
Reachable Grasps on a Polygon:
The Convex Rope Algorithm

M. A. Ycshkin and A. C. Sanderson

CM U -R I-TR-85-6

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

April 1985

Copyright @ 1985 Carnegie-Mellon University

This work was supported by a grant from die Xerox Corporation, and by the Robotics Institute, Carnegie-
Mellon University.

i

Table of Contents
1. Background and Motivation
2. Introduction
3. The Rope Construction
4. Convex Hull Algorithm
5. CCW Convex Rope Algorithm
6. Description of CCW Convex Rope Algorithm
7. Conclusion
8. Acknowledgements

1
4
6
9

10
12
15
15

ii

List of Figures
Fiyu re 1 r P:irallel virtual surfaces (dashed) which form a grasp of the polygon (solid)
Figure 2: R:trige of angles from which point x is externally visible, and the construction

dc-fining ttic shadowed segment
Figii r e 3: The couniiJr clockwise convex rope to j
Figure 4: Cardoid liu11 of the polygon, constructed for vertex j
Figu I 8 5: Tree structure of the CCW convex ropes to all the externally visible vertices
Figure 6: Looped tree structure of the CCW convex ropes
Figure? 7: Construction showing the relationship of j , sourcdj), and shadow(j1, as used

in the coiivcx rope algoi ithm
Figure 8: Construction showing the relationship of j, k, and i as used in the convex rope

algorithm
Figure 9: The three possible situaticns in which path-patching is needed
Figu re 10: A pathological object which causes the convex rope algorithm to use its worst

case number of steps

16
17

18
19
20
21
22

23

24
25

Abstract

Wc dcscribc an algorithm which finds the externally visible vertices of a polygon, and which gcncratcs the

clockwise and counter-clockwise convex ropes of each one. 'I'hc convex ropcs give the range of anglcs from

which cach vertex is visible, and give all the pairs of vertices which arc reachable by a straight robotic finger.

A11 of the convex ropes can be found in expected time order n, where n is the number of vertices of the

polygon. We discuss the application of this geometric constniction to automated grasp planning. The

computational complexity of the grasp selection process can be substantially reduced by its use.

1

1 . Background and Motivation

This paper describes an algorithm which efficiently finds the externally visible vertices of a polygon

and the range of angles from which each is visible. The associated geometric constructions, called

convex ropes, provide much useful information for grasp selection and planning.

Currently, when a robot grasps an object, the details of the motion have generally been specified in

advance by a human programmer with detailed knowledge of the object geometry. If robots are to

become less dependent on task-specific programming, grasp selection based on stored geometric

models is one of the functions that must be automated.

The grasping problem is to find surfaces on an object, and a configuration of a robot's fingers,

satisfying three conditions: (Lozano- Perez, 1981)

0 The fingers must be in contact with the object.

0 The configuration must be reachable, Le., there must be a collision-free path for the robot
to get to the grasping configuration.

0 The object must be stable once grasped, Le., it must not slip during subsequent motion.

Evidently the grasping problem is intimately related to the collision-avoidance problem. However, in

collision-avoidance one effective strategy is to find paths which are "safe." Conservative

approximations may be made to guarantee that collisions will not occur. For instance, a stationary

obstacle may be represented by its convex hull. If a moving part does not intersect the obstacle's

convex hull, surely it will not intersect the obstacle. But there may be motions which are deemed

unavailable by this method, even though in fact they are collision-free.

In grasping, such conservative approximations may be useful in planning approach, but the contact

requirement makes them inappropriate for generating the grasps. The grasping configuration itself is

a marginal collision: the robot fingers touch the object.

There is also the requirement of stability of the object within the grasp. What may first come to mind

here are quantitative physical characteristics of the grasp such as its resistance to slippage when a

certain force is applied. However, even more basic stability requirements must be met first, many of

which are qualitative geometric characteristics.

In this paper we will restrict ourselves to two fingered robots, where the fingers are straight and

parallel: the classic two-jaw gripper. In this context, three of the geometric requirements on a grasp

2

are:

0 The object must touch the fingers either on the inner surface of both fingers, or on the
outer surface of both fingers, but not one of each. (The "matter distribution requirement"
(Laugier, 1981) .)

0 Surfaces that the fingers are expected to touch must be parallel.

0 Such pairs of parallel surfaces must be reachable from the same side.

Others may be found in (Laugier, 1981) and (Wolter, 1984).

Previous approaches to automated grasp generation have followed this basic outline (Lozano-

Perez, 1982):

1. Generate a set of candidate grasp configurations, typically by forming all pairs of edges
or surfaces.

2. Reject those configurations which do not satisfy the geometric requirements.

3. Reject those configurations which are not reachable by the robot fingers.

4. Choose among those that remain on the basis of stability or other goals.

For an object with n edges or surfaces, the number of candidate grasps generated in step 1 is of

order n2, In addition, there is a class of grasps which is not found at all by this strategy. Often a

single finger may touch an object at two vertices which are not connected by an object surface.

Figure 1 shows a grasp made up of two such virtual surface contacts (neither of which is a segment of

the convex hull of the object.) The existence of this type of grasp was noted (though not treated) in

(Lozano-Perez, 1976). To the best of our knowledge, all previous grasp generation procedures would

fail to produce the grasp shown in Figure 1. Consideration of such grasps further increases the

number of candidate grasps.

Steps 2 and 3 require geometric computations comparing each grasping surface with many other

surfaces of the object. For intricate objects, these calculations can become unwieldy.

Our approach is to integrate some of the grasp selection criteria into the grasp generation

procedure, eliminating subsequent testing and rejection. Our approach is to

1. generate only the set of edges, pairs of edges, or surfaces which are reachable by a
single infinitely thin robot finger.

2. form pairs which satisfy the geometric requirements, and

3

3. choose among those on the basis of stability or other goals.

In the following sections we introduce a new geometric construction, called the convex rope, and

an algorithm which computes it. The algorithm efficiently performs step 1. It also serendipitously

provides most of the information needed for step 2.

The algorithm, and the rope construction as well, apply directly only to two-dimensional polygons.

Some three-dimensional objects, such as extrusions and punched parts, have one uninteresting axis.

Their cross-section contains all the information about the object. In these cases the rope

construction can be applied to the cross-section.

More complicated three-dimensional objects may be treated by consideration of the intersection of

the object with well-chosen planes, yielding two-dimensional figures. This "projective" approach has

been applied successfully in other collision-avoidance and grasp selection problems (Lozano-Perez,

1983) (Ahuja, 1980) (Wolter, 1984) (Lozano-Perez, 1981) (Brooks, 1983).

4

2. Introduction

The rope algorithm is based on an order n convex hull algorithm (Peshkin, 1985). It capitalizes on

the orderly traversal made by the convex hull algorithm of all the vertices of a polygon. A similar

traversal of the vertices allows the rope algorithm to extract geometric information about the interior

pockets and folds of a complicated figure.

A vertex of a polygon is externally visible if a line can be drawn from it to infinity, without intersecting

the polygon. Such a vertex can be "seen" from some angle, with the observer in the plane of the

polygon. Conversely, if a vertex is not externally visible, it can not be seen from any angle, and, for

instance, no attention need be given to it in a graphics display. An entire polygon may be externally

visible, but we will be concerned here with finding the externally visible vertices of a general polygon.

For each externally visible vertex x there is a continuous range of angles from which it is visible (as

in Figure 2). At either end of the range the line-of-sight to the vertex x is obstructed by some other

vertex of the polygon. In Figure 2 these two vertices are labeled a and b. One of the functions of the

rope algorithm is to identify the two obstructing vertices.

At either end of the range described above, the line-of-sight grazes the obstructing vertex. As in the

example shown (Figure 2), in many cases the line-of-sight intersects some other segment of the

polygon, called the shadowed segment, after grazing the target vertex x. The algorithm also identifies

the shadowed segment.

Only points of the polygon which are externally visible are reachable by straight fingers in the plane

of the polygon. In addition to individual points, some entire edges of the polygon are reachable. If the

two vertices which delimit an edge of the polygon are both visible from the angle of that edge, then

both can be touched simultaneously by a straight finger at that angle. In this case the finger makes

contact with the entire edge.

It is also possible for a pair of vertices which do not delimit an edge to be simultaneously reachable

from the angle of the line formed by the two vertices. In this case a straight finger may make contact

with both vertices simultaneously, forming a two-point contact with the finger, or virtual surface

contact. In Figure 2 vertices a and x form a virtual surface. The algorithm provides the information

needed to determine simultaneous reachability of two vertices. It also identifies, for each vertex, the

other vertices which are candidates for the formation of a virtual surface contact.

5

Finally, if a finger is in contact with an edge or a virtual surface, its end can extend beyond the end

of the edge or the more distant vertex of the virtual surface. It is obstructed only when it extends far

enough to intersect the shadowed segment described above, which is also identified by the rope

algorithm.

6

3. The Rope Construction

Consider a simple polygon P described by a sequence of points in the plane (x i , yi) which are

consecutive vertices of the polygon. We will refer to the vertices by their sequence number i, Le.,

vertex 3 means the point (xg, y3). The only constraints on the points are that the polygon described

by them must be closed, and that one edge of the polygon must not intersect another. These

requirements give the polygon a well-defined interior.

The sequence of vertices may be a clockwise (CW) or a counterclockwise (CCW) description of.the

polygon. In a CW description, the interior of the polygon is to the right of the vector from one vertex

to the next; in a CCW description, the interior of the polygon is to the left of the vector.

If P has n vertices, we define vertex 0 to be equivalent to vertex n. Also, we choose our starting

vertex 0 so that it is an extrema1 point in the negative x direction. This insures that 0 is on the convex

hull.

The convex hull of P is a simple polygon whose vertices are some of the vertices of P. A description

of the convex hull is the sequence of vertices {C,, k 0,1,2 ... m} which is a subsequence of the

integers.

Let vertices {0, 1 ... n} be a CCW description of P. Sufficient conditions for {C} to be a

description of the convex hull of P are:

l . C o = O,C, = n

2. {C} is convex: every vertex Ci is left of line(Ci-*, Cia, 1, i.e., makes a left turn.

3. {C} is external, meaning that if a vertex j satisfies Ci., < j < Ci then j is left of line(Ci-,,
Ci).

The CCW convex rope to an externally visible vertex j is, like the convex hull, described by a

subsequence {R,, k =0,1,2 ... p} of the integers. We require Ro = 0, and Rp = j. {R} must be

convex and external. Unlike the convex hull, the convex rope is not a closed polygon. An example of

a CCW convex rope is shown in Figure 3, where R, the convex rope to j = 9, is {0,3,4,6,9}

The CCW convex rope is the shortest path from vertex 0 to vertex j, external to the polygon, subject

to the constraint that it be a CCW path: that is, it must be described by an increasing subsequence of

the integers.

7

The CW convex rope to a vertex j is the obvious analogous construction described by a decreasing

subsequence of the integers starting with Ro = n (which is identical to vertex 0), and ending at R, =

i .

The CW and CCW convex ropes to vertex j together constitute a cardioid hull of the polygon (Figure

4). If j happens to be on the convex hull, then the cardioid hull and the convex hull are the same. If j

is not on the convex hull, the cardioid hull has a single point (vertex j) at which it is not convex.

The cardioid hull may be thought of as the shortest path around the polygon, external to it, that

passes through vertex j . (Removing the requirement that the path pass through vertex j leaves a

definition of the convex hull.) There is a different cardioid hull for each externally visible vertex j, so

long as j is externally visible and is not on the convex hull.

The convex ropes have the important property that if {Rk, k 0,1,2 ... p} is the CCW convex rope

to R,, then the truncated sequence of vertices {Rk, k = 0,1,2 ... q} (where q < p) is the CCW

convex rope to Rq. It is therefore possible to arrange the externally visible vertices of the polygon in a

tree structure (Figure 5). Each vertex j has a pointer called sourcej to its parent vertex in the tree.

Sourcej is the vertex which immediately precedes j on the CCW convex rope to j. That is, if j = Rp,

sourcej = Rp-,.

The entire CCW convex rope to any vertex j can be read off (backwards) as: {j, source(j),
sou rce(sou rce(j)), sou rce(sou rce(sou rce(j))), ... 0). Information sufficient to generate the CCW

convex rope to all of the externally visible vertices of the polygon is stored by having a single pointer

from each vertex to its source. Obviously the same applies to the CW convex ropes. In general we

need two pointers from each vertex: a CW source and a CCW source.

Recall that the last vertex (n) of the polygon is equivalent to the first (0), and that it was chosen to be

on the convex hull. The CCW convex rope to n is the convex hull of the polygon, and source, is a

vertex on the convex hull. Since the CCW convex rope to vertex 0 is a sequence containing only one

element, namely 0, sourceO is undefined. It is convenient to define sourceO = sourcen. This

removes the uniqueness of vertex 0 as the starting point of all of the ropes.

With this definition, we have introduced a loop (Figure 6). into the tree described earlier (Figure 5).

The root node of the tree is identified with one of the terminal nodes. In reading off a convex rope

(backwards) as: {j, source(j), sou rce(sou rce(j)), sou rce(sou rce(sou rce(j))), ...} there is no

longer a final term. When the term 0 is encountered, the sequence goes into a repeating cycle

a

consisting of those vertices on the convex hull. Note that there is nothing unique about vertex 0 once

sourceO has been defined. There is no way to distinguish vertex 0 from any other vertex on the

convex hull, by looking only at the looped tree.

As can be immediately seen in Figure 4, the rays from vertex j to its CCW source and CW source

define a range of angles. Any ray from j intermediate between these two rays will not intersect the

polygon; any ray outside of their range will intersect the polygon. If j is lacking a CW source or a CCW

source (or both), as for example vertex j + 2 in Figure 4, then j is not externally visible: all rays from j

intersect the polygon.

Each pair (j , sou rcej) is an reachable grasping surface. Some of these are also real surfaces of the

polygon, while others, such as the dotted line in Figure 7, are virtual surfaces defined by two points. A

single, straight, infinitely thin finger in the plane of the polygon can make contact with the polygon on

just these reachable grasping surfaces.

One of the geometric requirements imposed on the selection of a pair of grasping surfaces is that

the object must touch the fingers either on the inner surface of both fingers, or on the outer surface of

both fingers, but not one of each. This "matter distribution" requirement can be fulfilled by choosing

the surface one finger is to contact from among the CW class of ropes, and the other surface from

among the CCW class.

A surface (or virtual surface) (j, sourcej) is matched with a parallel surface from the opposite class.

To avoid choosing pairs which are reachable only from opposing sides, one need only note the

distinction between parallel and anti-parallel surfaces. Surfaces are parallel if their rays (j, sou rcej)

are parallel.

An additional useful piece of geometric information is available. For each externally visible vertex j ,

the ray originating at j and passing through source. clearly does not intersect the polygon. The ray

originating at sourcej and passing through j does intersect the polygon, unless j happens to be on

the convex hull (Figure 7). The segment of the polygon which the ray first intersects is designated

(shadowj-l, shadowj), and is found by the algorithm.

1

By finding the intersection of the ray(sourcej, j) with segment(shadowj-1, shadow.), we can

also find the amount of clearance behind the interior point of contact (j) with the finger. This is just

the distance from j to the point of intersection. This information is needed when attempting to pair

the grasping surface with another one.

1

9

4. Convex Hull Algorithm

INPUT:

(xi, y,), for 0 I i I n, are the Cartesian coordinates of the vertices of the polygon.
Vertex 0 is extrema1 in the negative x direction.
Vertices 0 and n are equivalent.
The polygon is traversed in a CCW sense with increasing subscript.

OUTPUT:

stack,, for 0 I i I n, are the vertex numbers of the vertices on the convex hull.

THE ALGORITHM:

definition of function CCW(k, j, i), ranging from -n to n:

if (k = -1) CCW(k, j, i) = the CCW angle from the positive x axis to ray((xj, yj) (xi, yi)
if (k I 0) CCW(k, j, i) = the CCW angle from ray((xk, yk) (xi, yj) to ray((xi, yj) (xi, y,)

in it ia lize

stacko t -1
stack, t 0
pathangl, t 0
cumangl t pathang12
sp + 2

stack2 t 1
pathang12 + CCW(-1, 0, 1)

compute

for i = 2 ton

cumangl t cumangl + CCW(i-2, i-1, i)
pathanglsp+ +- pathang&, + CCW(stack*,, stacksp, i)

if pathang&,+ , - cumangl > .1

update cumangl and pathangl

test for disagreement

stacksp t i
sp t sp - 1
pathanglsp+ + pathanglsp + CCW(stacksp-l, stacksp, i)

reject i- 1

while sp > 1 and pathanglsp + , I pathanglsp test for right turn

sp + sp - 1
pathanglsp+ , t pathanglsp + CCW(stackspl, stac&,, i)

reject stack,

sp t sp + 1
stackBp t i

end

10

5. CCW Convex Rope Algorithm

INPUT:

(xi, yi), for 0 I i I n, are the Cartesian coordinates of the vertices of the polygon.
Vertex 0 is extrema1 in the negative x direction.
Vertices 0 and n are equivalent.
The polygon is traversed in a CCW sense with increasing subscript.

OUTPUT:

stacki are the vertex numbers of the vertices on the convex hull.
sou rcei is the vertex preceding i on the CCW convex rope to i
(shadowi-l, shadowi) is the segment which first intersects ray(sourcei, i)

THE ALGORITHM:

definition of function CCW(k, j, i), ranging from -n to .n:

if (k = -1) CCW(k, j, i) = the CCW angle from the positive x axis to ray((xi, yj) (xi, yi)

if (k 2 0) CCW(k, j, i) = the CCW angle from ray((xk, yk) (xi, yi) 1 to ray((xi, yi) (xi, yi))

in /t ia lize

stacko + -1
stack, + 0
stack, + 1
pathangl, t 0
pathangl, t- CCW(-l, 0, 1)
cumangIl t pathangl,
sp + 2
source, + 0
mostcw(0) +- 1

compute

fori = 2 ton

cumangli-, t- cumangli + CCW(i-2, i-1, i)
pathanglsp+ t pathanglsp + CCW(stacksp-ll stackspl i)

if pathanglsp + - cumangli > .1

update cumangl and pathangl

test for disagreement

stacksp t i
sp + sp - 1

reject i- 1

pathanglsp+ + pathanglsp + CCW(stacksp-,, stacksp, i)

11

while sp > 1 and pathanglsp+ I pathanglsp test for right turn

sp + sp - 1
pathanglsp+ + pathanglsp + CCW(stackspVl, stacisp, i)

while mostcw(stacksp) defined and CCW(stacksp, mostcw(stacksp)l i) > 0

reject stacks

SP
j = stack
v mostcw(j)

if segment(j, v) intersects segment(i-1, i)
or if pathanglsp + CCW(stacksp-ll j, v) + CCW(jl v, v + 1) - cumanglv+l > .1

source, + -1 I for mostcw(j) I x < i
unlink ti discard mostcw(j)

push k j is wrong. extend the path
k c j
j + mostcw(j)

old most-CW is invalid.

else

Sp
sourcei stack
mostcw(stacks,) t i
sp + sp + 1
stacksp t i

source, +- source,
end

12

6. Description of CCW Convex Rope Algorithm

The CCW convex rope algorithm is built upon an order n algorithm for finding the convex hull,

described fully in (Peshkin, 1985).

Both algorithms make use of a Cumulative angle calculated for each side of the polygon. A vector

from vertex i-1 to vertex i will be called vector(i-1, i). We associate the cumulative angle of this

vector with vertex i, calling it cumangl(i).

Cumangl(1) is defined to be the angle of vector(0, 1) with respect to the positive x axis. Each

subsequent cumulative angle, cumangl(i), is obtained from the previous cumulative angle

cumangl(i-1), by adding to it the CCW angle from vector(i-2, i-1) to vectodi-1, i). If vector(i-1 , i)

is CCW (i.e., to the left) of vector(i-2, i - l) , we assign it a higher cumulative angle. Cumangl(i) is just

the angle of vector(i- 1, i) with respect to the x-axis, but with an integer multiple of 2n added on. The

cumulative angle is not treated modulo 2n.

Pathangl(j) is the angle of vector(stack(j-l), stack(j)) with respect to the x axis, with an integer

multiple of 2n added on. Unlike cumangl, which is computed by following the edges of the polygon,

pathangl is computed by following segments of the convex path defined by the vertices on the stack.

The algorithm as presented here finds the CCW ropes for a CCW description of a polygon. By

reversing all the comparisons, the CW ropes for a CW description can be found. Of course a CCW

description can be transformed into a CW description by reversing the sequence of the vertices.

In addition to the simple stack used in the convex hull algorithm, the convex rope algorithm uses

several other data structures.

The array sourcei contains, at the completion of the algorithm, the source vertex j for each

externally visible vertex i. For most of the vertices which are not externally visible, sourcei will be

undefined (as indicated by a negative value). Under certain conditions a CCW source will be

assigned to a vertex i, but no CW source will be assigned when the algorithm is applied to the

reversed object, (or vice versa.) Only externally visible vertices have both a CCW and a CW source.

The array shadowj contains the value of i at which vertex j was removed from the stack. Since i

was the first vertex which could remove j, (k, j, i-1) must be convex (Figure 8), while (k, j, i) is

concave. Therefore, line(k, j) must intersect segment(i-1, i). Since k is the source vertex for j,

13

vertex i is shadow..
I

Finally, mostcw(j) contains data used internally by the algorithm. It can be thought of as a set of

stacks, one for each vertex, although for economy of space it is best implemented as linked lists. The

most recent element linked to mostcw(j) is the most CW vertex h for which source,, = j. When

another vertex i is encountered for which sourcei = j, vertices i and h are compared to see which is

most CW from j.

If i is more CW than h, it is linked to mostcw(j). Vertex i, the most CW vertex for which sourcei =

j, is then the most recent element linked to mostcw(j).

If, however, i is not more CW than h, this indicates that j is not truly the source for both i and h.

There are three distinct cases where i is not more CW than h, as illustrated in Figure 9. Vertex h

could be A, B, or C, and in each case i is CCW of h.

If h = A, the path to i intersects the polygon. This results from the removal of vertices from the

convex path which must now be reattached. The proper response is to reattach h to the path

between j and i.

If h = B or C, then h in fact properly has no source; it is not externally visible. The record of source

vertices for h through i-1 is destroyed. Vertex h is unlinked from mostcw(j), leaving some other

vertex as the most CW (or none).

Case B can be recognized by the concavity of h = B with respect to j and i. Case C can be

recognized by the fact that the segment of the polygon from i-1 to i intersects the segment of the

convex path from j to h = C. Case A is recognized as the absence of case B or C.

When the most-CW test for i fails, and the cause is found to be case A, vertices are added to the

stack. Unlike the convex hull algorithm, it is not assured that each vertex is added to the stack once

and removed at most once. Therefore the algorithm may require more than order n steps. In Figure

10 we have an example of a pathological object, which requires the CCW rope to wind and unwind

itself from the faceted curved surface once for each tooth on the comb structure. With almost n/2
facets, and n/4 teeth, this requires order n2 steps.

We can loosely define complexity as the number of zigs and zags of an object, or the number of

turns needed to get to a point deep inside it. Density is the number of vertices used in the description

of a feature of an object. Then the CCW rope will have to wind and unwind a number of times similar

14

to the complexity, and each winding or unwinding will involve a number of vertices similar to the

density. The expected number of steps is roughly the product of complexity and density. Since the

number of features is also similar to the complexity, the total number of vertices will be roughly the

product of the complexity and the density. The number of vertices and the number of steps required

are expected to be of the same order.

To verify the correctness of the algorithm, we have tested it on 25000 randomly generated polygons,

each having 53 or 58 sides. No errors were encountered.

The rope algorithm has been timed for a wide range of randomly generated polygons, as well as for

several demonstration polygons. The number of calls to the CCW function is a good measure of the

number of steps the algorithm requires. On polygons from size n = 10 to n = 1000, the number of calls

to CCW was consistently close to 8n. For comparison, the maximum number of calls to CCW in the

convex hull algorithm is 5n.

15

7. Conclusion

The algorithm discussed above takes a polygon with n sides, and in expected time of order n,

identifies all of the externally visible vertices and all of the reachable pairs of vertices. It determines

the available clearance of each surface or virtual surface found. It divides the surfaces into two

classes, so that by choosing one surface from each to form a grasp, the matter distribution

requirement (Laugier, 1981) can be fulfilled with no computation.

Previous strategies for grasp selection have been based on grasp generators which produce mostly

unreachable grasps, followed by filters to remove the unreachable grasps. In the algorithm described

here appropriate geometric constructions are used to avoid generating the unreachable grasps. For

objects of substantial complexity, this strategy results in reduced computational complexity for the

grasp selection process.

8. Acknowledgements

The authors acknowledge the helpful suggestions of Randy Brost, Mark Cutkosky, and Marc

Raibert.

16

I I

Figure 1 : Parallel virtual surfaces (dashed) which form a grasp of the polygon
(solid)

17

Figure 2: Range of angles from which point x is externally visible, and the
construction defining the shadowed segment

18

3 4

Figure 3: The counter-clockwise convex rope to j

19 .

Figure 4: Cardoid Hull of the polygon, constructed for vertex j

20

Figure 5: Tree structure of the CCW convex ropes to all the externally
visible vertices

Figure 6: Looped tree structure of the CCW convex ropes

21

22

I
I
I
I
I
I
I
I
I

I

Figure 7: Construction showing the relationship of j, source(j), and
shadow(j), as used in the convex rope algorithm

23

Figure 8: Construction showing the relationship of j, k, and i as
used in the convex rope algorithm

24

Figure 9: The three possible situations in which path-patching is needed

25

Figure 10: A pathological object which causes the convex rope algorithm to use
its worst case number of steps

26

References

Ahuja, N., R. T. Chien, R. Yen, and N. Bridwell. lnterference Detection and Collision Avoidance
among Three Dimensional Objects, pages 44-48. Stanford Univ., 1980.

Journal of Robotics Research, Winter 1983,2(4), 19-44.
Brooks, Rodney A. Planning Collision-Free Motions for Pick-and-Place Operations. The International

Laugier, Christian. A Program for Automatic Grasping of Objects with a Robot Arm, pages 287-294.

Lozano-Perez, Tomas. The Design of a Mechanical Assembly System. Master’s thesis,

SOC. Biomechanisms Japan & Japan Industrial Robot Assoc., 1981.

Massachusetts Institute of Technology, December, 1976. Section IV.1.1.

Lozano-Perez, Tomas. Automatic Planning of Manipulator Transfer Movements. /€E E Transactions
on Systems, Man, and Cybernetics, October 1981, SMC-ll(lO), 681 -698.

Lozano-Perez, Tomas. Task Planning. In M. Brady et. a/. (Ed.), Robot Motion Planning and Control,

Lozano-Perez, Tomas. Spatial Planning: A Configuration Space Approach. /E€€ Transactions on

The MIT Press, Cambridge, MA, 1982.

Computers, February 1983, C-32(2), 108-120.

Peshkin, M. A. and A. C. Sanderson. A Modified Convex Hull Algorithm for Simple Polygons.

Wolter, Jan D., Richard A. Volz, Anthony C. Woo. Automatic Generation of Gripping Positions.

Technical Report, Robotics Institute, Carnegie-Mellon University, 1985.

Technical Report RSD-TR-2-84, University of Michigan, February 1984.

