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Abstract:  We report numerical studies of the "memory-loss" phase transition in

Hopfield-like symmetric neural networks in which the neurons are connected to all

other neurons within a local neighborhood (dense, short-range connectivity).  The

number of connections per neuron, K, scales as the number of neurons, N, raised to

a power less than one (i. e., K ~ Nη, η< 1)   We use the recently developed Lee-

Kosterlitz finite size scaling technique to determine the critical value of η below

which the first-order phase transition disappears.
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Abstract:  We report numerical studies of the "memory-loss" phase transition in

Hopfield-like symmetric neural networks in which the neurons are connected to all

other neurons within a local neighborhood (dense, short-range connectivity).  The

number of connections per neuron, K, scales as the number of neurons, N, raised to

a power less than one (i. e., K ~ Nη, η< 1)   We use the recently developed Lee-

Kosterlitz finite size scaling technique to determine the critical value of η below

which the first-order phase transition disappears.

Using a recently developed finite-size scaling approach1, we have determined the

phase diagram of limited-connectivity Hopfield-type2 networks, in which each of N

neurons is symmetrically connected to the K neurons closest to it.   We observe

empirically a new relationship of these Hopfield-type neural networks to standard

statistical mechanical models.  This connection is distinct from that between

Hopfield networks and spin glasses which has been of great importance in the mean

field theory of Hopfield networks3.  The Hopfield network and its limited

connectivity variants are observed to obey an approximate Boltzmann-like energy

distribution where a function of the number of patterns plays the role of

temperature. We exploit this observation in an investigation of the memory-loss

phase transitions of networks where the number of connections increases with N



with a power less than 1 (i.e.  K~ Nη, η <1).  We find a critical value of η ~ .65 below

which the first order transition disappears.  Surprisingly, this critical value is

independent (or at least nearly so) of the dimensionality of the connection

arrangements.

The connection structure we explore is thus dense (K ~ rd, where r is the range of

the connections), but local.  Our model shares with biological networks this locally

dense but globally dilute interconnectivity3.  For computational applications the case

of dense but local connections is also of interest.  (Optimal connection structure is

determined in part by a competition between the increase in memory capability for

larger K and the increased wiring requirements for larger r.)

In previous publications others have studied densely connected symmetric

networks with K ∝  N using primarily a mean field theory approach3, 4.  The case of

highly dilute asymmetric connections (K << rd) has also been recently addressed by

exact arguments for the long range5 (r ~ N1/d) and local6 (r ~ Nη/d, η <1) cases.  The

behavior of networks with dense, local connections cannot be investigated using

these analytical techniques.

In what follows we begin by reviewing the Hopfield model and introducing the

modifications used here.  We then describe a finite-size scaling technique recently

developed by Lee and Kosterlitz  and apply it to our limited-connectivity networks.

Model

The Hopfield model3 is an approach to producing a neural network with an

associative memory property.  In this model the neurons are simple on/off

elements which can be thought of as Ising spins.  A memory is a specification of the



state of each of the neurons.  The network is run from some initial state by

proceeding randomly through the neurons and turning each neuron on or off

depending on whether the input it receives from the neurons to which it is

connected is positive or negative.  In spin language, we flip each spin if it decreases

the energy, where the energy function is of the usual Ising form

E = – Σ Jij si sj (1)

where each spin si = ±1.  This procedure has the effect of moving the system to the

nearest (first-encountered) local minimum of the energy.  The Jij are chosen in an

attempt to make the desired memories stable states (or local energy minima) of the

system.  The particular prescription used in this work is standard and is given by

Jij = Σ ξµ
i   ξµ

j ,         Jii = 0 (2)

where  ξµ
i    is the value of the spin at site i in memory µ and  µ = 1, 2, ... p labels the

desired memories.  In the original Hopfield model and in the work described here

these memories are taken to be uncorrelated random patterns of the spins.  Besides

local minima near the programmed patterns, the prescription (2) leads also to the

generation of large numbers of spurious minima (not close to any of the

programmed memories) even for low values of p.  As p is increased the minima

corresponding to the programmed memories are eventually destabilized and the

memory property of the network is lost.

In our study of the phase transitions in limited connectivity networks we need to

define a connection scheme.  Here we take our neurons as arranged on a d-

dimensional hypercubic lattice and connect them to the nearest K neurons.  The



coupling constants are determined as in (2) and then the Jij for ij pairs not connected

in our system are set to zero.  We have studied the behavior for d=1, 2, and ∞ (where

d=∞ is implemented by using a random choice of connected neurons4).

A standard test to check the associative memory property of the network may be

performed by initializing the network in one of the programmed memories µ, and

then running the network.  The resulting state is compared to the memory µ and

the number of bit errors counted.  If the number of bit errors is small, then we say

that the network remembers the pattern µ.  A large number of errors means that the

pattern has been forgotten.  If we perform this stability test for a large number of

choices of the set of programmed patterns we may determine the average number of

bit errors ε  characterizing a particular number of patterns, p.  In practice7, for a fully

connected Hopfield model, a first-order memory loss phase transition characterized

by a discontinuous jump in ε  occurs when the number of programmed patterns

exceeds a critical value given by p = .14N.  (In a finite system the discontinuity is, of

course, rounded.)  Thus the quantity ε functions like an order parameter for the

memory-loss phase transition and the quantity α , defined as p/N, determines the

transition point.  When the number of connections, K, is not equal to N, the

appropriate parameter4 is α = p/K.

Boltzmann-like behavior

We have observed empirically that these Hopfield-type networks are characterized

by a Boltzmann-like distribution of the energy of the final states, where number of

programmed patterns plays a role analogous to that of temperature.  A priori one

would not expect such behavior.  Indeed, the differences between our neural

network system and a standard statistical mechanical system are great.  In a statistical

mechanical system a fixed energy landscape is sampled ergodically at a given



temperature.  In our neural system we have instead an α-dependent energy surface,

which is sampled in a highly non-ergodic manner:  an irreversible network

dynamics causes ε to be sampled only over those minima which are closest to our

programmed patterns.  In spite of these significant differences we find empirically

that the α-dependence of our energy histograms, Pα(E), is approximated surprisingly

well by a Boltzman-like factor e f(α) E.   As a consequence we can use a reweighting

scheme in the style of Ferrenberg-Swendsen to predict the energy distribution at a

given α  from the distribution at a nearby α .  The reweighting scheme relies strongly

on the exponential dependence of Pα(E) on the quantity f(α)E.  Reweighting works

well in these networks as illustrated in Fig. 1.
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Figure 1. Histograms of P(E) vs. E for one-dimensional networks with N=400,
K=320, p=60 (squares) and p=70 (circles):  (a)  as measured,  (b) after
reweighting by a factor e.024 E/K for p=60 and e–.004 E/K for p=70.

Lee-Kosterlitz finite size scaling



Lee and Kosterlitz1have recently presented a finite-size-scaling procedure which is

useful for determining the order of a phase transition when the system size is too

small to use the standard finite-size-scaling analysis.  The method has been used in

only a few cases so far.  The work described here thus tests the practicality of the

procedure as well as showing its power in analyzing our current problem.  We

describe the method briefly here.

First order phase transitions are characterized by two-phase coexistence.  In our

neural network system7 the coexisting phases correspond to (i) the collection of

minima close to the programmed memories (the low α  phase) and (ii) the collection

of "spin glass" minima far from the programmed memories (the high α  phase).  It is

important to remember that the network dynamics samples only the local minima

obtained by starting in a programmed memory.  The memory-loss transition occurs

when these local minima become unstable.  The spin glass minima have already

become the global minima at a value of α  well below our transition value αc.

We may also characterize the local minima which we reach in performing the

stability test by their energy distribution Pα(E).  A distribution Pα(E) for a finite

system near a first order phase transition will be double-peaked.  This signature of

two-phase coexistence would be observed only exactly at the transition point in an

infinite system.  For a finite system the coexistence is smeared over a region around

the transition.  Given the distributions Pα(E) (or a distribution of some other

relevant quantity such as the order parameter) a finite size approximation to αc may

be obtained by finding the point at which the two peaks are of equal height.   This

point α* will converge to αc as the system size is increased.



If we observe the distribution P*(E) or P*(ε) as the system size is increased, we will

see that if there is a first order phase transition the peaks will sharpen and become

more distinct as the system size increases.  Figure 2 shows a series of histograms

obtained from a 1–d neural network with a fixed connectivity fraction K/N (i.e.

η = 1).
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Figure 2:  Histograms of P(ε) vs. ε for one-dimensional networks with N=100,
200, 400, 800.   Connectivity K is proportional to N, i.e η  = 1, displaying the
increasing peak to valley ratio which ocurrs for η>ηc.   For these curves K = 70,
140, 280, 560 respectively, and the number of stored patterns p = 22, 36, 64, 112.
The vertical axis is the probability of observing a number of bit-errors ε.   The
vertical axis is not normalized, so the numbers are the total number of
observations.



Here we know from the mean field results of Canning and Gardner4 that a first-

order transition is expected.  The sharpening of the peaks as the system size is

increased is easily observed.  In order to quantify this sharpening we follow Lee and

Kosterlitz and measure the logarithm of the ratio of the probability at the peaks of

the distribution to that at the valley between them.  At a first order transition this

quantity will diverge as system size is increased.  At the critical value of η where the

first order transition disappears it will tend to some nonzero constant, and below

this critical value it will tend to zero, as the two-peaked structure disappears.  Thus

the behavior of the peak-to-valley ratio can be used to probe the phase diagram of a

system.

As a practical matter it is difficult to pinpoint the value of α  at which the peaks are

of equal height.   To obtain a good approximation of the equal-peak-height

distribution

we use the reweighting scheme described above and illustrated in Figure 1.

Peak to valley ratios

We determined peak-to-valley ratios for both energy, P(E), and bit error, P(ε),

histograms.  The results we present were obtained using the ε histograms because,

for the system sizes accessible to us, the separation between peaks was more

pronounced in the ε histograms.  Results obtained from the energy histograms were

consistent with those we will present.

Our goal in this study was to determine the effect on the phase transition of having

K ~ Nη for various values of η < 1.  Because we had limited values of K and N

available to us it was not efficient to perform our calculations by sweeping K and N



for every value of η.  Instead we took our available values of K and N and

interpolated the resulting data to obtain contours of constant peak-to-valley ratio.

The resulting contour plots for d=1 and ∞ are shown on a log-log scale in Figures 3

and 4.
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Figure 3.   Contours of constant peak-to-valley ratio for one-dimensional
networks.
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Figure 4.   Contours of constant peak-to-valley ratio for ∞-dimensional
(randomly connected) networks.

This graphical method provides good insight into the behavior of the system.  We

see that the contours of constant peak-to-valley ratio are parallel lines of slope ~.65.

This slope corresponds to the critical value of ηc below which the transition

disappears.  We can see this by inspecting Figures 3 and 4.   If, for example, we

imagine increasing N at constant K (i.e. η=0) we see that contours of lower and

lower peak-to-valley ratio will be crossed, indicating the disappearance of the two-

peaked structure.  This decrease will occur for any power η<ηc.  On the other hand, if

the line K = N (i.e. η=1) shown on the plot is followed, contours of increasing peak-

to-valley ratio are crossed, indicating a first order transition in that case.  Such an



increase occurs for any power η>ηc.  For K ~ Nηc we find a constant value of peak-to-

valley ratio, thus identifying the critical value of η .  The different contours of slope

ηc correspond to different values of the prefactor in K = CNηc.

Measuring the slopes of the contours to within our numerical accuracy we find

ηc = .68±.05 for d = 1,   .71±.03 for d = 2,  and ηc = .61±.03 for d = ∞.  These values

indicate that the value of ηc is surprisingly insensitive to (and perhaps even

independent of) the dimensionality of the connection arrangement.

In conclusion, we have shown that the zero-temperature Hopfield network and its

limited connectivity variants obey an approximate Boltzmann-like distribution

where a function of the number of patterns plays the role of temperature.   We have

applied the Lee-Kosterlitz finite-size scaling scheme to the limited connectivity

networks and have shown that the memory-loss phase transition disappears for η <

ηc ~ .65 where K ~ Nη.   The value of ηc is nearly independent of dimension.

Finally we comment that the Lee-Kosterlitz technique is a very powerful tool for

studying the memory-loss phase transition.  Unlike the mean-field technique and

the exact arguments used for dilute asymmetric connectivity, its applicability is not

severely restricted by the choice of connection scheme.   It can therefore be used to

investigate the importance of variations on the connection scheme use here.
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