
A Modeless Convex Hull Algorithm
for Simple Polygons

M. A. Peshkin and A. C. Sanderson

CMU-RI-TR-85-8

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 1521 3

May 1984

Copyright @ 1985 Carnegie-Mellon University

This work was supported by a grant from the Xerox Corporation, and by the Robotics Institute,
Carnegie-Mellon University.

4

i

Table of Contents
1. Background
2. The Modified Algorithm
3. Convex Hull Algorithm
4. Acknowledgements

1
3
5
6

ii

List of Figures
Figure 1 - 1 : Bykat’s counterexample to Sklansky’s algorithm
Figure 2-1: A typical polygon used for testing the algorithm

2
4

Abstract

We present an order n algorithm which computes the convex hull of a two-dimensional non-self-

intersecting polygon. The algorithm recovers much of the simplicity of the one presented by Sklansky

(Sklansky, 1972), nnd subsequently disproved. Unlike several algorithms which have been found

since then, the modified algorithm executes a truly uniform (modeless) traversal of all the vertices of

the polygon. This makes it possible to extend the algorithm to extract geometric information about

the interior of the polygon. i

1

1. Background

A simple algorithm for finding the convex hull of a polygon was described in (Sklansky, 1972). This

algorithm was order n, and used a stack to support a backtracking technique. Subsequently, A. Bykat

(Bykat, 1978) found that Sklansky’s algorithm fails in some cases. Recently several algorithms have

been published (Bhattacharya, 1984) (Graham, 1983) which overcome these failures at the expense

of increased algorithmic complexity.

It is hoped that the algorithm presented here will prove useful because it is simpler than previous

algorithms, and because unlike them it explores the interior of the polygon. It can be used as a

foundation for other algorithms which extract useful geometric information about the interior of the

polygon (Peshkin, 1985).

We assume that the polygon is described as a sequence of vertices in the plane. The vertices form a

closed, non-intersecting chain. They are numbered 0 through n- 1 for a counter-clockwise (CCW)

traversal of the polygon’s perimeter. Verfex n is defined for convenience as being identical to vertex

0.

We also require that vertex 0 (and n) be a point on the convex hull. This condition is satisfied by

choosing vertex 0 so that it has the most negative x coordinate.

Sklansky’s algorithm is simple and intuitive. It is based on a stack, which in the end contains the

vertices of the convex hull. Initially the stack contains vertices 0 and 1. sp is a pointer to the top

element of the stack.

fori = 2, n

while i right of ray(stack,,,, , stacksp
POP discard the top element

push i push i to the stack

end

The Sklansky algorithm works -y considering a triplet of vertices: next-to-top-0,-stack, top-of-stack,

and a new vertex i. The top-of-stack vertex is rejected if the triplet forms a right turn.

The Sklansky algorithm sometimes fails, finding a left-turning sequence of vertices which self-

intersects. Figure 1-1 shows the counterexample found by Bykat, and (dotted) the result of the

2

algorithm when applied to it. The algorithm fails because after vertex 2 is discarded, the triplet (1,3,
4) is a left turn, and vertex 3 is not discarded.

-KT--+ f / 4 v-
......... .-..I..-.’

Figure 1 -1 : Bykat’s counterexample to Sklansky’s algorithm

3

2. The Modified Algorithm

The algorithm can be made to work properly in all cases i f we can detect a class of situations like

Bykat’s counterexample. In Figure 1-1, for example, the situation is detected when i becomes 4. The

proper response is always to reject (pop) the top-of-stack vertex, which in the example is vertex 3.

The situation can be detected by comparing the angle of ray(i-1, i) as computed by two different

methods, called the cumulative angle and the path angle. Disagreement of the two indicates that the

top vertex on the stack should be discarded regardless of whether it forms a left turn.

The Cumulative angle is the angle of a ray(i-1 , i) computed by following the rotation of the polygon,

starting at vertex 0. If the positive x axis is used to define 0 degrees, then ray(0,l) is -70 degrees,

ray(l,2) is + 45 degrees, ray(2,3) is -45 degrees, and ray(3,4) is -180 degrees.

The path angle is the angle of a ray(i-1, i) computed by following the vertices on the stack, starting at

vertex 0. Ray(0,l) is -70 degrees, ray(l,3) is + 15 degrees, and ray(3,4) is + 180 degrees.

The cumulative and path angles always differ by a multiple of 360 degrees. Therefore it is not

necessary to compute them with any precision; computation of the curnulative quadrant and path

quadrant is sufficient. Since the remainder of the algorithm requires only a leftlright comparison,

there is no need to compute trigonometric functions at all. If trigonometric functions are used, some

care must be exercised in testing equality of the cumulative and path angles, otherwise round-off

errors may cause disagreement to be reported when in fact there is none.

In the description of the algorithm which follows, we have computed the cumulative and path angles

by using trigonometric functions (implicit in the CCW function). This makes the algorithm easier to

understand, and avoids the uninteresting programming details of quadrant counting. Since the path

angles are then already available, we have described the left/right test in terms of path angles as well.

In the algorithm, cumangl is maintained as the cumulative angle of the edge (i-1, i) . Pathangti is at

all times maintained as the path angle of the ray (stackj-, , stack.).
1

To verify the correctness of the algorithm, we have tested it on 25000 randomly generated polygons,

of which Figure 2-1 is a typical example. Results were compared with the output of an order n2

algorithm which treats the vertices of the polygon as an unordered collection of points. The modified

algorithm found the correct convex hull in each case.

4

A straightforward implementation of the modified algorithm in the language "C" was compared to a

similar implementation of Sklansky's algorithm. On a VAX-780 the modified algorithm ran at about

115 the speed of Sklansky's algorithm, primarily due to the computation of arctangents. When only

quadrants were computed, to avoid the arctangents, the algorithm ran at about 113 the speed of

Sklansky'S algorithm. The small improvement is due to the greater complexity of computing the

quadrants.

Figure 2- 1 : A typical polygon used for testing the algorithm

5

3. Convex Hull Algorithm
INPUT:

(xi, yi), for 0 5 i 5 n, are the Cartesian coordinates of the vertices of the polygon.
Vertex 0 is extrema1 in the negative x direction.
Vertices 0 and n are equivalent.
The polygon is traversed in a CCW sense with increasing subscript.

OUTPUT:

stacki, for 0 5 i I n, are the vertex numbers of the vertices on the convex hull.

THE ALGORITHM:

definition of function CCW(k, j, i), ranging from -TI to 1 ~ :

if (k = -1) CCW(k, j, i) = the CCW angle from the positive x axis to ray((xi, yi) (xi, yi))

if (k 2 0) CCW(k, j, i) = the CCW angle from ray((xk, yk) (xi, yj) 1 to ray((xi , yj) (xi, yi))

initialize

stacko + -1
stack, t- 0
pathangl, t- 0
cumangl t pathang$

stack, +- 1
pathang& + CCW(-l, 0, 1)

sp + 2

compute

fori = 2 t o n

cumangl t cumangl + CCW(i-2, i-1, i)
pathanglsp + , t pathangIsp + CCW(stacksp-,, stacksp, i)

update angles

i f pattianglsp + , - cumangl > .l test for disagreement

reject i- 1
sp +- sp - 1
pathanglsp+ t pathangl + CCW(stacksp-,, stacksp, i)

SP

while sp > 1 and pathang&,+ 5 pathanglsp test for right turn

sp e- sp - 1
pathanglsp+ , +- pathangl,, + CCW(stacksp-,, stacg SP’ i)

reject stacks

sp e- sp + 1
stacksp t i

end

6

4. Acknowledgements

The authors acknowledge the helpful comments of Gerard Cornuejols and Chris Van Wyk. We also

thank the anonymous referee who found a mistake in a previous algorithm.

This work was supported by a grant from the Xerox Corporation, and by the Robotics Institute,

Carnegie-Mellon University. i

7

Refe rcnces

B. Bhattacharya and H. Elgindy. A New Linear Convex Hull Algorithm for Simple Polygons. lEEE

A. Bykat. Convex Hull of a Finite Set of Points in Two Dimensions. IPL, Oct 1978, 7(6), 296-298.

M. A. Peshkin and A. C. Sanderson. Reachable Grasps on a Polygon: The Convex Rope Algorithm.

J. Sklansky. Measuring Concavity on a Rectangular Mosaic. If EE Transactions or! Computers, Dec

Transactions on lriformation Theory, Jan 1984, lT-30(1), 85-88.

Technical Report CMU-RI-TR-85-6, Carnegie-Mellon University Robotics Institute, 1985.

1972, C-21(12), 1355-1364.

* Iltlc: ,. A Simple Order N Algori thm

Author(s) M. Peshk in and A. C. Sanderson

Subnii ttctl by: M. Peshk in ’ Ihtc: 28 Janua ry 1985

Rcfcrccd by: M. Mason Date: 5 February 1985

St;1tus:

3. Datc:

‘I’cdiniral Hcport Numbcr: CMU-RI-’I‘K-

Givcn for Printing:

Commcn ts:

CFAU Robotics Institute
Technical Report R e v i e w

l 'hc piirpos? of tlic Rohoiics liistitutc 'I'cchnical report scrics is to pro\.idc scicnristx ;lid spoiisors iviil~ a
t imcl l arid scientific qu;l l i ty description of itistitutc rcwrch. In ordcr to maintain t h i s lcvcl of qu;ilily, all
submissions arc rcvicwcd in-lwusc b c h c p~tl~lic~ttio~i. U'c would apprsciatc i f you could rcvicw ilic cucloscd
rcporr and rcrurn i t and thc rcvicw sliccr t o Nancy Scrviou uithin IH'O weeks of rcccipt. I f you find you arc
unablc to rcvicw thc rcport. PlCirSC conhc~ inc at x8S61.

l'itlc: A Simple O r d e r Algorithrr.

Author: M. Peshkin and A . C. SaRderson

-

D;1 t c: : 5 February: 1965

Rcjicirrr: Matt Mason

Plcasc chcck thc iippiopriatc boxcs and pIo\ idc commcnts uhere necess-try.

d c p t

/ [x] Modify (specified bc lm) arid return.

[] Kcjcct (rcasons dcscribcd below)

] Contnitis sponsor proprictary material (spccify billow)

[J Submit to journal

Comriicir ts:

1. Simple polygon oug,ht t o b e i n t h e t i t l e .

2 . So i t i s l i n e a r . B u t s i n c e y o u ' r e comparing i t w i t h o t h e r l i n e a r
s l g c r i t h r s , more performance d e t a i l s would b e u s e f u l . I f i t ' s l i n e a r
b u t 100 t i r e s s lower than some o t h e r a l g o r i t h T s , i t ' s u s e l e s s even i f
i t i s s i r p l e .

3 . Your T a i r . p o i n t seems t o b e t h a t i t i s a s i r p l e a l g o r i t h r . , b u t you d o n ' t
r a k e t h e p o i n t .
and t h a t i t i s n o v e l . l ' ve used i t myself i n a n a l y s i s , to o b t a i n t h e
order of a p o l e f o r i n s t a n c e , so I f i n d t h a t a s u r p r i s i n g s t a t e m e n t .
The yoir?t would b e e a s i e r t o a c c e p t i f you t o l d u s how e a r l i e r p a p e r s
t e s t f o r c o n v e x i t y .

You say t h a t t h e i d e a of c u n u l a t i v e a n g l e is t h e key,

(c o n t i n u e d)

