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Abstract
The ability to render realistic texture perception using haptic devices has been consistently challenging. A key component of texture 
perception is roughness. When we touch surfaces, mechanoreceptors present under the skin are activated and the information is 
processed by the nervous system, enabling perception of roughness/smoothness. Several distributed haptic devices capable of 
producing localized skin stretch have been developed with the aim of rendering realistic roughness perception; however, current 
state-of-the-art devices rely on device fabrication and psychophysical experimentation to determine whether a device configuration 
will perform as desired. Predictive models can elucidate physical mechanisms, providing insight and a more effective design iteration 
process. Since existing models (1, 2) are derived from responses to normal stimuli only, they cannot predict the performance of 
laterally actuated devices which rely on frictional shear forces to produce localized skin stretch. They are also unable to predict the 
augmentation of roughness perception when the actuators are spatially dispersed across the contact patch or actuated with a relative 
phase difference (3). In this study, we have developed a model that can predict the perceived roughness for arbitrary external stimuli 
and validated it against psychophysical experimental results from different haptic devices reported in the literature. The model 
elucidates two key mechanisms: (i) the variation in the change of strain across the contact patch can predict roughness perception 
with strong correlation and (ii) the inclusion of lateral shear forces is essential to correctly predict roughness perception. Using the 
model can accelerate device optimization by obviating the reliance on trial-and-error approaches.

Keywords: skin mechanics, roughness, perception, haptics

Significance Statement

Several distributed haptic devices capable of producing localized skin stretch have been developed to combat the challenge of render
ing roughness perception. Due to the inability of state-of-the-art models to predict device performance, designers need to rely on fab
rication and experimentation to assess a device’s performance, which can be both time-consuming and expensive. To this end, we 
have developed and validated a finger mechanics model that can predict the roughness perception produced in response to external 
stimuli. The model elucidates some important underlying mechanisms: (i) the variation in the change of strain across the finger con
tact patch is a key indicator of roughness perception and (ii) the inclusion of lateral shear forces is essential to make correct 
predictions.
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Introduction
Tactile textural information is multidimensional in nature (4–6), 
and one of the key perceptual dimensions of texture is roughness. 
During the tactile exploration of surfaces, the SA-1 (Merkel cells), 
RA-1 (Meissner’s corpuscles), SA-2 (Ruffini endings), and RA-2 
[Pacinian corpuscles (PC)] mechanoreceptors present under the 
glabrous skin of our fingers are activated. The physiological prop
erties of each mechanoreceptor allow them to provide informa
tion about various features of the tactile world (7, 8), and they 
each produce unique spike patterns in response to stimuli 

(Figure 1A). The information from these mechanoreceptors is 
then summarized and processed by the sensory cortex in the brain 
to give us a measure of how rough or smooth a surface feels 
(Figure 1B). The combined effect of the spatial and temporal var
iations across SA-1, RA-1, and RA-2 mechanoreceptors has been 
shown to correlate well to the roughness perception produced 
by a wide variety of textures (9, 10).

Although surface haptic devices have been successful in ren
dering tactile cues for actions such as turning a knob or moving 
a slider, rendering realistic textural information using tactile 
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cues has been more challenging (11, 12). Even when the bulk vi
brations and lateral forces experienced during the tactile explor
ation of textured surfaces were recorded and replayed on the 
whole finger with a very precise matching, the original feeling of 
roughness could not be reproduced (12). This led to the hypothesis 
that localized variations in skin strain within the contact patch 
might be critical in conveying textural information.

In this study, we investigate three state-of-the-art distributed 
surface haptic devices capable of producing localized skin 
stretch. Device 1 (3) is a distributed pin array driven by voice 
coil actuators and capable of moving each pin by a specified dis
tance in the normal direction. Device 2 (13) is a magnetically 
actuated distributed pin array which can move each pin by a spe
cified distance in the lateral direction. Device 3 (14) is a wearable 
device consisting of an array of electroadhesive pucks. When one 
puck is engaged, the nonengaged pucks and bulk finger sur
rounding it move, causing relative motion. The relative motion 
between the actuators in each of these devices is transferred to 
the skin, which ends up producing localized skin strains across 
the contact patch. Schematics of the three devices are shown 
in Figure 2.

Psychophysical experiments showed that when the adjacent 
pins in Device 1 were normally actuated with a relative phase dif
ference between them (i.e. when one pin moves up, the adjacent 
pin moves down), the perceived roughness increased with an in
crease in the phase difference. Increasing the number of instances 
of localized skin stretch by dispersing the pin actuations spatially 
across the contact patch also resulted in an increase in roughness 
perception. A similar observation was reported for Device 2—an 

augmentation in the perceived intensity with the increase in the 
phase decorrelation between neighboring pins. When the pin 
movements are decorrelated (i.e. when one pin moves left, the ad
jacent pin moves right), a localized skin stretch is produced, 
which, in turn, increases the perceived intensity. However, the 
same effect of phase delay between neighboring pucks on per
ceived roughness was not observed in Device 3. A 0° phase differ
ence between the voltages applied to neighboring pucks produced 
the highest roughness perception, which peaked at 90° but 
dropped sharply to a minimum at 180°. A schematic explaining 
the device configuration at different phase differences between 
neighboring actuators is shown in Fig. S6. If localized skin stretch 
is indeed a critical contributor to roughness perception and 
the amount of skin stretch produced increases monotonically 
with the phase difference between adjacent actuators, we would 
expect the perceived roughness to show the same monotonic 
increase. However, this was not the case. A proper understand
ing of how the skin mechanics trigger the mechanoreceptors 
that contribute to roughness perception can help us design hap
tic devices that produce predictable and consistent roughness 
perception.

To this end, we developed a mechanics model that can predict 
the perceived roughness for arbitrary spatiotemporal stimuli 
in both normal and tangential directions. We validate these 
predictions against psychophysical experimental results from 
the literature for different haptic devices under a wide range of 
experimental conditions. The model also sheds light on the im
portance of considering shear forces in predicting the roughness 
perception in laterally actuated tactile devices.

Fig. 1. A) Different mechanoreceptors and how they respond to the onset, hold, and offset of indentation. Adapted from (8). B) How external stimuli 
during everyday tactile exploration are translated to roughness perception.
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Results
First, we used a multilayered tissue mechanics model to estimate 
the extent of mechanoreceptor activation. The slowly adapting 
type 1 (SA-1) Merkel cells produce a sustained response during 
all phases of mechanical stimulus (onset, hold, and offset), while 
the rapidly adapting type 1 (RA-1) Meissner corpuscles respond 
only during changes in mechanical stimulus (onset and offset) 
(Figure 1A). Different measures such as stresses (15), strains 
(2, 15), and strain energy densities (16, 17) have all been shown 
to correlate well to neural firing rates. Since strain provides a dir
ect measure of the amount of stretch produced in the skin, we 
used the strain as a proxy for SA-1 activation, although the other 
measures would yield identical predictions because of the linear 
material properties assumed in this model. The change of strain 
was used as a proxy for RA-1 activation based on its responses 
to changes in indentation. These values were calculated at the 
interface between the epidermis and the dermis, where the me
chanoreceptors are assumed to be located. Since roughness per
ception is determined by the spatial variation in SA-1 and RA-1 
responses (10), we next computed the spatial variation in the 
strain and the change of strain by convolving it with a 1D Gabor 
filter, similar to the approaches used in (9, 10, 18, 19). Finally, we 
used the area under the curves as a measure of the average mech
anoreceptor activation translating to roughness perception.

We tested how the model estimates performed against psycho
physical experimental results for different device configurations 
(normal and lateral actuations) and experimental conditions (spa
tial dispersion and phase delay). Figure 3 shows an exemplary 

modeling workflow of how roughness perception is predicted for 
external stimuli applied to Device 2 with 0°, 90°, and 180° phase 
difference. Figure 4 shows the strains and the change of strains 
at the mechanoreceptor locations computed by the mechanics 
model, for the three devices that were investigated in this study. 
Figure 5 shows the correlation between the predictions of the 
model developed in this study and the experimental results re
ported in the literature.

Psychophysical experiments have shown that incorporating a 
phase delay between neighboring pin displacements or spatially 
dispersing the actuation can cause up to a 2-fold increase in 
roughness perception (3). It was hypothesized that this was due 
to the increased localized skin stretch produced by incorporating 
a phase delay, and the increased instances of skin stretch pro
duced by incorporating a spatial dispersion.

Studies have shown that SA-1 responses can account for the 
roughness perception produced by dot patterns (2), and the vari
ation in SA-1 activation is predictive of the roughness perception 
of coarse textures (9, 10). However, the variation in strain was un
able to account for the roughness perception produced by stimuli 
involving spatial dispersion or phase differences between the ac
tuators (Figure 5A). While the perceived roughness and variation 
in strain are well correlated for Device 2 (R2 = 0.989), the correl
ation is very poor for Device 1 (R2 = 0.0004) and a negative correl
ation is predicted for Device 3. Thus, the variation in strain is not a 
good candidate to predict roughness for distributed tactile stimuli.

It has been observed that all three afferent classes contribute to 
roughness perception (9, 10) and that for most natural textures, 
the variation in RA-1 activation is a more accurate predictor of 

Fig. 2. Adapted schematics of the three devices investigated in this study: A) Device 1 (3), B) Device 2 (13), and C) Device 3 © 2023 IEEE (14).
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roughness than SA-1 activation (10). Our model predictions show 
(Figure 5B) that the perceived roughness and variation in change 
of strain are very well correlated for all the three devices and ex
perimental conditions reported in the literature (R2 = 0.876, 0.987, 
and 0.959 for Devices 1, 2, and 3, respectively).

While a monotonic increase in roughness was observed with an 
increase in phase difference for both Device 1 and Device 2, it was 
not observed for Device 3. Device 3 was force-controlled, wherein 
the modulation of friction forces using electroadhesion was used 
to produce relative motion between the pucks. The displacements 
corresponding to each phase difference were experimentally 
characterized by imaging the finger–device interface, as given in 

Table 1. The phase difference between the voltages applied to 
the pucks does not translate linearly to the absolute and relative 
displacements produced. Since the absolute and relative displace
ments both contribute to the strains (and, in turn, the change of 
strains), the cumulative sum of the absolute and relative displace
ments should correlate to the roughness perception if it is indeed 
governed by the variation in change of strain. Computing the cu
mulative displacements from Table 1, we notice that this is indeed 
consistent with the psychophysical experimental results—180° 
phase difference produces the least roughness perception, fol
lowed by 0°, and then by 90° producing the highest roughness 
perception.

Fig. 3. Modeling workflow of predicting roughness perception produced by tactile stimuli. First, a multilayered finger mechanics model simulates the 
strain and change of strain at the mechanoreceptor locations. Next, their spatial variations are calculated by convolving them with Gabor filters. Finally, 
the areas under the curve are used as a measure of the average mechanoreceptor activation leading to roughness perception. The plots shown here are 
for an exemplary case for Device 2 with different phase differences.
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Thus, the inconsistency in Device 3 (nonmonotonic depend
ence of roughness perception on phase difference) was because 
the phase difference between the applied voltages did not trans
late linearly to the displacements produced in the finger. We 
hypothesize that this could have been due to several reasons: 
(i) the stiffness of the material (latex) in between the pucks might 
have mechanically coupled them, affecting their relative motion; 
(ii) the deformation produced by the low shear modulus of the ma
terial (Ecoflex 00-10) between the top of the pucks and the bottom 
of the finger might not have transferred the forces from the device 
to the finger; and (iii) certain vibration modes produced by the de
vice dynamics led to nonlinearities in the system response.

Role of shear forces in roughness perception
While it is possible to predict the roughness perception produced 
by static dot patterns and other similar textures without including 
the shear forces (1, 2), including the frictional interactions and the 
concomitant shear forces is essential to correctly predict the 

roughness perception for laterally actuated distributed haptic de
vices. When two adjacent actuators move out-of-phase, they 
stretch the skin in between and produce a localized strain. 
Without the frictional shear forces, the actuators would just slide 
on the finger surface without producing any skin stretch 
(Figure 6A and B). To show the importance of shear forces in pre
dicting roughness perception, we applied the same set of stimuli 
on Device 2 (adjacent pins actuated with 0°, 90°, and 180° phase 
delays) with and without frictional forces at the finger–device 
interface. We can see that without shear forces (Figure 6A), the 
variation in strain shows a negative correlation and the variation 
in change of strain contribution shows a weak correlation with 
perceived roughness. In contrast, the effect of phase difference 
on roughness perception is accurately captured when the shear 
forces are included (Figure 6B). In Device 1, the pins move only 
normally, and hence, additional movements in the normal direc
tion dominate over the effect of shear forces. Hence, the effect of 
omitting shear forces on Device 1 is not pronounced. Since Device 
3 is force-controlled and its working principle hinges on the 

Fig. 4. The A) strains and B) change of strains at the mechanoreceptor locations for Device 1 (row 1), Device 2 (row 2), and Device 3 (row 3) as computed by 
the finger mechanics model.
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transfer of shear forces across the finger–device interface to pro
duce a skin stretch, a frictionless interface in this case cannot pro
duce any skin motions and hence cannot make any predictions 
about roughness perception.

Discussion
We developed a model that can predict the roughness percep
tion produced under a wide range of stimuli, and it is able to pre
dict important phenomena such as the enhancement of 
roughness perception by applying spatial dispersion and phase 

difference between actuators, as shown in prior experimental 
work (3, 13, 14). We showed that the variation in the change of 
strain can predict the perceived roughness with strong correl
ation, which we believe is indicative of the importance of the 
role of the RA-1 mechanoreceptor activation in recreating rough
ness perception using tactile stimuli relying on localized skin 
stretch. For laterally actuated devices, it is also essential to in
clude the shear forces due to interfacial friction to make correct 
predictions about roughness perception. We hope that the model 
can be used by haptic device designers to predict the efficacy of 
devices in rendering roughness perception and fast-track the it
erative design process using predictive modeling rather than rely
ing on trial-and-error for optimization.

Although the model can successfully predict the roughness 
perceived for a wide range of conditions, it has a few limitations. 
First, the finite element method (FEM) model assumes linear elas
tic material properties, which performs well for the experimental 
conditions that the model was validated against in this study. 
However, to accurately capture dynamic effects such as the role 
of actuation frequency of roughness perception, it might be im
portant to include nonlinear material properties such as 

Fig. 5. Correlation between perceived roughness and A) variation in strain and B) variation in change of strain. The variation in strain was unable to 
account for the roughness percepts for stimuli involving spatial dispersion or phase differences between the actuator, while the change of strain (a 
measure of localized skin stretch) was very well correlated for all the three devices under all experimental conditions.

Table 1. Puck displacements for different phase differences 
(Device 3).

Phase 
difference (°)

Absolute 
displacement (μm)

Relative 
displacement (μm)

0 188 8
90 222 12
180 35 14
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hyperelasticity and viscoelasticity in the model. Second, the mod
el is based on SA-1 and RA-1 activation and performs well for the 
devices investigated in this study. However, it is well known that 
PC activation also plays a role in roughness perception, and rough
ness percepts can be best explained using a cumulative contribu
tion of all three afferent types (1, 9, 10). Therefore, the model can 
be extended to include the contribution of PC afferents, especially 
for devices where vibration is an important contributing factor.

Materials and methods
Finger mechanics model
A 2D FEM model was developed in Abaqus to simulate the contact 
mechanics at the finger–device interface. The finger was modeled 
as a multilayered structure consisting of the bone, nail, nail bed, 
subcutaneous tissue, viable epidermis, dermis, and stratum cor
neum. The bone was assumed to be rigid, and the thicknesses 
and mechanical properties of the other layers were taken from 
the literature (20, 21). The dimensions and material properties 
of the different skin layers are given in Table 2. The pins in 

Device 1 and Device 2 were made of carbon fiber and aluminum, 
respectively, which are much stiffer than the skin tissue, and 
thus assumed to be rigid. Device 3 was made of silicone rubber 
which had an elastic modulus (∼1 MPa) comparable to the epider
mis and affects how the shear forces are transferred to the finger; 
hence, it was modeled as deformable. Linear elastic material 
properties were assumed, and the domain was discretized using 
2D plane strain elements.

Fig. 6. Correlation between perceived roughness and strain (top row) and change in strain (bottom row) A) without and B) with shear forces included in 
the model. Including the frictional interactions and the resulting shear forces is essential to correctly predict roughness perception for devices that 
produce lateral skin stretch. Without the frictional shear forces, the actuators would just slide on the finger surface without producing any skin stretch.

Table 2. Dimensions and material properties of the different skin 
layers.

Skin layer Thickness 
(μm)

Elastic modulus 
(MPa)

Poisson’s 
ratio

Nail 600 170 0.3
Nail bed 2,900 1 0.3
Subcutaneous tissue 3,000 0.034 0.48
Dermis 1,400 0.08 0.48
Viable epidermis 175 1 0.48
Stratum corneum 425 2 0.48
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Stimulus
All three devices were preindented until all four actuators were 
completely in contact with the finger surface. After that, the 
pins/pucks were moved by small amounts in either the normal 
or lateral directions, depending on the device configuration. For 
Device 1, the pins were moved 20 μm in the vertical direction to
ward or away from the skin, depending on the phase difference 
being simulated. Since actuation displacements for Device 2 
were not reported in the paper, we used the same value that 
was reported for Device 1 and moved the pins 20 μm in the hori
zontal direction, either left or right. Device 3 is a force-controlled 
device, and hence, the absolute and relative displacements 
were phase-dependent, unlike Device 1 and Device 2 which are 
displacement-controlled and phase-independent. The displace
ments corresponding to each phase difference were experimen
tally characterized by imaging the finger–interface (14) (Table 1) 
and were used as the boundary conditions in the model.

Predicting roughness perception from the 
mechanical response of the finger
SA-1 mechanoreceptors respond to indentation, and RA-1 mecha
noreceptors respond to changes in indentation (22). Therefore, we 
first computed the maximum principal strains and the change of 
these strains at the mechanoreceptor locations (the interface be
tween the epidermis and the dermis) and used them as proxies for 
SA-1 and RA-1 activation, respectively. The strain plots shown in 
Figs. S1, S2, andS3 correspond to low, medium, and high spatial 
dispersion for Device 1, Fig. S4 corresponds to Device 2, and 
Fig. S5 corresponds to Device 3. Roughness perception has 
been shown to correlate well to the spatial variation in afferent 
spiking responses (10). A Gabor filter provides a measure of local
ized, periodic variation and has been widely used in the literature 
to explain the spatial and temporal codes of roughness perception 
(9, 10, 18, 19). Therefore, we next convolved the strains and change 
of strains with a 1D Gabor filter given by:

g(x) = cos
2πx

λ

􏼒 􏼓

exp
−x2

2σ2

􏼒 􏼓

Here, λ is the spatial period and determines the peak sensitivity of 
the filter and σ determines the attenuation distance of the filter. 
We used λ = 2.8 mm for the strain and λ = 1.15 mm for the change 
of strain, based on the innervation densities of SA-1 and RA-1 me
chanoreceptors, and a value of σ = 1.12 mm was used. These val
ues were taken from the literature, and no further optimization 
was performed. Finally, we computed the area under the curve 
after the convolution operation to compute the average rough
ness perception.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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