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Abstract
Active electrosense is a non-visual, short range sensing systemused byweakly electric fish, enabling
suchfish to locate and identify objects in total darkness. Here we report initialfindings from the use of
active electrosense for object localization during underwater teleoperationwith a virtual reality (VR)
head-mounted display (HMD). The advantage of electrolocating with aVR system is that it naturally
allows for aspects of the task that are difficult for a person to perform to be allocated to the computer.
However, interpretingweak and incomplete patterns in the incoming data is something that people
are typically far better at than computers. To achieve human–computer synergy, we integrated an
active electrosense underwater robotwith theOculus Rift HMD.The virtual environment contains a
visualization of the electric images of the objects surrounding the robot as well as various virtual
fixtures that guide users to regions of higher information value. Initial user testing shows that these
fixtures significantly reduce the time taken to localize an object, butmay not increase the accuracy of
the position estimate. Our results highlight the advantages of translating the unintuitive physics of
electrolocation to an intuitive visual representation for accomplishing tasks in environments where
imaging systems fail, such as in dark or turbidwater.

1. Introduction

Underwater environments are highly unfavorable to
visually-guided behavior even under ideal conditions
of being near the surface on a clear day [1]. Vision fails
with turbidity or darkness, and with this failure comes
the cost of slowed or stopped work for underwater
tasks such as repair work or disaster recovery. For
example, the Deepwater Horizon oil spill in 2010
demonstrated the crucial need for teleoperation sys-
tems that are robust to video ‘brown outs’—where
propellers of remotely operated vehicles disturb sedi-
ment halting work for hours at a time—or the
presence of unrefined oil in the water that obscures
vision. This hindered teleoperators on the surface
from effectively interacting with objects and perform-
ing repairs. In environments similar to these, long
range non-visual sensing approaches such as sonar are
ineffective due to scattering and clutter, while zero
range sensing such as touch may not be possible or
sufficiently rich to guide thework.

We take inspiration from biological systems and
use active electrosense, a near-range sensing modality
used by weakly electric fish, as a possible solution for
remote object manipulation in environments where
vision fails. Nocturnal weakly electric fish inhabit the
turbid waters of South American and African rivers
and generate a small AC electric field. Objects in the
field cause perturbations that can be sensed using
highly sensitive electroreceptors distributed over their
bodies. Any object with a conductivity or capacitance
differing from that of water is electrically visible to
these fish and can be distinguished based on its mat-
erial or dielectric properties [2].

In this paper, we use the SensorPod, a capsule-
shaped underwater robot capable of artificial electro-
sense (figure 1) [3–5]. The SensorPod emits an oscillat-
ing electric field with emitters at the front and rear of
the capsule, and senses voltage perturbations in the
field using two rows of electrodes along themidline on
the left and right side of the robot. The SensorPod
measures perturbations of an object by taking the
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difference in voltage measured across left and right
side pairs.

1.1. Priorwork
There has been significant work on the problem of
object characterization and localization with active
electrosense for robotic systems [5–7]. Alamir
attempted to solve the inverse problem by using
graphical signatures to alleviate the computational
burden [8]. Lebastard et al [9, 10] determined the size
of a sphere by navigating an electrosense robot around
the sphere, Ammari et al [11] developed shape-
classification algorithms based on comparing features
of the electric image that are invariant under rigid
motion or scaling to a collection of learned shapes, and
Bai et al [3] classified the aspect ratio, size, distance and
orientation of spheroids based on signals acquired
during algorithmically prescribed motions around
detected object. Bai and Snyder also identified object
properties by varying frequency and phase [12, 13].
Solberg et al [14]used a probabilisticmodel to perform
localization based on a preexisting 2Dmap of the space
surrounding the object. Nguyen et al [15] performed
sparse beamforming with an object of known electric
signature in 2D space to localize 0-2 objects. Miller
et al [4] calculated an ergodic trajectory that max-
imized the amount of time spent in information-rich
areas to localize an object or distinguish it from a
distractor object, and Silverman et al [16] performed a
modified range-only SLAM for the SensorPod itself
using an incomplete map. Electrosense for pretouch
and grasping has also been studied by Smith et al [17].

Despite this progress, algorithms developed for
automatic electrosense are relatively fragile and rely
heavily on simplifications or assumptions such as hav-
ing a map of the space beforehand and knowing the
electrical signature of the target object. Not only is the
discipline of artificial electrosense (or ‘machine elec-
trosense’ in analogy to machine vision) in its early
stages of development, the inverse problem of recon-
structing an object’s position and properties given its
electric image is severely ill-posed [18]. The advantage
of teleoperation that is augmented with information
from electrosense algorithms is that it naturally allows
for human-assisted computation, in which certain tasks

that are computationally difficult or impossible are
outsourced to the human. Adding a human in the loop
creates robustness in algorithms as we are adept at
extrapolating from incomplete information and mak-
ing decisions quickly in unpredictable environments.
A barrier to integrating a human in an electrosensory
system, however, is that electrosensory signals are
unintuitive for people to interpret. Thus, we endea-
vored to use a virtual environment (VE), rendered
with the Oculus Rift head-mounted display (HMD)
to assist the human operator.

1.2. VEs for teleoperation
It is worth spending some time defining the term
virtual reality (VR)more precisely. We borrow heavily
from Chalmers [19] by using the following definition:
VR is the general term for the technology that sustains
a VE, or for the environment itself. This environment
typically has two or three of the following character-
istics: it is (partially or fully) computer generated, it is
immersive, and it is interactive. In recent times, VR
has become more synonymous with using HMDs to
generate a 3D virtual world, although non-immersive
VR can also be achieved through the use of 2D screens.

When the VE is partially generated—such as by
overlaying virtual models over a live video feed—the
result is augmented reality (AR). Itmay bemore appro-
priate to say that we are proposing to perform tele-
operationwith electrosense using AR. Althoughwe are
forced to render a complete VE due to the real under-
water environment being dark or opaque, the environ-
ment and model of our robot correspond closely to
their physical counterparts—inasmuch as they are
known. For example, the movement of the robot as
seen in the head mounted display is as it occurs in the
real world. For our laboratory prototype, we also ren-
der a portion of the known geometry of the tank con-
taining the workspace for the electrolocation trial.
More or less of the geometry of the world can be ren-
dered according to the application and what is known
by the system. The only features that are purely virtual
are the hints and the visual representation of the elec-
trosensory signals.

VR has been shown to be beneficial for aiding phy-
sical object manipulation and interaction tasks,

Figure 1. (a) Image of SensorPod over tank. (b)A schematic of the SensorPod viewed from above. The SensorPod has seven differential
voltage sensors on itsmidline thatmeasure the voltage across its left (L) and right (R) side. Emitters at each end of the robot emit an
alternating±10Vfield. The front end of the SensorPod is defined to be facing the positive x-axis when the SensorPod is aligned at ◦0
with respect to the x-axis. For our study only the sensor pair labeled S4was used.
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especially for tasks such as computer-aided design or
during teleoperation [20–23]. In addition, rendering
virtual fixtures, or abstract sensorial data overlaid on
the workspace, can reduce the cognitive load for the
human operator [24]. We choose a 3D display over a
3D screen as it allows the user to orient and move the
camera naturally (by simply tilting their head) and also
offers better depth perception than a 2D screen. Thus
if we consider that electrosense teleoperation is likely
to be integrated with robotic manipulators, there is a
strong incentive to develop a 3DVR application.

We rely on the idea that one can use a predefined
electric image of an object to localize its position even
in an unknown environment with sparse information.
The computer will ‘translate’ electrosense readings
into visual information by rendering what a user
would perceive if he or she were to be capable of elec-
trosense, and also render virtual fixtures that indicate
potentially information-rich locations.

2. Setup

2.1.Hardware and communications
The setup for augmenting human sensing with active
electrosense consists of four distinct components
(figure 2): the SensorPod which is attached to a 4-DoF
gantry (detailed in [3]), as well as MATLAB and Unity
applications, and theOculus RiftHMD.

For this application only the middle sensing pair
labeled S4 on the SensorPod is used (figure 1). The
gantry talks toMATLAB via TCP/IP. MATLAB deter-
mines which virtual fixtures to render, and sends this
information to Unity via UDP. Unity then renders the
appropriate information in Oculus Rift. Users can
respond to the information and give a control input
(using arrow keys) for the gantry position; this infor-
mation is passed back to the gantry to update the phy-
sical position of the SensorPod.

The gantry is placed over a tank of water with
dimensions of 234cm wide× 175cm long×90cm
high. Programmed position limits restrict the motion
of the SensorPod to a smaller 153cm×85cm work-
space to maintain distance from the walls and bottom
of the tank. The water height is 46cm and the con-
ductivity of the water is 0.04S m−1. At run time, the
SensorPod moves at a speed of 2cm s−1 to minimize

surface water waves that distort the electrosense signal.
The SensorPod is able to freely move in the xy-plane
within the soft limits but is constrained so that its
orientation is always 0° with respect to the x-axis, and
such that the center of the SensorPod is at a depth
roughly 17cm from the bottomof the tank.

2.2. VR interface
The user interface (SensorPodVR) consists of a model
of the SensorPod, a scene of a plane indicating the
reachable space, and various fixtures rendered on the
plane that help visualize the relevant properties of the
electrosensory scene (figure 3). Users control the
SensorPod using the arrow keys and the SensorPod
then automatically gathers electrosensory data at each
position. The rendering is done at 75FPS (frames per
second), although MATLAB updates the position and
electrosense information at 40Hz.

In figure 3, the dark blue surface, or tank area, cor-
responds to the workspace in the physical tank. Move-
ment of the SensorPod is confined to this surface. On
top of the surface, a colored trail consisting of square
segments varying from blue (0 mV) to red ( +3 mV) is
rendered as the center of the SensorPod passes over
the corresponding position in reality. The redder the
segment, the greater the absolute value differential
voltage signal is at that position. Trail segments corre-
spond to a 1cm × 1cm square of the workspace in
reality, and thus an electrosense reading will be asso-
ciatedwith a unique position in the tank. The tank area
is composed of 153 such segments in the xdirection,
and 83 segments in the ydirection. This granularity
was found to be most suitable as it provided enough
detail while simultaneouslymaintaining performance.

The SensorPod is rendered as a transparent cap-
sule-like object. The camera position is locked slightly
behind the SensorPod but can freely rotate depending
on the orientation of the Oculus Rift. As the user navi-
gates around the tank area, Unity will render two types
of virtual fixtures. Cylindrical objects indicate the
computer’s current target position estimate(s). A
greater amount of transparency corresponds to a
greater degree of uncertainty. Green units hint at loca-
tions where the information on target location is
expected to be higher, which in our case correspond to
regions of high voltage perturbation (unlike Fisher

Figure 2.Communication pathways between the fourmajor components. The SensorPod andGantry sends its position (x, y, z),
orientation (θ), and voltage perturbation values (ES, or electrosense data) toMATLAB, which runs a simple algorithm to determine
the relevant pieces of information to send toUnity. Unity then renders this information for theOculus Rift. Control input is passed all
the way back to the SensorPod and gantry, whichwillmove to act out the command. Information between the gantry andMATLAB is
sent via TCP/IP, whereas information betweenMATLAB andUnity is sent via UDP.
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information maximization as used in [4]). Fixtures
disappear and update according to the data gathered.

We fix the orientation of the SensorPod to be ◦0
with respect to the x-axis as the electric image of the
target is affected by orientation. Only one target is
localized at a time. The target is an aluminum cylinder
with a height and diameter of 7.62cm and is placed in
a smaller zone  - x50 50 cm,

 - y30 30 cm around the origin. The robot is
restricted to moving in a plane above the cylinder to
avoid collisions.

3. Algorithm for object localization

3.1. Electric image of the target object
The electric image of the aluminum cylinder target in
2D space is shown in figure 4. The target (center,
white) is surrounded by four reddish regions, or peaks
of high voltage differential. These regions are

generated when the SensorPod moves over each grid
and records the differential voltage reading at that
(x y, ) position in the tank area. Note that the target
object, however, is located in an area of low differential
voltage reading. With the SensorPod directly over the
object, the electric field on both sides of the SensorPod
is equally perturbed, and the difference in voltage is
therefore 0. This is one aspect of differential mode
electrosense that is unintuitive for humans to visualize
—it conflicts with our implicit assumption that
moving our sense organs closer to a target will increase
the quality of information. We use the geometry of the
electric image extensively to compute the target’s likely
positions.

3.2.Overview of algorithm for peak localization
Algorithm 1 uses the position and number of the peaks
to locate the object. While the program SensorPodVR
is running, the algorithm in MATLAB repeatedly

Figure 3. Sample of application view in SensorPodVR.Users control the transparent capsule like object representing the SensorPod in
the physical world, and trace out a pathwhere the redder the path, the bigger the voltage perturbation is at that point. Various dots and
cylinders (virtual fixtures) describe the potential positions of large voltage perturbations and target objects, respectively.

Figure 4.Electric image of target object in virtual reality application, as seen from a top-down view.We sample the absolute value of
the voltage perturbations. The center of the four regions of high voltage perturbation (red) are spaced roughly 20cm apart from each
other in the x and y directions. The cylindrical target is in the center of the electric image, at a coordinate of little voltage perturbation
(blue). Amodel of the SensorPod (transparent capsule on bottom) is shown for scale in relation to the target in virtual reality.
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interpolates the existing information at each visited
(x y, ) point using natural neighbor interpolation
(MATLAB’s scatteredInterpolant function).
The more points the SensorPod has visited and the
more data it collected, the more accurate the inter-
polation will be. The algorithm looks for potential
peaks at a position (x y, ) at the visited sites by noting
all grid units with the following properties:

(i) Absolute value of voltage at ( )x y, 3 mV.

(ii) Surrounded by at least 3 visited grid-units with
voltage magnitudes smaller than or equal to the
potential peak’s units.

(iii) (x y, ) is not on the border of the tank area. That
is, 2cm < <x 152 cm and 2cm < <y 82 cm.
Hereafter, all spatial units are cm unless otherwise
noted.

The potential peak values and their positions are
stored in an array and clustered using agglomerative
hierarchical clustering (MATLAB’s cluster func-
tion). Clusters are formed based on the Euclidean dis-
tance between the points. The computer then
designates the maximum in each cluster as the true
peak. The next section details the switch cases used to
determine target positions based on the number of
peaks found.

Algorithm1. Locate objects and peaks.

functionLOCATEOBJECTSANDPEAKS(TankMatrix)
Interpolate sparsemap ofTankMatrix

Locate peaks in interpolatedmap using hierarchical clustering

ifnumber of peaks> 0 then

switchnumber of peaks do

case1
Generate four possible positions symmetrically about peak

case2
Determine alignment of peaks (horizontal, vertical, or

diagonal)
Generate positions depending on alignment

case3
Findmidpoint of peaks associatedwith longest distance

case4
Get convex hull of peaks

Find centroid of convex hull

(Continued.)
casedefault
No action

return estimated positions, number of peaks

3.3. Switch cases
Figure 5 depict the various peaks (crosses) found and
how they are used in theswitch case. The number of
peaks found determine the number of generated
cylinders (circles) at estimated positions.

3.3.1. One peak
When the user has discovered one peak, there are four
possible locations for the 7.62cm diameter, 7.62cm
tall aluminum cylinder.
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3.3.2. Two peaks
When the user has discovered two peaks, there are a
few scenarios depending on how the peaks are aligned.
Alignment is determined by the ratio of x and y
distances between the peaks. A deviation of roughly

◦11 from horizontal or vertical will be counted as
horizontal or vertical, respectively, and a deviation of
only  1.4 from diagonal will be counted as diagonal.
This strict adherence to ◦45 was created because too
many pairs of peaks would otherwise be counted as
diagonal.
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When the alignment is horizontal or vertical, the
algorithm first finds the midpoint of the two peaks.
When the alignment is diagonal, the midpoint is a
good approximation for the position.

Figure 5.Possible positions of the target object (white circles) based on the information from the number of peaks discovered
(crosses). (a)When one peak has been discovered, there are four possible positions for the target object. (b)With two peaks discovered,
the algorithmwillfirst determinewhether the alignment is horizontal or vertical (b1), or diagonal (b2). (c)With three peaks found, the
algorithm estimates the target position by taking themidpoint of the two peakswith the longest distance between them. (d)With four
peaks, the algorithm calculates the convex hull of the peaks and estimates the target position at the centroid.
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3.3.3. Three and four peaks
When the user has discovered three or four peaks, it is
likely that the true position of the target is not more
than a few centimeters from the estimated position.
With three peaks, the algorithm will search for the
longest distance between two of the three peaks and
take the midpoint of the points involved in the longest
distance.

When the user has discovered four peaks, the
computer will find the convex hull using MATLAB’s
convhull function, and take the estimated target
position to be the centroid of the convex hull. For-
mally, the convex hull is described as the set of points
pi in the set S such that:

å ål l l= ={ ∣ }pS 1, 0 .i
i

i i i

The convex hull can be thought of the enclosure
created by stretching a rubber band around the set of
points S. The convex hull function orders the points
properly so that the centroid ( )C C,x y of the quad-
rilateral can be calculated:
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3.4. Indicating regions of high perturbation
Originally virtual fixtures consisted only of cylinders
rendered at their estimated positions. However, it was
found that this was confusing for users because
navigating to the position of the cylinder did not yield
any additional useful information. In order to aid
intuition we also render green squares on the floor of
the tank area to denote possible peak locations. These
squares serve as hints that guide the user to a region of
high information density, which will improve the
algorithm’s estimate of the target position. If the
target’s estimated position is centered at (x y, ), units
are rendered at

- - + -( ) ( )x y x y10, 10 , 10, 10 ,
+ + - +( ) ( )x y x y10, 10 , 10, 10 .

4. System–user interaction

We perform hypothesis testing to determine the
usefulness of virtual fixtures (green square hints) in
aiding users to localize objects. Usefulness is measured
by two metrics: how long it takes users to localize the
object, and how accurate the localization is. The null
hypothesis assumes that there is no difference in
performancewith the use of virtualfixtures.

4.1. Experimental setup
Ten students from our laboratory tested Sensor-
PodVR. Users were given a set of instructions, briefed
on the basics of electrosense, and shown the electric
image in figure 4. This was done to reduce the variance
in performance, as some users weremore familiar with
active electrosense than others. All users attempted to
localize the target using two versions of the application
—one with hints, and one without (control case). In
the control group, users attempted to localize the
object by using only the colored trail, while in the
experimental group, users were able to rely on both
virtual fixtures and the colored trail. The order chosen
for the two versions for each user was randomized.
This was because we did not want familiarity with the
system to shift the mean of the time taken for
localization. Half of the users ran the no-hints version
of the application first, and half of the users ran the
hints version first.

The SensorPod starts at the origin (0, 0), and the
target is placed in a random position in the zone

 - x50 50 cm,  - y30 30 cm around the
origin. The timer starts when the user begins to move.
When the user has determined that he or she has loca-
lized the target, the user would position the center of
the SensorPod directly over the guessed coordinates,
and the timer would stop. Because there is no visual
grid overlaid with the tank area, to compare estimated
position with the actual coordinates, we moved the
SensorPod over the object by looking at the physical
position of the object and took the difference. The
value obtained is the accuracy measurement (error in
distance).

4.2. Results and discussion
A total of 10 trials were taken for each version. We
looked at the distribution of the data using a Lilliefors
test and if the distribution was close to normal, we ran
a two-sample t-test to test the hypothesis. If the
distribution was not normal, a ranked-sum test was
used. Results showed that virtual fixtures helped
reduce the overall time it took to localize an object
down by 44.5% on average but that there was no
difference in accuracy (see tables 1 and 2). Target
position estimates were within 4 cm of the physical
position when excluding outliers, which is about half
the body length of the object (7.62 cm diameter). This
is an acceptable error, as it indicates that the majority
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of attempts at centering the SensorPod over the face of
the cylinder are successful. Figure 6 shows how time
taken does not correlate with the distance error for
fixture and no fixture versions. This may be because
users feel more certain of their own estimates when
guided by the computer’s estimate, or because virtual
fixtures outline the possible regions of high informa-
tion density so that users do not have to guess their
locations.

However, if the user has collected an insufficient
amount of data, the computer’s interpolation will be
off and may mislead the user by giving a wrong esti-
mate of position. In the figure, there are two outliers

that have a relatively low accuracy, and it is likely that
during these trials the users prematurely determined
the position of the target after collecting only a small
set of data. This is one disadvantage of using guides—
the error of the interpolation is strongly tied to the
number of coordinates visited, so users can be misled
if they are too hasty in determining the object’s loca-
tion. Removing the outliers does not change the afore-
mentioned conclusions.

5. Systemperformance

5.1. Latency
Table 3 lists the various sources of lag. Delays due to
the data gathering rate and communications were
calculated by averaging the time taken to loop the same
task 1000times. Note that we gather voltage data every
other loop, and interpolate every 20th loop so the
calculated duration is only the average. Calculations
for the lag due to interpolation during the object
localization algorithm is described in the next para-
graph. Input–output lag was calculated by filming a
slow-motion capture of an operator controlling the
SensorPod and recording the time between user input
and SensorPod movement. Of all of these sources of
lag, aside from the input–output lag, it was found that
interpolation during the object localization algorithm

Table 1.Table ofmean, standard deviations for time versus accuracy
data infigure 6, with outliers.We can see that with outliers, the
accuracywith hints appear to be, on average, worse than the
accuracywithout hints. A ranked sum test was computed for
accuracy as the outliers cause the distribution to have a heavy tail.
This is one drawback of using hints—users can bemisled by the
computer’s estimate.

Time (min) Accuracy (cm)

Hints Nohints Hints Nohints

μ 2.28 4.11 3.91 2.22

σ 0.76 1.37 4.01 1.06

p 0.0016 (t-test) 0.52 (ranked sum)

Table 2.Table ofmean, standard deviations for time versus
accuracy data in figure 6, with no outliers. Oncewe remove the
outliers we can see that using hints or no hints does not change
the accuracy.

Time (min) Accuracy (cm)

Hints Nohints Hints Nohints

μ 2.21 4.08 2.11 2.10

σ 0.74 1.51 0.88 1.11

p 0.0072 (t-test) 0.98 (t-test)

Figure 6.Plot of the amount of time users took to localize an object compared to how close theywere to its physical position. Note that
most guesses arewithin 4 cmof error, which is a littlemore than the radius of the cylinder (3.81 cm). Thusmost attempts are successful
in centering the SensorPod over the cylinder.

Table 3. Some sources of lag in SensorPodVR.

Estimated task durations during runtime (ms)

Unity frame refresh (FPS−1) 13

Data gathering rate (voltage and position) 30

Communications (UDP) 4

Interpolation during Localization algorithm ( )O n2 , max200
Input–output delay 1000
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was the culprit for the biggest percentage of time
taken.

For this interpolation, the worst case time com-
plexity is ( )O n2 , which occurs when the SensorPod
travels around the perimeter of tank area (figure 7).
This is because the computer needs to interpolate over
the convex hull of the visited points, and so both the
size of the convex hull and the number of visited coor-
dinates influence the time needed. During a typical
run in which an object is localized within 500 unique
visited coordinates, the main while loop in
MATLAB runs on average at 40Hz. Other sources of
lag do not tend to increase the longer the applica-
tion runs.

Although the lag between user input and Sensor-
Pod movement is large, users did not report feeling
disoriented. This may be because this lag does not
affect Unity’s frame refresh rate so the VE still
responds to the user’s head orientation sufficiently
fast. Some users commented that the lag made it diffi-
cult to center the SensorPod correctly over the target
towards the end of the trial, which may have resulted
in positioning errors of 1–2cm. However, this error is
well below the acceptable error of 4cm and thus do
not affect the conclusion that users benefit from the
use of virtualfixtures.

6.Noise and distortion of the electricfield

In a real system there will always be some sort of noise
or non-ideal factor that decreases the precision of the
instrument. This is especially true for the SensorPod as
it relies on a differential voltage reading. Any noise or
distortion that causes asymmetry in the electric field
can be picked up as a voltage difference by the
differential op-amps across the sensor pair. Various

sources of noise include: electrical noise due to the
sensor circuitry, voltage offsets due to surface waves at
the air–water boundary, noise due to turbulence and
inhomogeneous resistivity of water, and distortions in
the electricfield due to tankwalls.

All noise factors come together and result in a
drifting voltage offset. This offset is the baseline, or the
electric image of the tank at a fixed depth without any
objects in the water. To reduce offsets due to the base-
line, the SensorPod periodically sweeps through a ser-
ies of 10 random straight-line trajectories in the tank
and samples the current position and the perceived
voltage differential at each point in the trajectory. This
information is interpolated to create a map of the
baseline at each point in the workspace (figure 8). Cor-
ner points of the reachable workspace are always
included in these trajectories. This baseline voltage is
subtracted from the readings we obtain during the
runtime of SensorPodVR and is recalculated every
2–3 h to counteract the effects of drift. As the baseline
cannot be calculated while running the experiment,
we also use the VR application to compare the trail
color of various points in the workspace before and
after each localization attempt to ensure that the offset
has not drastically changed.

Finally, as mentioned earlier, we restrict the place-
ment of the target object in a smaller zone
(  - x50 50 cm,  - y30 30 cm) centered
around the origin of the tank as our algorithm does
not yet address the effects of electric field distortion
near tankwalls [3, 16].

7. Conclusions

We have demonstrated the feasibility of operating the
SensorPod using a VE to localize a target object with a

Figure 7. Interpolation is only performed once every 20 iterations of the program’smainwhile loop.However, as the number of
visited positions grows, the time to interpolate increases sharply and causes a noticeable amount of lag in the application. Note that the
interpolation time grows as the square of the number of coordinates visited, but then decreases as the SensorPod begins to fill in the
area enclosed by its circuit.
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specific set of properties. By visualizing electrosense
information from the target as well as virtual fixtures
for guidance, SensorPodVR helps users effectively
respond to information from unintuitive types of
sensing modalities and decrease the time needed for
localization via human-based computation. By com-
bining user intuition with machine computation,
SensorPodVR has proven to be an effective early-stage
teleoperation system for localization using
electrosense.

As SensorPodVR is still in its early stages of devel-
opment, there are a few directions one could take its
development. An immediate next step would be to
improve the electrolocation algorithm. For simplicity,
this demonstration and the corresponding algorithm
assumes a fixed target shape and material; however,
our prior work on estimating shape, size, distance, and
material of targets could be integrated to make the
algorithm more generalized and robust [3, 13]. In
addition to providing the user with hints for discrete
locations where information is highest within an elec-
trosensory scene, we could hint at the optimal path to
sample the space proportional to its expected informa-
tion density by integrating ergodicity [4].
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