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Abstract 

We present an order n algorithm which computes the convex hull of a two-dimensional non-self- 

intersecting polygon. The algorithm recovers much of the simplicity of the one presented by Sklansky 

(Sklansky, 1972), nnd subsequently disproved. Unlike several algorithms which have been found 

since then, the modified algorithm executes a truly uniform (modeless) traversal of all the vertices of 

the polygon. This makes it possible to extend the algorithm to extract geometric information about 

the interior of the polygon. i 
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1. Background 

A simple algorithm for finding the convex hull of a polygon was described in (Sklansky, 1972). This 

algorithm was order n, and used a stack to support a backtracking technique. Subsequently, A. Bykat 

(Bykat, 1978) found that Sklansky’s algorithm fails in some cases. Recently several algorithms have 

been published (Bhattacharya, 1984) (Graham, 1983) which overcome these failures at the expense 

of increased algorithmic complexity. 

It is hoped that the algorithm presented here will prove useful because it is simpler than previous 

algorithms, and because unlike them it explores the interior of the polygon. It can be used as a 

foundation for other algorithms which extract useful geometric information about the interior of the 

polygon (Peshkin, 1985). 

We assume that the polygon is described as a sequence of vertices in the plane. The vertices form a 

closed, non-intersecting chain. They are numbered 0 through n- 1 for a counter-clockwise (CCW) 

traversal of the polygon’s perimeter. Verfex n is defined for convenience as being identical to vertex 

0. 

We also require that vertex 0 (and n) be a point on the convex hull. This condition is satisfied by 

choosing vertex 0 so that it has the most negative x coordinate. 

Sklansky’s algorithm is simple and intuitive. It is based on a stack, which in the end contains the 

vertices of the convex hull. Initially the stack contains vertices 0 and 1. sp is a pointer to the top 

element of the stack. 

fori = 2, n 

while i right of ray( stack,,,, , stacksp 
POP discard the top element 

push i push i to the stack 

end 

The Sklansky algorithm works -y considering a triplet of vertices: next-to-top-0,-stack, top-of-stack, 

and a new vertex i. The top-of-stack vertex is rejected if the triplet forms a right turn. 

The Sklansky algorithm sometimes fails, finding a left-turning sequence of vertices which self- 

intersects. Figure 1-1 shows the counterexample found by Bykat, and (dotted) the result of the 
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algorithm when applied to it. The algorithm fails because after vertex 2 is discarded, the triplet (1,3, 
4) is a left turn, and vertex 3 is not discarded. 

-KT--+ f / .......... 4 v ........... ......- .......... 
......... .-..I..-.’ 

Figure 1 -1 : Bykat’s counterexample to Sklansky’s algorithm 
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2. The Modified Algorithm 

The algorithm can be made to work properly in all cases i f  we can detect a class of situations like 

Bykat’s counterexample. In Figure 1-1, for example, the situation is detected when i becomes 4. The 

proper response is always to reject (pop) the top-of-stack vertex, which in the example is vertex 3. 

The situation can be detected by comparing the angle of ray(i-1, i) as computed by two different 

methods, called the cumulative angle and the path angle. Disagreement of the two indicates that the 

top vertex on the stack should be discarded regardless of whether it forms a left turn. 

The Cumulative angle is the angle of a ray(i-1 , i) computed by following the rotation of the polygon, 

starting at vertex 0. If the positive x axis is used to define 0 degrees, then ray(0,l) is -70 degrees, 

ray(l,2) is + 45 degrees, ray(2,3) is -45 degrees, and ray(3,4) is -180 degrees. 

The path angle is the angle of a ray(i-1, i) computed by following the vertices on the stack, starting at 

vertex 0. Ray(0,l) is -70 degrees, ray(l,3) is + 15 degrees, and ray(3,4) is + 180 degrees. 

The cumulative and path angles always differ by a multiple of 360 degrees. Therefore it is not 

necessary to compute them with any precision; computation of the curnulative quadrant and path 

quadrant is sufficient. Since the remainder of the algorithm requires only a leftlright comparison, 

there is no need to compute trigonometric functions at all. If trigonometric functions are used, some 

care must be exercised in testing equality of the cumulative and path angles, otherwise round-off 

errors may cause disagreement to be reported when in fact there is none. 

In the description of the algorithm which follows, we have computed the cumulative and path angles 

by using trigonometric functions (implicit in the CCW function). This makes the algorithm easier to 

understand, and avoids the uninteresting programming details of quadrant counting. Since the path 

angles are then already available, we have described the left/right test in terms of path angles as well. 

In the algorithm, cumangl is maintained as the cumulative angle of the edge (i-1, i) .  Pathangti is at 

all times maintained as the path angle of the ray (stackj-, , stack.). 
1 

To verify the correctness of the algorithm, we have tested it on 25000 randomly generated polygons, 

of which Figure 2-1 is a typical example. Results were compared with the output of an order n2 

algorithm which treats the vertices of the polygon as an unordered collection of points. The modified 

algorithm found the correct convex hull in each case. 
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A straightforward implementation of the modified algorithm in the language "C" was compared to a 

similar implementation of Sklansky's algorithm. On a VAX-780 the modified algorithm ran at about 

115 the speed of Sklansky's algorithm, primarily due to the computation of arctangents. When only 

quadrants were computed, to avoid the arctangents, the algorithm ran at about 113 the speed of 

Sklansky'S algorithm. The small improvement is due to the greater complexity of computing the 

quadrants. 

Figure 2- 1 : A typical polygon used for testing the algorithm 
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3. Convex Hull Algorithm 
INPUT: 

(xi, yi), for 0 5 i 5 n, are the Cartesian coordinates of the vertices of the polygon. 
Vertex 0 is extrema1 in the negative x direction. 
Vertices 0 and n are equivalent. 
The polygon is traversed in a CCW sense with increasing subscript. 

OUTPUT: 

stacki, for 0 5 i I n, are the vertex numbers of the vertices on the convex hull. 

THE ALGORITHM: 

definition of function CCW(k, j, i), ranging from -TI to 1 ~ :  

if (k = -1) CCW(k, j, i) = the CCW angle from the positive x axis to ray( (xi, yi) (xi, yi) ) 

if (k 2 0) CCW(k, j, i) = the CCW angle from ray( (xk, yk) (xi, yj) 1 to ray( (xi ,  yj) (xi, yi) ) 

initialize 

stacko + -1 
stack, t- 0 
pathangl, t- 0 
cumangl t pathang$ 

stack, +- 1 
pathang& + CCW(-l, 0, 1) 

sp + 2 

compute 

fori = 2 t o n  

cumangl t cumangl + CCW(i-2, i-1, i) 
pathanglsp + , t pathangIsp + CCW(stacksp-,, stacksp, i) 

update angles 

i f  pattianglsp + , - cumangl > .l test for disagreement 

reject i- 1 
sp +- sp - 1 
pathanglsp+ t pathangl + CCW(stacksp-,, stacksp, i) 

SP 

while sp > 1 and pathang&,+ 5 pathanglsp test for right turn 

sp e- sp - 1 
pathanglsp+ , +- pathangl,, + CCW(stacksp-,, stacg SP’ i) 

reject stacks 

sp e- sp + 1 
stacksp t i 

end 
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