47.815), (47.492, -47.834) and (47.521, -47.805).
Therefore, average location is (47.497, -47.818) with an absolute difference of 0.04185

inchesin the x-direction and 0.028756 inches in the y-direction.

a4



APPENDIX F: Tabulated Results

Tile Values Optical Values Difference Absolute % Diff.
x[in] y [in] x[in] y[in] Dx [in] Dy [in] Dx [%] Dy [%]
57.46535 | -58.11582 | 57.46535 | -58.11582| 0.000 0.000 - -
57.465 -46.116 57.553 -46.103 0.087 0.013 0.152 0.029
57.465 -34.116 57.594 -34.031 0.128 0.085 0.223 0.250
57.465 -22.116 57.601 -22.116 0.136 0.000 0.236 0.001
45.465 -22.116 45,562 -22.051 0.096 0.065 0.212 0.294
33.465 -22.116 33.598 -22.010 0.133 0.106 0.397 0.480
33.465 -46.116 33.540 -45.955 0.074 0.161 0.222 0.349
45.465 -46.116 45,525 -46.035 0.060 0.080 0.132 0.174
45.465 -34.116 45,531 -34.043 0.065 0.073 0.143 0.213
33.465 -34.116 33.653 -33.883 0.188 0.233 0.562 0.682
45.465 -58.116 45515 -58.016 0.049 0.100 0.109 0.172
45.465 -70.116 45,532 -69.998 0.067 0.118 0.147 0.168
57.465 -70.116 57.490 -70.019 0.024 0.097 0.042 0.138
57.465 -82.116 57.534 -82.043 0.069 0.073 0.119 0.088
81.465 -58.116 81.539 -58.145 0.073 -0.029 0.090 0.049
81.465 -82.116 81.556 -82.136 0.091 -0.021 0.112 0.025
81.465 -94.116 81.385 -94.133 -0.080 -0.017 0.098 0.018
81.465 -46.116 81.570 -46.091 0.104 0.025 0.128 0.054
81.465 -22.116 81.536 -22.024 0.070 0.092 0.086 0.415
81.465 -34.116 81.619 -34.077 0.154 0.038 0.189 0.113
81.465 -70.116 81.541 -70.112 0.076 0.003 0.093 0.005
93.465 -70.116 93.438 -70.183 -0.027 -0.067 0.029 0.096
93.465 -82.116 93.332 -82.249 -0.134 -0.133 0.143 0.162
93.465 -46.116 93.539 -46.142 0.074 -0.026 0.079 0.056
93.465 -34.116 93.524 -34.112 0.059 0.004 0.063 0.011
93.465 -22.116 93.473 -22.072 0.008 0.043 0.008 0.196
105.465 | -22.116 105.399 | -22.165 -0.066 -0.049 0.063 0.223
105.465 | -34.116 105529 | -34.192 0.063 -0.076 0.060 0.224
105.465 | -46.116 105.536 | -46.296 0.070 -0.180 0.067 0.391
105.465 | -58.116 105.527 | -58.375 0.062 -0.259 0.058 0.446
93.465 -58.116 93.539 -58.178 0.073 -0.062 0.078 0.107
117.465 | -34.116 117.477 | -34.354 0.012 -0.238 0.010 0.697
117.465 | -22.116 117.487 | -22.167 0.021 -0.052 0.018 0.233
69.465 -46.116 69.547 -46.092 0.082 0.023 0.117 0.051
69.465 -34.116 69.580 -33.981 0.115 0.134 0.165 0.394
69.465 -22.116 69.549 -22.078 0.084 0.038 0.120 0.173
69.465 -58.116 69.572 -58.054 0.107 0.062 0.154 0.107
69.465 -70.116 69.605 -69.993 0.140 0.122 0.201 0.175
69.465 -82.116 69.531 -82.002 0.066 0.114 0.095 0.139
69.465 -94.116 69.455 -93.997 -0.010 0.118 0.015 0.126
81.465 -94.116 81.358 -94.064 -0.107 0.052 0.131 0.056

Figure F-1: Tableof TileVduesvs Optica Vaues

V)



BIBLIOGRAPHY

Colgate, J. E., Wannasuphoprasit, W., and Peshkin, M. A. “Cobots. Robots for
Collaboration with Human Operators,” ASME International Mechanical
Engineering Congress and Exposition, Atlanta, Vol. 58, pp. 433-439, 1996.

Fannery, Brian P., Press, William H., Teukolsky, Saul A. and Vetterling, William T.,
Numerica Recipesin C The Art of Scientific Computing. 2nd ed. New Y ork:
Cambridge University Press New Y ork, 1992.

Halliday, David, Robert Resnick and Jearl Walker. Fundamentals of Physics Extended.
5th ed. John Wiley & Sons, Inc., USA, 1997.

Mills, A. L. “An Andyss of Postion and Ve ocity Sensor Systems for a 3-Degree-of-
Freedom Planar Collaborative Robot” Master of Sciencein Mechanica
Engineering, Northwestern University, 1998.

Parabolic Reflectors Page. Missssippi State University. May 2000.
<http://csmt.msstate.edw/Iw/html/resources/parab.html>.

Sivering Page. Amateur Telescope Making. June 2000. <http://www.atmpage.com/
glver.html>.

Wannasuphoprasit, W., Akdla, P., Pesnkin, M., and Colgate, J. E. “Cobots: A Novel
Materid Handling Technology,” ASME Inter national Mechanical Engineering
Congress and Exposition, Anaheim, pp. 1-7, 1998.

Wannasuphopragit, W., Gillespie, R. B., Colgate, J. E., and Peshkin, M. A. “Cobot
Control,” 1EEE International Conference on Robotics and Automation,
Albuquerque, Val. 4, pp. 3571-3576, 1997.

Zwillinger, Danid. Standard Mathematical Tables and Formulae. 30th ed. Boca Raton:
CRC Press, Inc., 1996.




