











V. DISCUSSION

Participant performance in Experiment 1 makes it clear
that some individuals familiar with feeling surface haptic
devices are highly attuned to subtle texture differences.
Discussion with these participants suggests that this is not
just a matter of sensory acuity, but that they are more
experienced with varying exploratory procedures to glean
tactile information from the display. Indeed, as the adaptive
procedure rendered smaller size gaps, the expert participatns
reported they were no longer feeling distinct gaps in the
texture, but only a slightly more rough feeling. This could
be an indication that non-uniformity of the distribution of
spectral energy in space contributes to the perception of
roughness. Such a result would be consistent with established
models of roughness perception [24], [25], although those
models are based on SAI afferent responses, which are
unlikely to be significant contributors in the case of the TPad
due to its extremely flat surface.

The fact that experts were cued by roughness instead
of gap detection at the small gap sizes is of interest.
At sufficiently small wavelengths, participants cannot feel
localized features, but phase information is apparently still
relevant. For a spectrogram, the phase information associated
with spectral content smaller than the window width is
discarded; thus, the only way to capture all distinctions
between textures is with a rather narrow window width, as
found in Experiment 1. However, other texture models may
capture roughness (as well as other qualitative aspects of
texture) in a different way, in which case their parameters
may not need to vary with such a fine spatial resolution.

The reconstruction of textures from the spectrogram rep-
resentation demonstrates that it has the ability to store
perceptually relevant information. All participants reported
that a response of 1 indicated no perceptual difference be-
tween textures, and that a response of 5 indicated immediate
and obvious distinction. It should be appreciated that this
experiment compared reconstructed textures with only their
own original designs. Had the reconstructions been used in
an identification task, or in comparisons with other textures,
it is very likely they would have been rated very similar for
window widths of Imm and lower. At a 2mm wavelength,
the reconstruction evidently breaks down for one of textures,
but not for others.

A wider window for spectrogram reconstruction indicates
a greater possibility for data compression. While these spec-
trograms were not data compressed, our goal is to represent
the spectral content with a set of parameters that greatly
reduces the data storage necessary to recreate the texture.
With a window width of 1mm, spectral data need to be stored
only once for each 0.5mm of space, and wider windows
lead to even fewer data points. It is interesting to observe
that certain textures are more susceptible to degradation
with increasing window width than others. On the basis of
these four textures only, it seems that textures with larger
features can withstand further compression before perception
is affected. It may be possible to calculate a statistic on the

texture to predict the widest window that can capture all
perceptual relevance in order to optimize a data compression
algorithm.

VI. CONCLUSION

In this paper, we have demonstrated that spatial spec-
trograms may be used to represent texture waveforms for
friction-modulating surface haptic devices. We experimen-
tally determined the smallest feature size participants could
locate during early texture perception, and found 0.25mm
to be a conservative estimate of this value. Additionally,
we reconstructed textures from spectrograms of a set of
pre-designed textures. We tested the similarity between the
reconstructed textures and the original textures, finding that
with a window size of 0.2mm, the reconstructions are
indistinguishable from their respective originals. Although
not developed here, it also seems likely that the spatial
spectrogram will enable the compression of texture data.
It is important to understand, however, that this work has
not addressed the realism of virtual textures as compared to
any physical counterparts, nor have the models taken into
account other variables of fingertip contact, such as velocity
and contact force. In light of these factors, it seems likely that
more sophisticated texture representation and reconstruction
techniques will ultimately be necessary.

APPENDIX
A. Spectrogram Decomposition

Given a texture, f, as a function of space x, one location on
the spectrogram is calculated by a discrete Fourier transform
with an N-wide Hanning window function. The spectrogram
is calculated at locations in space separated by half the
window width such that each window overlaps with its two
neighbors only. The function to calculate the spectrogram is:
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where S is the function of space (x) and spatial frequency
represented by normalized wave number (k). The window
function is represented by w and is centered at w (%) Lis
the number of points in the texture f(x). The upper half of
the standard discrete Fourier transform is discarded as this
information is redundant given real input.

B. Texture Reconstruction

The first step in reconstructing the texture is forming the
overall shape from the local DC values in the spectrogram.
This is just a sum of the DC values of the neighboring
spectrogram data. The initial shape is calculated as follows
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where d is the value at all points # in space and A, is the set
of indexes of the spectrogram whose window encloses point
n. The overall shape is used to calculate phase values to be
used in the inverse transform as follows:
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where P is only the phase information of the windowed
Fourier transform.

The inverse Fourier transforms are performed on F, which
contains the magnitude information from the spectrogram
and the phase information from the newly derived P matrix.
f(xn,m) derived below represents the texture value at point
X, based on the inverse transform from the spectrogram at
point x;,.
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To obtain the final reconstruction value, an overlap-add
method is used. f(x,,m) is windowed and summed over all
non-zero values (Vm € M) as follows:
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