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Admittance Matrix Design for
Force-Guided Assembly

Joseph M. Schimmels, Member, IEEE, and Michael A. Peshkin, Member, IEEE

Abstract— This paper addresses the design of manipulator
admittance for reliable force-guided assembly. Our goal is to
design the admittance of the manipulator so that, at all possible
bounded part misalignments, the contact forces always lead to
error-reducing motions. If this objective can be accomplished for
a given pair of mating parts, we call the parts force-assemblable.
As a testbed application of manipulator admittance design for
force-guided assembly, we investigate the insertion of a workpiece
into a fixture consisting of multiple rigid fixture elements (fixels).
Here, we define a linearly force-assemblable fixture to be one for
which there exists an admittance matrix that ensures the unique
positioning of a workpiece despite initial positional error. We
show that, in the absence of friction, all deterministic fixtures
are linearly force-assemblable. We also show how to design an
admittance matrix that guarantees that the workpiece will be
guided into the deterministic fixture by the fixel contact forces
alone.

I. INTRODUCTION

URING conventional position-controlled robotic assem-

bly, small misalignments of the mating parts can lead
to total failure of the assembly. At best, the parts simply
remain unassembled; at worst, the contact forces that result
from part misalignment damage the contacting parts or damage
the manipulator or both.

Force control prevents damage to the parts and/or manip-
ulator by regulating the contact forces. Under force control,
the contact forces that result from part misalignment cause
the manipulator to deviate from its nominal trajectory. The
deviation depends on the manipulator’s admittance (i.e., its
motion response to forces) and results in either an increase or
a decrease in the part misalignment.

Our goal is to design the admittance of the manipulator so
that, at each possible misalignment, the contact force always
leads to decreased part misalignment. In this way, contact
forces are used to guide the part to its properly mated position,
thus exploiting the capability for error reduction inherent in
force control. If it is possible to design an admittance control
law (i.e., a single nominal velocity in conjunction with a single
mapping of forces to motions) that can guarantee the proper
assembly of a given pair of mating parts, we say that the parts
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are “force-assemblable.” The use of an admittance control
law to both regulate contact forces and reduce positional
misalignment is referred to as “force assembly.”

The concept of force assembly is not new. Others 3], [14],
[26], [27] have suggested that the admittance of the manip-
ulator be structured so that contact forces lead to decreasing
errors. Much of their work, however, dealt with the analysis of
the assembly kinematic constraints when considering a special
class of admittance, an “admittance center.” An “admittance
center” is the point in the assembly task reference frame at
which a sensed force maps into a motion along the same
direction as the sensed force.

Others have addressed a broader class of admittance func-
tions. Both Peshkin [18] and Schimmels and Peshkin [22]
addressed the synthesis of an admittance matrix in the fol-
lowing manner: First, the desired motion properties were
specified at a characteristic, but limited, set of positional errors
of a particular assembly task. Then an unconstrained ‘‘least
squares” optimization was used to generate an admittance
matrix that may or may not actually exhibit these properties.
Asada [1] used a similar optimization procedure, but for
the design of an admittance neural network rather than an
admittance matrix.

The contribution of this paper is a systematic means of
identifying the bounds of frictionless force assembly and a sys-
tematic approach to the design of a manipulator’s admittance
that guarantees force assembly in the absence of friction. As a
testbed application of the design of a manipulator’s admittance
for force assembly, we consider the class of assembly tasks in
which a workpiece is inserted into a fixture.

A. Fixtures and Fixturing

Fixtures are used to position a workpiece uniquely and
to constrain its motion (i.e., maintain that unique position)
during processing [6]. Most research in the area of fixturing
has been directed at the motion constraint aspects of the
fixture. Here, we address the insertion/positioning aspects of
the fixture. The insertion of a workpiece into the fixture is at
least as important as constraining its motion after it has been
inserted. Without proper insertion, the fixture may not actually
contact the workpiece at the intended locations, leaving it
underconstrained and malpositioned.

A fixture may constrain motion in two different ways. One,
form closure, is purely kinematic, in which the geometry of
the contacting rigid parts prevents motion regardless of the
magnitude of the applied force [9], [17]. The other, force
closure, involves the use of friction to assist in the reduction of
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the freedom of motion of a kinematically underconstrained ob-
ject [15], [21]. In force closure, motion along a kinematically
unconstrained direction is prevented as long as the magnitude
of the applied force does not exceed the maximum support
that can be provided by friction.

Here, we investigate the insertion of a workplccc into
a form-closure fixture consisting of individual frictionless
rigid fixture elements (fixels) each providing point kinematic
constraint to the motion of the workpiece. The advantages of
a fixture of this type are: 1) the point kinematic constraints
of the individual fixels lend themselves to a system of flexible
fixturing [2], and 2) a minimal system of point contacts without
redundant constraints provides improved positioning accuracy.

Individual frictionless fixels provide unilateral kinematic
point constraint to the motion of the workpiece. They prevent
the workpiece from moving into the fixel but allow translation
away from the fixel, translation along the fixel, and rotation
about the fixel point contact. The number and placement
of the individual fixels on the surface of the workpiece
determine the presence or absence of workpiece total motion
constraint. Reuleaux [19], Somov [23],-Lakshminarayana [9],
Ohwovoriole and Roth [17], Salisbury [21}, and Nguyen [15]
each have addressed the total constraint of objects using
unilateral point constraints. As a result of their work, it is
known that seven or more frictionless fixels are required to
totally constrain the motion of a body in three-dimensional
space and that four or more frictionless fixels are required to
totally constrain the planar motion of a body.

Most recent research in the area of rigid fixel fixturing has
been directed at the evaluation of fixture designs with respect
to total motion constraint. Mani and Wilson [12] evaluated
several properties of planar fixture designs including total
constraint. Bausch and Youcef-Toumi [5] evaluated the ability
of a fixture to resist motion if the fixels are not totally rigid.

B. Positioningl/Insertion Aspects of Fixturing

Force-guided insertion of a workpiece into a fixture places
requirements on the workpiece/fixture kinematics and on
the manipulator admittance. The workpiece/fixture kinematics
must allow ease of workpiece insertion and must ensure
unique positioning. The admittance of the manipulator must
ensure that contact forces are regulated and that error-reducing
motions always occur.

1) Workpiece/Fixture Kinematics: A well designed fixture
allows the workpiece to be inserted with relative ease, and
then, with the addition of a small number of closure fixels
(preferably one), provides total constraint (form closure) dur-
ing processing. We refer to the fixture without its closure fixels
as a partial fixture, and the fixture with its closure fixels as a
complete fixture.

Asada and By [2] addressed several key issues involved in
the assembly of a workpiece into a partial fixture. They defined
a deterministic fixture to be one for which the workpiece is
mated at a unique position when all fixels of a partial fixture
are made to contact the workpiece surface. They defined an
accessible/detachable fixture to be one for which there exists
at least one trajectory along which the workpiece can be

removed from the partial fixture. They defined a strongly
accessible/detachable fixture to be one for which there exists
a trajectory along which the workpiece will detach from all
fixels at the same time.

2) Manipulator Admittance: A workpiece can be properly
inserted into a partial fixture to obtain a unique properly
mated position if: 1) the partial fixture is deterministic, i.e.,
contact with all fixels establishes a unique workpiece position,
and 2) contact with all fixels of the partial fixture after
insertion is ensured. Here, we address the requirements on
the manipulator admittance so that contact with all fixels of
a deterministic partial fixture is ensured. In other words, we
identify the conditions that guarantee the unique positioning
of the workpiece.

Our approach for obtaining contact with all fixels in a partial
fixture is to require that the motion of the workpiece during
insertion: 1) causes the workpiece to maintain contact with
those fixels already in contact and 2) leads to contact with
the remaining fixels not already in contact. This conservative
process of monotonically increasing the number of fixels in
contact guarantees eventual contact with all fixels and a unique
properly mated final workpiece position. We define a force-
assemblable fixture to be onme for which the manipulator’s
admittance can be designed so that a nominal trajectory into
the partial fixture, modified only by the forces that result from
contact with the fixels, ultimately leads to contact with all
fixels.

Here, we will show that, in the absence of friction, all
deterministic partial fixtures are force-assemblable. Associated
with each deterministic partial fixture is a space of admittance
control laws that will allow a workpiece to be guided into
the fixture by the fixel contact forces. We will show how this
space can be generated.

C. Overview

The overall objectives of this paper are-to describe the
concept of force assembly and to demonstrate its usefulness in
a testbed application in which a workpiece is inserted into a
fixture. Here, we present: 1) a systematic means of evaluating
whether a workpiece/fixture combination is force-assemblable
and 2) a systematic approach to the design of the manipulator’s
admittance so that fixture force assembly is attained.

Sections II through IV provide a framework for the defi-
nition and analysis of fixture force assembly. Section Il is a
review of kinematic motion constraint and the use of virtual
work in evaluating whether a motion is available when the
workpiece is in contact with a set of fixels. Section III identifies
the requirements on the workpiece/fixture kinematics so that
force-guided insertion is possible. Section IV formally defines
fixture force assembly. The requirements on the mechanical
interaction properties of the manipulator and fixture are listed.
A special simple form of force assembly, linear force assem-
bly, is also defined. In linear force assembly, the admittance
control law is linear and is given by a nominal velocity and
an accommodation matrix.

Section V presents a systematic means of evaluating whether
a particular nominal velocity/accommodation matrix combina-
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tion confers force-assemblability to a fixture when contact is
frictionless. Section VI outlines our procedure for the design
of the nominal velocity/accommodation matrix combination
that ensures force assembly. For each deterministic fixture
there exists a space of nominal velocities and accommodation
matrices for which each point in the space ensures linear force
assembly when contact is frictionless. Section VII illustrates,
in a planar example, the procedure for obtaining the space of
nominal velocities and the space of accommodation matrices
that satisfy the linear fixture force assembly conditions. Section
VIII is a summary of our results and a discussion of their
importance.

D. Notation

The notation used throughout this paper is given below:

* A lowercase character (a) denotes a scalar.

* An underlined boldface character (a) denotes a column
vector.

* A double-underlined boldface character (a) denotes a
matrix. N

This notation is used to distinguish an n x n matrix A from

its equivalent “strung-out” n%x 1 vector A. o

II. WORKPIECE MOTION CONSTRAINT

In order to design the manipulator’s admittance so that
contact forces are used to guide the workpiece into its properly
mated position, we first must identify the contact forces and
the motions that are available when in contact. The contact
forces we investigate here are those associated with the uni-
lateral point kinematic constraints provided by workpiece/fixel
frictionless contact.

A. Kinematic Motion Constraint

A motion of the workpiece that does not conflict with a
kinematic constraint is one for which the virtual work (the
product of the contact force and the velocity of the workpiece,
an invariant) is nonnegative [17]. This can be stated as: a
motion t is unconstrained iff

wit >0

M

where for planar point contacts! w is the force/torque associ-
ated with fixel contact (a zero pitch wrench) given by

1 [ fm W
£f_
w=|, L= f ®
t is the velocity/angular velocity (a zero pitch twist) given by
rxw] K
e= "¢ - 1:3, )

f is the constraint force associated with the fixel, 7 is the torque
associated with the fixel (z = r x f), r is the position vector

I'The vector w is a wrench and the vector t is a twist in the nomenclature of
screw theory (see [4], [20], or [25]). For those readers unfamiliar with screw
theory, all examples presented here are planar, for which case the wrenches
and twists simplify to three element vectors.

Workpiece )
The motion ¢ is unconstrained if:

wTt20
Vx
on o3
)
o Solution:
vx arbitrary
= T *
f—[0,1]f vy + an20
g=rxf=a

Fig. 1. Evaluation of motion constraint using nonnegative virtual work.
Motions that yield nonnegative virtual work do not conflict with the geometry
of the parts in contact. Here, an arbitrary selection of velocity along the x axis
and a selection that satisfies the equation vy, 4+ aw > 0 will not conflict with
the geometry of the parts in contact.

from the coordinate system origin to the point of contact, v
is the translational velocity of the workpiece measured at the
origin, and w is the angular velocity of the workpiece.

A planar example illustrating how nonnegative virtual work
is used in evaluating available motion is given in Fig. 1.

Ohwovoriole and Roth [17] have classified all twists t into
three categories using the principle of virtual work. They are
classified as follows:

Repelling: twists that cause the workpiece to move out
of contact with the fixel, i.c., for which the
virtual work is positive (w7t > 0).
twists that cause the workpiece to maintain
contact with the fixel, i.e., for which the virtual
work is zero (w7t = 0).
twists that would cause the rigid fixel to pene-
trate the workpiece surface, i.e., for which the
virtual work is negative (w7t < 0).

Motions that are available to the workpiece upon contact
with a set of fixels (i.e., those not kinematically constrained)
are those motions that are reciprocal or repelling to all fixels
in that set.

Reciprocal:

Contrary:

B. Total Kinematic Constraint

Total kinematic constraint (form closure) occurs when mul-
tiple fixels are used so that there exists no motion having
nonnegative virtual work at all fixels, i.e., there exits no motion
reciprocal or repelling to all contacts.

Reuleaux [19] recognized that the minimum number of
contact points required for form closure of a planar rigid body
is four. Using screw theory, Somov [23] determined that the
minimum number of point contacts required for the general
three-dimensional spatial case is seven. Lakshminarayana [9]
confirmed the results of Reuleaux and Somov and clarified
their work. Ohwovoriole [16] used nonnegative virtual work
(reciprocal and repelling screws) to describe the conditions for
which an object is totally constrained and to identify motions
that are not constrained.

III. REQUIREMENTS ON FIXTURE KINEMATICS

In establishing the framework for analyzing force assembly,
we first address the requirements on the workpiece/fixture
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Fig. 2. Example of a deterministic fixture. The independence of the con-

straint wrenches dictates whether the fixture is or is not deterministic. The
contact wrenches are given by

fr 1 0 0
T ) o) =l
T —-0.5 0.5 1

1 0 0
rank(W) = rank| 0 1 1| =3
—-05 05 1

Since the rank of W equals the degrees of freedom for the system (N'=3),
the partial fixture is deterministic.

kinematics. To facilitate proper insertion, a partial fixture
is required to be “deterministic” and “strongly accessi-
ble/detachable.” These terms were introduced by Asada and
By [2] and are defined here in terms of constraint wrenches and
unconstrained twists. The simpler but equivalent formulation
developed here defines quantities needed for the formulation
and definition of force assembly.

A. Deterministic Fixtures

We will call the position of the workpiece when it is
properly mated q* € RN, where N is the number of degrees
of freedom of the system. Let @ C RY be the space
of infinitesimal displacements from q* that do not conflict
with the geometric constraints provided by the fixels. If it is
assumed that the workpiece can be placed by a robot within
the vicinity of gq* (as is assumed by Asada and By), then only
the uniqueness of the workpiece positioning in Q (i.e., locally
unique positioning) need be considered.

A fixture is deterministic if the fixels of the partial fixture
provide N independent wrenches when the workpiece is
located in its properly mated position q*. Three independent
contact wrenches are required for a planar fixture to be
deterministic. Six independent contact wrenches are required
for a spatial fixture to be deterministic. In other words, a fixture
is deterministic iff

rank(W) = N O]

where W = [w; w,...w, ], i.e., the matrix W is constructed
from the contact wrenches, with each fixel Entributing one
column to the matrix; N is the number of degrees of free-
dom of the workpiece (three in planar applications or six
in spatial applications); and m is the number of fixels. If
the deterministic fixture has no redundant constraints, then
m = N.

An example of a deterministic partial fixture is given in Fig.
2. Since the constraint matrix is full rank, any unconstrained
motion will cause the workpiece to break contact with at least
one fixel. An example of a nondeterministic partial fixture in
shown in Fig. 3. Since the constraint matrix is not full rank,
there exists a motion that will maintain contact with all fixels.

Fig. 3. Example of a nondeterministic fixture. Rotation about the point where
all wrenches intersect will allow all fixels to remain in contact with the
workpiece. The contact wrenches are given by

1 0.707 0
w, = [ 0 ] wy = [ 0.707 w3 = [1]
-1 0 1

1 0707 0
rank(W) = rank| 0 0.707 1] =2.
- 0 1

Since the rank of W_is Jess than the degrees of freedom for the system (N'=3),
the partial fixture is not deterministic.

B. Accessible/Detachable Fixtures

Asada and By [2] defined an accessible/detachable fixture
to be one for which there exists at least one unconstrained
trajectory between the desired workpiece location and an
outside position. They defined a strongly accessible/detachable
fixture to be one for which there exists a detaching motion
that detaches all fixels at the same time. Here, an equivalent
definition in terms of unconstrained twists is developed.

We define a detaching motion d € RY to be a motion for
which, if the workpiece were at its properly mated position
in the partial fixture q*, the motion d causes the workpiece
to move away from g* while not violating the constraints
imposed by the fixels. The space of detaching motions D C
RN is the space of all motions that are available (i.e., do not
violate the unilateral motion constraints) when all fixels of the
partial fixture are in contact. This space consists of all motions
that are reciprocal or repelling to all fixels of the partial fixture
(i.e., those that satisfy the nonnegative virtual work condition
for all fixels).

The twist d is a detaching motion (and thus d € D) iff

ﬂf 1
T
w. c . .
2 ld=|?|, withg>0V;,i=1,---,m
wl Cm

or in compact notation (8], d € D iff

w'd>0 Q)

where W is the full rank matrix of the transposed constraint
wrenches and 0 is a m-element column vector of zeros.

A fixture is defined to be accessible/detachable if the space
of detaching motions D includes any motion other than the
trivial solution d = 0.

A fixture is defined to be strongly accessible/detachable
if there exists a detaching motion for which all fixels break
contact at the same time (i.e., the motion is repelling to all
fixels). Note the strict inequality in the definition. A fixture is
strongly accessible/detachable iff

ideD
st. W'd>0. (6)
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Fig. 4. Space of detaching motions for a planar fixture. A detaching motion
is reciprocal or repelling to all fixels. Clockwise rotation about any point in
the hatched shaded area or counterclockwise rotation about any point in the
nonhatched shaded area is a detaching motion.

Fig. 4 illustrates the space of detaching motions D for a
deterministic, strongly accessible/detachable fixture. Any in-
stantaneous planar motion can be described as a rotation about
a point in the plane (i.e., a rotation center); a rotation about a
point at infinity is a pure translation. The locus of instantaneous
rotation centers is used in Fig. 4 to illustrate the space of
detaching motions.

The hatched shaded area in Fig. 4 indicates the points in the
plane about which clockwise rotation detaches the workpiece
from the fixture; the nonhatched shaded area identifies points
about which counterclockwise rotation detaches the workpiece
from the fixture. A rotation about any point strictly within these
bounds will cause fixel/workpiece contact to be broken at all
fixels at the same time.

For our planar examples, the space of detaching motions D,
defined above, can be described as a polyhedral convex cone
[8] in three-dimensional space (or in six-dimensional space for
spatial cases). When a fixture is strongly accessible/detachable,
the space of detaching motions has an interior. When a fixture
is accessible/detachable but not strongly accessible/detachable,
the space contains only its boundary. It can be shown that all
minimum fixel deterministic fixtures (six-fixel spatial determin-
istic fixtures or three-fixel planar deterministic fixtures) satisfy
the conditions of a strongly accessible/detachable fixture.

C. Space of Possible Initial Positional Errors

In evaluating force assembly, all possible infinitesimal po-
sitional errors are evaluated. Each possible workpiece position
q in the vicinity of g* can be obtained from q* by a single
infinitesimal detaching motion h

q=q" +doét U

where &t is an infinitesimal period of time and d is a detaching
motion. d € D is defined above.

For each unit twist d there exists a corresponding infinites-
imal displacement from q*. For a given 6¢ and for all unit
twists d € D, the set of q given by (7) defines a space Q of
all possible infinitesimal displacements from q*. All q in Q
correspond to contact with N or fewer fixels (three or fewer
in the planar case, six or fewer in the spatial case).

As shown in Fig. 4, the locus of the centers of rotation
that corresponds to the space of detaching motions is bounded
by straight lines. Small rotations about any point along the
bounding lines will cause the workpiece to maintain contact
with one fixel. The points of intersection of these lines are
those points that will maintain contact with two fixels. The

interior of the space of detaching motions corresponds to
an initial positional error in which there is contact with no
fixels. Therefore, by considering all possible combinations of
fixels in contact, all possible infinitesimal positional errors are
considered.

IV. REQUIREMENTS ON MANIPULATOR/FIXTURE
MECHANICAL INTERACTION

In establishing the framework for analyzing force assem-
bly, the second topic we address is the identification of the
requirements on the properties of mechanical interaction of
the manipulator with the fixture. The overall objective is to
design the manipulator’s response to forces so that at all
possible infinitesimal positional errors the forces of contact
always lead to error-reducing motions. Here we identify 1)
the model of mechanical interaction used in our analysis, 2)
the space of possible forces that may occur at each possible
positional error, and 3) the space of error-reducing motions at
each possible positional error.

A. Model of Mechanical Interaction

An admittance is a mapping from forces to motions. This
mapping may take many forms. The most general admittance
form of a control law is given as

v=v,+Y(f) ®
where v is the nominal or commanded trajectory and Y(f)is
the admittance of the manipulator, a linear or nonlinear map-
ping of forces to velocities.

Because currently available commercial manipulators are
position controlled and nonbackdrivable, they have, in effect,
a control law that does not include admittance (i.e., Y(f) = 0).
With zero admittance, a small misalignment of parts can lead
to contact forces large enough to damage the parts in contact
or damage the manipulator itself. Force control alone (i.e.,
Y(f) # 0) can regulate the contact force so that damage
does not occur but does so without regard to producing error-
reducing motions. The objective of force guided assembly
is to eliminate these limitations. The goal of this work is
to design the admittance of the manipulator off-line so that
during an assembly operation: 1) forces are regulated and 2)
error-reducing motions are executed for all possible positional
errors.

If, for a given fixture, there exists an admittance control
law that causes the workpiece to monotonically increase the
number of fixels in contact and ultimately results in contact
with all fixels of a deterministic fixture, the fixture is force-
assemblable.

B. Space of Contact Forces

Any force (actually force/torque) that results from contact
with an individual frictionless fixel is given by f = ¢w,
where ¢ is some positive scalar and w is the unit constraint
wrench of the fixel in contact. The force that results from
frictionless contact with multiple fixels is given by a positive
linear combination of the individual constraint wrenches. The
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Fig. 5. Space of error-reducing motion when no fixels are in contact. An
error-reducing motion is contrary to the wrenches that fixels 1, 2, and 3
would provide if they were in contact. Counterclockwise rotation about any
point in the hatched shaded area and clockwise rotation about any point in
the nonhatched shaded area is contrary to all fixels.

space of possible forces F(q) is given by all positive linear
combinations of the constraint wrenches in contact at position
q

Formally, a force is within the space of possible contact
forces at position g, (f € F(q)), iff

f=¢1W, +PoWy + ...+ W, O]

where w; is unit wrench associated with contacting fixel i;
é; is a positive scalar, i.e., a constraint wrench magnitude for
contact with fixel ¢ (¢; > 0 for i = 1,...,n); and n is number
of fixels in contact at position q.

The wrench magnitudes, ¢,~’s,_are a function of the admit-
tance operator v,+Y(f).

In terms of the wrench matrix W defined in (4), a force
f is within the space of possible contact forces at position g,
(f € F(w) iff }

£=°W% (10)

where Cg is the matrix of unit wrenches of fixels in contact
at position q (a submatrix of W) and Cp is a vector of
nonnegative 'scalars that correspoﬁi— to the wrench magnitudes
of the fixels in contact at position q.

C. Space of Error-Reducing Velocities

At position g, a velocity that maintains contact with the
contacting fixels and causes the workpiece to move toward
those fixels not already in contact is defined here to be an
error-reducing velocity. In the nomenclature of screw theory
and virtual work, an error-reducing velocity is a twist that
is reciprocal to the constraint wrenches w; for all of the
contacting fixels i and contrary to the wrenches w; for all of
the non-contacting fixels j. The space £(q) of error-reducing
velocities consists of all velocities that satisfy these conditions
at a given workpiece position.

Formally, a motion v is error-reducing at workpiece position

q (ie, v € &(q)) iff

wlyv =0 Vi wherej is a fixel in contact 68}
EJT! <0 Vj whereiis a fixel not in contact. (12)

Figs. 5 and 6 illustrate the space of error-reducing velocities
for two different contact configurations of a planar fixture. Fig.
5 illustrates the locus of rotation centers that yield motions
that are contrary to all three fixels when no fixels are in

1

w
j««ky gt

e{\x‘

*g&
? o L% l}ﬂs 15

Fig. 6. Space of error-reducing velocities for contact with one fixel. In this
example, an error-reducing motion is reciprocal to the wrench provided by
fixel 1 and is contrary to the wrenches fixels 2 and 3 would provide if they were
in contact. Counterclockwise rotation about any point on the thick hatched line
and clockwise rotation about any point on the thick shaded line is reciprocal
to fixel 1 and contrary to fixels 2 and 3.

contact. The hatched shaded area indicates the points in the
plane about which counterclockwise rotation is contrary to
all fixels; the nonhatched shaded area identifies points about
which clockwise rotation is contrary to all fixels.

Fig. 6 illustrates the locus of rotation centers that are
contrary to two noncontacting fixels and reciprocal to one
contacting fixel. The thick hatched arrow indicates points about
which counterclockwise motion is reciprocal to fixel 1 and
contrary to fixels 2 and 3; the thick nonhatched arrow identifies
points about which clockwise rotation is reciprocal to fixel 1
and contrary to fixels 2 and 3.

D. Definition of Fixture Force Assembly

If, for a given fixture, there exists an admittance function
(v,+Y(f)) that causes the workpiece to execute an error-
reducing velocity (v € £(q)) at all possible infinitesimal
positional errors (q € Q) “and for any possible force the
manipulator may encounter at each positional error (f €
F(q)), then the fixture is force-assemblable.

Definition of Linear Force Assembly: One of the simplest
forms of an admittance control law is the generalized damper
control law. The generalized damper control law linearly maps
an applied force into a deviation from a nominal velocity
(Y(f) = Af). It can be expressed as

v=y,+Af (13)

where v is the actual velocity of the manipulator, an N-
dimensional twist, v, is the nominal velocity, also an N-
dimensional twist; A is an N x N accommodation matrix,
the inverse of a damping matrix; and f is an N-dimensional
wrench, f € F.

The accommodation matrix A takes contact force f as

input and yields a velocity modification output. This velocity
modification is then added to the nominal velocity v,,, yielding
the actual velocity of the workpiece v.

A fixture for which a single nominal velocity v, and
a single accommodation matrix A can be synthesized to
accomplish the desired behavior “of error-reduction for all
possible infinitesimal initial positional errors will be defined
to be linearly force-assemblable. Linear force-assembly is
formally defined as follows.

Given a properly mated position (q* € R™N) and a strongly
accessible/detachable deterministic partial fixture with the
space of detaching motions given by D C RN, a fixture is
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linearly force-assemblable iff

3e>0 3yv,e-D 3AeRV
st. vo+Af(q" +dét) € £(q) (14
VdeD Vét<e

where f(q) € F(q). :

In words, the fixture is linearly force-assemblable if there
exists a single accommodation matrix A and a single nominal
velocity v, such that the actual velocity of the workpiece
brings the workpiece closer to those fixels not in contact while
maintaining contact with those fixels already in contact. This
condition must hold for all infinitesimal initial positional errors
(Vq € Q) and for any contact force the manipulator may
encounter at each infinitesimal initial error (f € F(q)).

In the remainder of this paper, the conditions of linear
force assembly are addressed. In other words, the methods
of identifying the space of nominal velocities that satisfy the
linear force-assembly conditions and the space of accommoda-
tion matrices that satisfy the linear force-assembly conditions
are addressed. Future references to the conditions of force
assembly will be to the conditions of linear force assembly.

V. SATISFACTION OF THE CONDITIONS OF FORCE ASSEMBLY

In this section, the mathematical conditions of force as-
sembly identified in the previous sections are combined to
facilitate the evaluation of an admittance that will ensure
force assembly. A procedure to evaluate whether a particular
nominal velocity v, and a particular accommodation matrix
A will satisfy the force-assembly conditions is provided.

A. Conditions of Force Assembly

As defined above, a fixture is force-assemblable if there
exists an admittance control law (specifically a v, and an
A) that will allow the fixels to guide the workpiece into the
properly mated position for any infinitesimal initial positional
error. Therefore, all possible infinitesimal initial positional
errors must be considered in the evaluation force assembly.

In minimum fixel deterministic fixtures (m = N where
N is the degrees of freedom of the system), all infinitesimal
* positional errors involve contact with m — 1 or fewer fixels,
and zero positional error implies contact with all m fixels.
Let the set of all fixels be K, consisting of the set of fixels
in contact? C and the set of fixels not in contact C, with
C UC = K. Using this notation, the space.of error-reducing
motions at each possible initial positional errors satisfies the

following conditions:

W'y =0 (15)
‘wWiv<o. (16)
VC € P(K)

where W7 is the matrix of transposed unit constraint
wrenches of the fixels in contact, e.g., if in a three-fixel fixture
with C = {2}, then W7 = [wl]; W7 is the matrix of
transposed unit constraint wrenches of the fixels not in contact,
e.g., if C = {2}, then
owT _ | %1
wr= ]
v is a velocity vector (twist) obtained from the control law
given in (13) and P(K) is the “power set” of K, the set
of all subsets of K, e.g., if K = {1,2,3} then P(K) =
(2,11}, {2}, {3}, {1, 2}. {1, 3}, {2.3}, {1,2,3}}.
After substituting (13) for v and (10) for all £ € F, the
conditions that require error-reducing motions at all possible
positional errors (see (15) and (16)) become

W'y, + WIAW =0
ElT!o+ 6V_V1Té0£0?< Q
VC € P(K)

(17)
(18)

where € ¢ is the vector of constraint wrench magnitudes for
those fixels in contact (i € C) for which each element must
be nonnegative.

A particular nominal velocity v, and a particular accom-
modation matrix A satisfy the conditions of force assembly if
the motion of the workpiece causes it to 1) maintain contact
with those fixels already in contact (for which case the contact
wrench magnitudes must be nonnegative; see (19)) and 2)
move into contact with those fixels not in contact (for which
case the motion is contrary to those fixels; see (20)). Therefore,
a fixture is force-assemblable iff (19) and (20), given at the
bottom of this page.

Equations (19) and (20) express nonlinear necessary and
sufficient conditions on the design parameters v, and A. These
nonlinear constraints make topological analysis of the space of
nominal velocities and accommodation matrices that satisfy
the force-assembly conditions difficult.

D. Separation of the Conditions of Force Assembly

For the purpose of admittance design (addressed in the
following section), the constraints on v, and A for force

(19)

(20)

ZFor example, if the set of all fixels is given by K’ = {1,2,3} and ¢ =
{2}, then ¢ = {1,3}.
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assembly (see (17) and (18) or (19) and (20)) may be separated,
simplified, and reduced in number. Here, we identify a set
of linear sufficient conditions on v, alone, a set of linear
conditions on A, and a set of nonlinear conditions on A.
The union of the conditions on A imposes a set of sufficient
conditions on A alone. We will illustrate the simplification for
a general three-fixel planar fixture below; the spatial six-fixel
case is similar.

Given a set of fixels, K = {1,2, 3}, and the set of all subsets
of K,P(K) = {@{1},{2}, {3}, {12}, {1.3}.{2,3}11,
2,3}}, force assembly requires that the motion of the
workpiece is error-reducing (satisfies (17) and (18)) for all
possible initial positional errors (YC € P(K)).

For the single case in which no fixels contact the workpiece,
C = {@}, W is null and“W = [w,, W,, W3].

The reciprocal condition is trivial, and the individual con-
trary conditions are

wiv, <0 21
w3y, <0 22
wiv, <0. (23)

Equations (21)~(23) will be part of the final set of sufficient
conditions.

Now we consider the three cases for which contact occurs
at a single fixel: When contact occurs at fixel 1 only Gi.e.,
C ={1}), ° W = [w,] and “W = [w,, w;]. The reciprocal
condition is T

wiv, +wiAw, (g, =0. 24
The individual contrary conditions are

wlv, +wiAw, g, <0 (5)

wiv, + wiAw, g, <. (26)

We see that the equations

~wiAw, <0 @7

wiAw,; <0 (28)

wiAw, <0 29)

in conjunction with (21)~(23) above are sufficient conditions
for satisfying the reciprocal and contrary conditions (see
(24)~(26)) for some positive {1}, that satisfies the reciprocal
condition. Therefore, we drop (24)—(26) and keep the sufficient
conditions, i.e., (27)~29).

Similarly
-wiAw, <0 (30)
wiAw, <0 (31)
wiAw, <0 (32)

are sufficient conditions for satisfying the reciprocal and
contrary conditions for the second case of a single fixel contact
when C = {2}. Also '

-wW3Aw,; <0 (33)
wiAw; <0 (34)
wiAw,; <0 (35)

are sufficient conditions for satisfying the reciprocal and
contrary conditions when C = {3}.

Equations (27)~(35) are also part of the final set of sufficient
conditions.

Next, we consider the three cases for which contact occurs
at two fixels. When contact occurs at fixels 1 and 2, (i.e.,
C = {1,2}), W = [w;.w,] and W = [wy]. The
individual reciprocal conditions are

wliv, + wlAw, 02, + wlAw, 12y =0 (36)
wiv, + wiAw, 12, + wiAw, 1%¢, =0 (37)

and the contrary condition is
wlv, + wiAw, 2 + wiAw, P¢, <0, (38)

We see that the previously stated conditions (in particular, (23),
(29), and (32)) are sufficient to meet the contrary condition
(see (38)), i.e., all components are negative; therefore, the
sum must be negative.

The reciprocal conditions are more difficult to satisfy. In
addition to the previously stated conditions, we see that the
following must be satisfied:

det [ﬂfém w
w

ﬂ;é v, 9

This additional condition, in combination with the previously
stated conditions, guarantees that {12}¢; and {12} ¢, (the
wrench magnitudes) are positive. This is required .if the
workpiece is to remain in contact with the fixels already in
contact.

Similarly, an additional condition is obtained when both
fixels 2 and 3 are in contact, ie., C = {2,3}.

T T
wyAw, WpAw,
det [Egéﬂz ﬁéﬂs > 0. (40)
And, when C = {1,3} the additional condition is
T T
det | TIAWL WAV, (41)
wi3Aw, W3 Aw,

Finally, we consider the case for which contact occurs at
all three fixels (i.e., C = {1,2,3}), ° W = [w,,w,, ws] and
Cg is null. The individual reciprocal conditions are

wlv, + wlAw, 123, + wlAw, 1234,

+ Wi A w, (265 =0 @2)
wiv, +wiAw, 123y + wlAw, {123},

+ Egéy—S {1’2’3}¢3 =0 (43)
wiv, +wiAw, (234, + wlAw, (123} g,

+ufAw, (965 =0 (44)

and there are no contrary conditions. :

Once again, in addition to the previously stated conditions,
we see that the following must be satisfied to guarantee that
the wrench magnitudes are positive:

wiAw, wiAw, wiAw,
det |wlAw, wiAw, wiAwg|>0. (45
wiAw, wiAw, wWiAw,
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The sufficient conditions listed above are of three types: 1)
linear conditions on the nominal velocity (see (21)—23)), 2)
linear conditions on the accommodation matrix (see (27)~(35)),
and 3) nonlinear conditions on the accommodation matrix (see
(39), (40), (41), and (45)). We now express each of these in
a compact notation.

1) Linear Conditions on v,: The sufficient force-assembly
linear conditions on v, ((21)~(23)) can be compactly ex-
pressed as the following: A nominal velocity v, is in the
space V, of nominal velocities that satisfy the force-assembly
conditions (i.e., v, € V,) if

W'y, <0 (46)

2) Linear Conditions on A: Six of the nine linear equations
involving A ((27)~(35)) satisfy the force-assembly conditions
with inequalities of the “less than or equal to” form; the other
three are strict inequalities of the “less than” form. In order
to compactly express these equations in vector form, the strict
inequalities will be handled as inequalities of the “less than or
equal to” form. The fact that they are actually strict inequalities
will be considered later as part of the nonlinear conditions on
A
" Each equation involving A can be rearranged to facilitate
the evaluation of the linear conditions on A. Each of these
conditions, previously in the form yv_lTé w; < 0, can be
expressed as the multiplication of row vector and a column
vector ESA < 0 where A is the “accommodation vector,”
a column vector obtained by “stringing out horizontally” and
then transposing the accommodation matrix A. For example,

if
_la b
a-[t

then

O oL

53;. is the row vector obtained by “stringing out horizontally”
the outer product® of the vectors that pre- and post-multiply

[e f] and W] = [g A],

5’{2:({;][9 h]>SOH:[;§ ;HSOH

when i = j. For example, if w/ =
then

=leg eh fg fh].
For example, if w;, A, w, are as given above, ﬂféﬂz =
g,A and
a
a bllg| _ b
e e (8] =t en o g
d

The sufficient force-assembly linear conditions on A can be
compactly expressed as the following: An accommodation
vector A will satisfy the force-assembly linear conditions on
A if

GTA<0 @7
where G7 is the N2 x N2 matrix (9 x 9 for planar fixtures)
for which each row is obtained by “stringing out horizontally”
the matrix obtained from the outer product of the vectors that
multiply the accommodation matrix. GT takes the form given
at the bottom of this page, where wyy refers to the Ith element
of the wrench resulting from contact with the kth fixel.

3) Nonlinear Conditions on A:

The nonlinear conditions on_é (i.e., (37«39) and (45))
are satisfied if the matrix WTA W is positive definite. In
fact, the combination of (27), "(39), and (45) (or of (30),
(40), and (45) or of (33), (41), and (45)) are necessary
and sufficient conditions for a matrix to be positive definite
[24]. By Sylvester’s law of inertia,* this requires that the
accommodation matrix A be positive definite [24].

Recall that, although some of the lincar conditions on the
accommodation matrix (i.e., (27), (30), and (33)) originally
expressed strict inequalities, they were represented as equal-
ities of the “less than or equal to” form in (47) to obtain a
compact notation. The nonlinear condition (positive definite
A) enforces the strict inequality of the original condition.

" The sufficient force-assembly nonlinear conditions on A can

the accommodation matrix gz;, = i(ﬂiﬂf)SOH. That is, be compactly expressed as
T _ T\SOH Sy T T\SOH
= H (W, W when i and g'. = —(w,w: . . - .
8 (w;w,) 7 & (w,w; A >0 (ie., Ais positive definite). (48)
T
g, —wnwi  —wiwiz  —wWilwis —WINWIN
r g Wi1W21 w11Wa22 W11wW23 WINWaN
G =gl |=| wnws w11W32 w11W33 WINWIN
ETTnm —“WNIWN1 TWN1IWN2 —WNIWN3 —WNNWNN

3The outer product of two column vector a and b is given by ab”. If
a is a three-element column vector and b is a three-element column vector,
then the outer product yields a 3 x 3 matrix.

‘WIAWisa congruence transformation on A. Sylvester’s law of inertia
states that a congruence transformation does not change ‘the signs of the
eigenvalues; therefore, if WT A W is positive definite (all its eigenvalues
are positive), then all eigenvalues of A must be positive and A must be
positive definite. - . -
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An accommodation matrix A is in the space A of accommo-
dation matrices that satisfy the force-assembly conditions (i.c.,
A € A) if both (47) and (48) are satisfied.

" 4) Summary of the Force-Assembly Conditions: In summary,
we can construct W7 and gT from the constraint wrenches
and derive a set of sufficient conditions for v, and A to confer
force-assemblability to a fixture. The sufficient conditions in
compact form are

1L W', <0 (46)
2.GTA<0 47)
3.A>0 (ie., A is positive definite). 48)

VI. ‘DESIGN OF THE MANIPULATOR ADMITTANCE

For the purpose of designing the manipulator admittance,
we wish to characterize the spaces (V, and .A) of nominal
velocities v, and accommodation matrices A that confer
force-assemblability to a given fixture. Equations (19) and (20)
are the set of nonlinear necessary and sufficient conditions for
force assembly. Equations (46)—(48) are the set of sufficient
conditions for force assembly. Both sets are useful as tools in
evaluating whether a particular v,, and a particular A satisfy
the force-assembly conditions. Their use as tools for design is
limited by the fact that a search is required to find any v, or
any A that will satisfy these conditions.

We can fully describe the spaces V, and A as positive linear
combinations of “basis vectors”.> These easily constructed
basis vectors span the space of force-assembly sufficient
conditions. They are useful as design tools since their use
eliminates the need to search for a solution to the force-
assembly conditions.

A. Basis Vectors in V, and A

The space V, of nominal velocities satisfying the force-
assembly conditions (see (46)) can be fully described through
the use of a set of basis vectors that span Vo. Any positive
linear combination of the basis vectors is in V,. Similarly,
the space A of accommodation matrices satisfying the force-
assembly conditions (see (47) and (48)) can be fully described
through the use of basis matrices that span the linear conditions
on A. Positive linear combinations of the basis matrices that
yield positive definite® A are in A.

1) Basis Vectors in V,: The space V, is defined by all pos-
itive linear combinations of a set of N basis vectors. The
procedure for generating the nominal velocity basis vectors
(or “edges” of the space V,) is given by the general approach
to solving systems of linear inequalities [7], [8]. Each basis
vector satisfies one of the inequalities in (46) and satisfies the
other N —1 as equalities. For example, a single basis vector b

=i

in a three-fixel planar fixture satisfies the following conditions:

wib,; <0 (49)
wib,; =0 (50)
wib,; = 0. 1)

5In the nomenclature of polyhedral convex cones [7], [8], these vectors are
the “edges” or “extreme vectors” of the convex cone. '

6positive definiteness is not a linear condition, so it is imposed separately.
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The remaining two independent basis vectors are obtained
when the inequality is associated with the other two constraint
wrenches (j and k). Although each basis vector b, “marginally
violates” the force-assembly nominal velocity conditions, any
positive combination satisfies all conditions on the nominal
velocity.

Since the rank of WY for a deterministic fixture is by
definition full (see (4)), a complete set of independent nominal
velocity basis vectors B~ can always be obtained for any
deterministic fixture by the following operation:

--(w)”

where 1V is the N x N identity matrix and EU isthe N x N
matrix for which each column provides an independent basis
vector in the space Vo. B = [b,; b,y ... b, Nl

2) Basis Vectors in A: Similarly, the space A also can be
expressed as a nonnegative linear combination of a set of basis
matrices that yield positive definite A. If GT is full rank, a
complete set of basis matrices in A can be obtained by a
process analogous to that of obtaining the basis vectors of V,.
Since the matrix gT is essentially’ the Kronecker product of
matrix W7 with W7, it can be shown to be full rank. The
Kronecker product is defined as [13]

B

=v

N ( 5 2‘)

bug blz_g blkg
Bxo=|tE e el 6y
b€ bi2C beC

A property of the Kronecker product is that its rank is given
by

rank(B x C) = (rank(B))(rank(Q))- (54)

Since the rank of YV__T is full, the rank of GT is full.

Therefore, a complete set of basis matrices that satisfies the
linear conditions on A (47) can always be obtained by the
following operation: o

B

B,= (55)

—(QT)_1!N2

where IV * is the N2 x N? identity matrix and B , is the N 2 x
N2 matrix for which each column provides an independent
basis vector in A; B, = [ba; ba b,n2 ]

Each column vector by; in B, yields a basis matrix A,
obtained by reversing the “stringing-out” process described
previously. Each basis matrix “marginally satisfies” the force-
assembly linear conditions on the accommodation matrix. One
of the conditions is satisfied as a strict inequality and the other
N2 — 1 are satisfied as equalities.

7The sign difference on those rows in which the constraint wrenches
multiply themselves (i.e., those rows for which ——giT Aw,; < 0) prevents

the matrix gT from being exactly the Kronecker product of ﬁT with gT.
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B. Positive Definite A

As stated previously, only those nonnegative linear com-
binations of the basis matrices that yield a positive definite
A will satisfy both the force-assembly linear and nonlinear
conditions. The objective here is to find the conditions on
those nonnegative scalars that multiply the basis matrices so
that their sum yields a positive definite matrix. In other words,
find the set of nonnegative scalars «; such that

A=mA +mA, +--+amA ,>0 (56)

where éi is a basis matrix. Recall that the expression gTA
was derived from ETé W and that, by the definition of a
basis vector, gTAi yields a vector with only one nonzero
element located in the ith row. It can be shown that the pre-
and post-multiplication of each basis matrix by the constraint
wrench matrix (WTA W) yields a matrix with only one
nonzero element and that WTAW WT(alA + agA +

-+ an2A ;)W yields a matrix of the form
3] — Q2 —QN
WTAW — —QaN+1 AN +2 —O2N
—“QAN2_N+4+1 TOANZ_N42 anz
=a 67

where each basis matrix A, independently contributes only
one nonzero element to the ¢ deszgn matrix o*. In other words,
the design matrix o* is made up of the nonnegative coefficients
; that multiply the basis matrices Ai (with sign changes
to the off-diagonal elements). If o* is positive definite, then
ETAW and A are also positive definite. The set of pos-
itive linear combinations of basis matrices which satisfy the
nonlinear conditions on A is given by

2" >0 (58)

where " is the design matrix defined above.

C. Summary of Motion Control Law Design

The manipulator admittance design procedure that ensures
fixture force-assemblability is summarized as follows:

1) A nominal velocity v, is in the space V, of nominal
velocities that satisfy the force-assembly conditions (i.e., v, €
V,) if

=B (59

where ¥ > 0, 0 is an N-element column vector of zeros, and
]_3_1) is a matrix of basis vectors describing V,, given in (52).

2) An accommodation matrix A is in the space A of
accommodation matrices which satisfy the force- -assembly
conditions (ie., A € A) if

(60)

where a > 0, a*>0,0isan N 2.element column vector of
zeros, g* is the N x N matrix constructed from o (defined
in (57)), and B , is a matrix of basis vectors describing the
linear condition on A, given in (55).

Fig. 7. Space of detaching motions for a planar fixture. A detaching motion
is reciprocal or repelling to all fixels. Clockwise rotation about any point in the
hatched area or counterclockwise rotation about any point in the nonhatched
shaded area is a detaching motion.

D. Summary of the Geometric and Topological
Implications of Force Assembly

The implications of the above results are that all deter-
ministic fixtures are force-assemblable. In other words, all
deterministic partial fixtures have a nonnull space of nominal
velocities V, and a nonnull space of accommodation matrices
A that satisfy the conditions of force assembly.

The existence of a nonnull space of nominal velocities
V, is clear by construction. All deterministic fixtures yield
a set of independent nominal velocity basis vectors (generated
in Section VI-A-1). Each basis vector marginally violates
the conditions on the nominal velocity (i.e., it satisfies one
condition but satisfies the other N — 1 conditions as equalities
rather than strict inequalities). However, any positive linear
combination of the independent basis vectors will satisfy the
force-assembly conditions on the nominal velocity.

The existence of a nonnull space of accommodation matri-
ces A is also clear by construction. All deterministic fixtures
yield a set of independent accommodation basis matrices
(generated in Section VI-A-2). Some nonnegative linear com-
binations of the basis matrices satisfy the condition that A be
positive definite. Any set of nonnegative linear combinations
that corresponds to a positive definite o* (generated in Section
VI-B) must yicld a positive definite A.

VII. EXAMPLE

The admittance design procedure is illustrated below for a
planar fixture. In this example, V,, the three-dimensional space
of nominal velocities that satisfy the force-assembly condi-
tions, is generated and illustrated. The nine-dimensional space
of accommodation matrices that satisfy the force-assembly
conditions, A, is generated.

Consider the workpart and fixture illustrated in Fig. 7. The
space D of detaching motion for this deterministic partial
fixture is illustrated by the locus of rotation centers that
corresponds to motions that do not conflict with the kinematic
constraints imposed by the fixels. The hatched shaded region
corresponds to points about which clockwise rotations are
repelling to the constraint wrenches, and the boundary of this
hatched area corresponds to points about which clockwise ro-
tations are reciprocal to at least one of the constraint wrenches.
Similarly, the nonhatched shaded region corresponds to those
points about which counterclockwise rotations are repelling
to the constraint wrenches, and the boundary of this space
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Fig. 8. Space of acceptable nominal velocities for force assemblability.
Clockwise rotation about any point in the hatched shaded area or counter-
clockwise rotation about any point in the nonhatched shaded area corresponds
to an acceptable velocity.

corresponds to points about which counterclockwise rotations
are reciprocal to at least one of the constraint wrenches.

For the coordinate system shown, the set of constraint
wrenches is given by

2 10
W=[w, w, w]=|-2 0 1
—2V2 -1 2

A. Nominal Velocity

The set of basis vectors that span the space of nominal
velocities satisfying the force assemblability conditions is
given by

-1
gv:[b—vl th bUS]:‘(ET) lN
-1
=-{1 0o -1
0 1 2
VZoo-2 1

-2y/2 2 =3
V2o -1 1

il

(52)

The rotation centers that correspond to the nominal ve-
locity basis vectors® (the “vertices” of the shaded region)
are illustrated in Fig. 8. The locus of rotation centers that
corresponds to a positive linear combination of these basis
vectors (the shaded region) is also illustrated. We see that
the space of possible nominal velocities V, is the negative
interior of the space of detaching motions D given in Fig. 7.
In other words, the clockwise rotation about a point in the
interior of the shaded area illustrated in Fig. 7 corresponds to
a counterclockwise rotation about the same point in Fig. 8 and
vise versa, and points on the boundary of the shaded area of
Fig. 7 are not included in Fig. 8.

The choice of nominal velocity within the space defined
by the basis vectors is arbitrary since any positive linear
combination of the basis vectors satisfies the force-assembly
conditions. In the following, we motivate the selection of a
nominal velocity that is obtained from an equal contribution
of the basis vectors.

Recall that each basis vector “marginally violates” the
nominal velocity force-assembly conditions. The basis vectors

8The location of the rotation center is obtained from the operation [10]
r=(wxv)/(e w:

P

Fig. 9. Equally contrary nominal velocity. Counterclockwise rotation about
point P is equally contrary to each fixel. This motion will cause the workpiece
to approach each fixel at the same rate.

0293

bound the space of acceptable nominal velocities V,; in fact,
each basis vector satisfies one of the force-assembly conditions
and marginally violates the others. An equal contribution of the
basis vectors (i.e., vT = B[1,1,1] in (59)) places the nominal
velocity well within V, and is equally contrary to each fixel.
An equally contrary nominal velocity causes the workpiece to
approach each fixel at the same rate. In this planar case, the
equally contrary nominal velocity (illustrated in Fig. 9) is

0.414
-3.828
1.414

v, = hvl +hv2 +hv3 =

In practice, the workpiece could be moved into the vicinity
of its properly mated position in any trajectory. Then during
insertion, the desired nominal velocity could be executed.

B. Accommodation Matrix

The set of basis vectors that span the space of accommoda-
tion matrices satisfying the force assemblability conditions is
given by (55) at the bottom of the following page.

Each column of B is a “strung-out” accommodation ma-
trix. The basis matrix A that corresponds to the basis vector
b, is obtained by reversing the “stringing-out” process.
For example, the first column of g " yields the first basis
accommodation matrix A

2 -4 2
A=|-4 8 -4
2 -4 2

These basis matrices span the linear conditions on the
space A. Any nonnegative linear combination of the basis
matrices that yields a positive definite A is a point in A.
A is positive definite if and only if the design matrix o,
which consists of the nonnegative coefficients that multiply
the basis matrices (given by (57)), is positive definite. In the
following, we motivate the selection of an accommodation
matrix that corresponds to a diagonal design matrix, consisting
of an equal contribution of columns 1,5,and 9 of B " and a
zero contribution of columns 2, 3, 4, 6, 7, and 8 of g 4

A diagonal o (positive diagonal elements, zero valued
off-diagonal elements) is necessarily positive definite. It has
the additional advantage that the magnitudes of the individ-
ual constraint wrenches do not increase during the insertion
process. The magnitude of an individual wrench is the same
for single fixel contact as the magnitude of the same wrench
when the workpiece contacts all N fixels. This can be shown
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by considering the reciprocal conditions for contact with fixel
1 alone and for contact with fixels 1 and 2 as

C={1} wiv,+wfAw, Vg, =0 (29
C={12} wiv,+wfAw, ¢
+wiAw, Mg, =0.  (36)

If the third term of (36) equals zero (which occurs when the
off-diagonal term, o equals zero), then wrench magnitudes
(¢, and (12}¢; are equal. If this term is less than zero,
then the wrench magnitude corresponding to the multiple fixel
contact {1:2} ¢, is greater than that corresponding to the single
fixel contact {1}g,.

Equal magnitude wrenches at each contacting fixel can be
obtained if the ratio of the positive coefficient that multiplies
the jth nominal velocity basis vector (the jth element of
v from (59)) and the positive coefficient that multiplies the
basis accommodation matrix that complies only with the the
same wrench (the jth diagonal element of o from (60), i.c.,
o(j~1)N+;) is equal for all wrenches. Formally

Yi

h

q; = = VjeK. (61)

QG-1)N+j

If an equal contribution of the nominal velocity basis vectors
is selected as above (i.e., ¥ = g[1,1,1]) and if, in addition,
an equal contribution of columns 1, 5, and 9 of 2 4 (those
basis matrices that correspond to a diagonal o*) are selected,
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then the wrench magnitudes at each fixel will be equal.

In this planar example, an equal contribution diagonal
design matrix (equal contribution of columns 1, 5, and 9, i.e.,
a1 = a5 = ag = 1, and a zero contribution of columns 2, 3,

4,6,7,and8,i.e.,a2=a3=a4=a6=a7=a8=0)
yields the following accommodation matrix:
7 -11 5
A=|-11 21 -9
5 -9 4

which can be transformed to yield its “normal” [11] form at
position (2.25, 1.25). The “normal” form of an accommodation
matrix is the form that provides maximum decoupling of the
translational and rotational components of the velocity. The
transformation and the normal form for this example are given
by

A=T'AT
1 0 -y a1 a2 a3 1 0 0
=0 1 =z a1 G2 @93 0 1 0
00 1 azr az2 a3z | |-y z 1]
0.75 025 0
é’: 025 075 0 (62)
0 0 4

where z is the £ component of the vector from the base of the
coordinate system of A to the base of the coordinate system of
é’ (z = 2.25 in this example) and y is the y component of the

EA = [ba, b,

ba,.l=~(a7) 1"

2

—0.500 0.500 2.000  0.500 -0.500 —2.000 2.000 —2.000 —8.0007 !
0.707  0.000 -0.707 —0.707 0.000 0.707 —2.828 0.000 2.828
0.000  0.707 1.414 0.000 —0.707 -1.414 0.000 -2.828 —5657
0.707 —0.707 -2.828 0.000 0.000 0.000 —0.707 0.707 2.828
= —|[-1.000 0.000 1.000  0.000 0.000 0.000 1.000  0.000 —1.000
0.000 1.000  2.000 0.000  0.000 0.000 0.000 —1.000 —2.000
0.000 0.000 0.000 0.707 -0.707 —-2.828 1414 —1.414 —5657
0.000  0.000  0.000 1.000  0.000 ~1.000 2.000 0.000 —2.000
L 0.000 0.000 0.000 0.000 -1.000 —2.000 0.000 —2.000 —4.000 ]
2.000 2.828 —-1.414 2.828  4.000 2.000 -1.414 2.000 1.000 1
{ —4.000 -2.828 4.243 -5.657 —4.000 —6.000 2.828 —2.000 -3.000
2.000 1414 -1.414 2.828  2.000 2.000 -1.414 1.000 1.000
—4.000 -5.657 2.828 —2.828 —4.000 —2.000 4.242 —6.000 —3.000
= | 8000 5.657 -8.485 5.657  4.000 6.000 —-8.485 6.000 9.000 (55)
—4.000 -2.828 2.828 —2.828 -2.000 —-2.000 4.242 —3.000 —3.000
2.000 2.828 —1414 1.414  2.000 1.000 -1.414 2.000 1.000
—4.000 -2.828 4.243 -2.828 —2.000 —3.000 2.828 —2.000 —3.000
L 2.000 1414 -1.414 1414 1.000 1.000 -1.414 1.000 1.000 J
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Fig. 10. Designed nominal velocity and accommodation matrix. The nominal
velocity that is equally contrary is illustrated by the location of its rotation
center and the direction of rotation. This nominal velocity will cause the
workpiece to approach each fixel at the same rate. The accommodation matrix
is illustrated by the location at which it obtains its “normal” form. This matrix
results in equal magnitude forces at each contacting fixel when the nominal
velocity illustrated is executed and its normal form is given in (62).

vector from the base of the coordinate system of A to the base
of the coordinate system of A’ (y = 1.25 in this example).

The selected nominal velocity and accommodation matrix
are illustrated in Fig. 10.

VIII. SUMMARY

Our work to date has shown that contact forces that occur
during the insertion of a workpiece into a deterministic,
frictionless, partial fixture can be used to guide the workpiece
into the properly mated position in the fixture. We have shown
that all such fixtures have a nonnull space of nominal velocities
V, and a nonnull space of accommodation matrices A that
satisfy the force-assembly conditions when friction is zero. We
have shown: 1) how to evaluate whether a damper control law
(a v,, A combination) satisfies the force-assembly conditions
(see (19) and (20)) and 2) how to design a control law that
necessarily confers force-assemblability to a fixture using a
set of basis vectors (and basis matrices) obtained from the
constraint wrenches (see (57)~(60)).

Recent results indicate that a nonnull space of nominal ve-
locities V, and a nonnull space of accommodation matrices A
also exist when friction is substantially greater than zero. (The
maximum coefficient of friction that allows force assembly
is dictated by the workpiece/fixture geometry. A “typical”
maximum coefficient of friction for a fixture is greater than
0.15.). Results indicate that a sufficient condition for fixture
force assembly is that the space of possible forces obtained
from contact with any one set of fixels contains information
unique to contact with that set of fixels. When friction is
high, force assembly fails because there is no subspace in
the space of possible forces for a given set of fixels that is
characteristic (i.e., contains information unique to contact with
those fixels). The evaluation of the space of possible forces to
determine whether it is “characteristic” will be detailed in a
future publication.

As a result of this work, the proper insertion of a workpiece
into a rigid fixel partial deterministic fixture can be ensured by
the use of frictionless point supports and the appropriate choice
of manipulator admittance. Once the properly mated position
is obtained, the addition of one or more closure fixels can
then be used to totally constrain the motion of the workpiece.
The proper insertion of the workpiece into the fixture ensures
that the workpiece is uniquely positioned and that all fixels

required to constrain the motion of the workpiece actually
make contact with the workpiece.
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Abstract

This paper addresses manipulator admittance design with regard to reliable force
guided assembly. Our goal is to design the admittance of the manipulator so that, at
all possible part misalignments, the contact forces always lead to error-reducing
motions. If this objective can be accomplished for a given set of parts, we call the

parts force-assemblable.

As a testbed application of manipulator admittance design for force guided assembly,
we investigate the insertion of a workpiece into a fixture consisting of multiple rigid
fixture elements (fixels). For reliable insertion, the fixture should have the property
that contact with all fixels ensures a unique workpiece position (i.e., the fixture
should be deterministic [Asada, 1985 #105]) and the property that contact with all

fixels is ensured after the insertion motion terminates.

Here, we define a linearly force-assemblable fixture to be one for which there exists
an admittance matrix which necessarily results in workpiece contact with all fixels
despite initial positional error. We show that, in the absence of friction, all
deterministic fixtures are linearly force-assemblable. We also show how to design
an admittance matrix that guarantees that the workpiece will be guided into the

deterministic fixture by the fixel contact forces alone.
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1. Introduction

During conventional position-controlled robotic assembly, small misalignments of
the mating parts can lead to total failure of the assembly. At best, the parts simply
remain unassembled; at worst, the contact forces that result from part misalignment

damage the contacting parts, or damage the manipulator, or both.

Force control prevents damage to the parts and/or manipulator by regulating the
contact forces. Under force control, the contact forces that result from part
misalignment cause the manipulator to deviate from its nominal trajectory. The
deviation depends on the manipulator's admittance (its motion response to forces)

and results in either an increase or a decrease in the part misalignment.

Our goal is to "program” the admittance of the manipulator so that, at each possible
misalignment, the contact force always leads to decreased part misalignment. In this
way, contact forces are used to guide the part to its properly mated position, thus
exploiting the capability for error-reduction inherent in force control. If the contact
force at each possible part misalignment contains a sufficient amount of
information to specify an error-reducing motion, we say that the parts are “force-

assemblable™.

The concept of force guided assembly is not new. Others [Whitney, 1977 #70],
[Whitney, 1982 #38], [Nevins, 1973 #71], [Asada, 1988 #41] have suggested that the
admittance of the manipulator be structured so that contact forces lead to
decreasing errors. Much of their work, however, dealt with the analysis of the
assembly kinematic constraints when considering a special class of admittance, an

"admittance center”. An "admittance center" is the point in the assembly task
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reference frame at which a sensed force maps into a motion along the same

direction as the sensed force.

Others have addressed a broader class of admittance functions. Peshkin [Peshkin,
1990 #67] addressed the synthesis of an admittance matrix by specifying the desired
motion properties at a characteristic, but limited, set of positional errors of a
particular assembly task. Then, in an unconstrained “least squares” optimization,
generated an admittance matrix that may or may not actually exhibit these
properties. Asada [Asada, 1990 #123] used a similar optimization procedure, but for

the design of an admittance neural network rather than an admittance matrix.

The contribution of this paper is a systematic means of identifying the bounds of
force-assemblability and a systematic approach to the design of a manipulator's
admittance that guarantees force-assemblability. As a testbed application of the
design of a manipulator's admittance for force guided assembly, we consider the

class of assembly tasks in which a workpiece is inserted into a fixture.
1.1 Fixtures and Fixturing

Fixtures are used to position a workpiece uniquely and to constrain its motion (i.e.
maintain that unique position) during processing [Colvin, 1938 #124]. Most research
in the area of fixturing has been directed at the motion constraint aspects of the
fixture. Here, we address the insertion/positioning aspects of the fixture. The
insertion of a workpiece into the fixture is at least as important as constraining its
motion after it has been inserted. Without proper insertion, the fixture may not
actually contact the workpiece at the intended locations, leaving it underconstrained

and malpositioned.
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A fixture may constrain motion in two different ways. One, form closure, is purely
kinematic, in which the geometry of the contacting rigid parts prevents motion
regardless of the magnitude of the applied force [Lakshminarayana, 1978 #61]
[Ohwovoriole, 1981 #107]. The other, force closure, involves the use of friction to
assist in the reduction of the freedom of motion of a kinematically
underconstrained object [Salisbury, 1982 #120] [Nguyen, 1986 #108]. In force closure,
motion along a kinematically unconstrained direction is prevented as long as the
magnitude of the applied force does not exceed the maximum support that can be

provided by friction.

Here, we investigate the insertion of a workpiece into a form-closure fixture
consisting of individual frictionless rigid fixels each providing point kinematic
constraint to the motion of the workpiece. The advantages of a fixture of this type
are: 1) the individual point contact of form closure lend themselves to a system of
flexible fixturing [Asada, 1985 #105]; and 2) a system of point contacts provides

improved positioning accuracy when redundant constraints are removed.

Individual frictionless fixels provide unilateral kinematic point constraint to the
motion of the workpiece. They prevent the workpiece from moving into the fixel
but allow translation away from the fixel, translation along the fixel, and rotation
about the fixel point contact. The number and placement of the individual fixels on
the surface of the workpiece determine the presence or absence of workpiece total
motion constraint. Reuleaux [Reuleaux, 1963 #111], Somov [Somov, 1897 #112],
Lakshminarayana [Lakshminarayana, 1978 #61], Ohwovoriole and Roth
[Ohwovoriole, 1981 #107], Salisbury [Salisbury, 1982 #120], and Nguyen [Nguyen,
1986 #108] each have addressed the total constraint of objects using unilateral point
constraints. As a result of their work, it is known that seven or more frictionless

fixels are required to totally constrain the motion of a body in three dimensional
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space; and that four or more frictionless fixels are required to totally constrain the

planar motion of a body.

Most of the recent research in the area of rigid fixel fixturing has been directed at the
evaluation of fixture designs with respect to total motion constraint. Mani and
Wilson [Mani, 1988 #109] evaluated several properties of planar fixture designs
including total constraint. Bausch and Youcef-Toumi [Bausch, 1990 #110] evaluated

the ability of a fixture to resist motion if the fixels are not totally rigid.

1.2 Positioning/Insertion Aspects of Fixturing

Force guided insertion of a workpiece into a fixture places requirements on the
workpiece/fixture kinematics and on the manipulator admittance. The
workpiece/fixture kinematics must allow ease of workpiece insertion and must
ensure unique positioning. The admittance of the manipulator must ensure that

contact forces are regulated and that error-reducing motions always occur.

1.2.1 Workpiece/Fixture Kinematics

A well designed fixture allows the workpiece to be inserted with relative ease, and
then, with the addition of a small number of closure fixels (preferably one), provides
total constraint (form closure) during processing. We refer to the fixture without its
closure fixels as a partial fixture, and the fixture with its closure fixels as a complete

fixture.

Asada and By [Asada, 1985 #105] addressed several key issues involved in the
assembly of a workpiece into a partial fixture. They defined a deterministic fixture
to be one for which the workpiece is mated at a unique position when all fixels of a
partial fixture are made to contact the workpiece surface. They defined an

accessible/detachable fixture to be one for which there exists at least one trajectory
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along which the workpiece can be removed from the partial fixture. They defined a
strongly accessible/detachable fixture to be one for which there exists a trajectory

along which the workpiece will detach from all fixels at the same time.

1.2.2 Manipulator Admittance

A workpiece can be properly inserted into a partial fixture to obtain a unique
properly mated position if: 1) the partial fixture is deterministic, i.e. contact with all
fixels establishes a unique workpiece position; and 2) contact with all fixels of the
partial fixture after insertion is ensured. Here, we address the requirements on the
manipulator admittance so that contact with all fixels of a deterministic partial
fixture is ensured. In other words, we identify the conditions that guarantee the

unique positioning of the workpiece.

Our approach for obtaining contact with all fixels in a partial fixture is to require that
the motion of the workpiece during insertion: 1) causes the workpiece to maintain
contact with those fixels already in contact; and 2) leads to contact with the
remaining fixels not already in contact. This process of monotonically increasing
the number of fixels in contact guarantees eventual contact with all fixels and a
unique properly mated final workpiece position. We define a force-assemblable
fixture to be one for which the manipulator's admittance can be designed so that a
nominal trajectory into the partial fixture, modified only by the forces which result

from contact with the fixels, ultimately leads to contact with all fixels.

Here, we will show that, in the absence of friction, all deterministic partial fixtures
are force-assemblable. Associated with each deterministic partial fixture is a space of
admittances that will allow a workpiece to be guided into the fixture by the fixel

contact forces. We will show how this space is generated.
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1.3 Overview

The overall objectives of this paper are to describe the concept of force guided
assembly and to demonstrate its usefulness in a testbed application in which a
workpiece is inserted into a fixture. Here, we present: 1) a systematic means of
evaluating whether a workpiece/fixture combination is force-assemblable, and 2) a
systematic approach to the design of the manipulator’s admittance so that force-

assemblability is attained.

Sections 2 through 4 provide a framework for the definition and analysis of force-
assemblability. Section 2 is a review of kinematic motion constraint and the use of
virtual work in evaluating whether a motion is available when the workpiece is in
contact with a set of fixels. Section 3 identifies the requirements on the
workpiece/fixture kinematics so that force guided insertion is possible. Section 4
formally defines force-assemblability. The requirements on the mechanical
interaction properties of the manipulator and fixture are listed. A special simple
form of force-assemblability, linear force-assemblability, is also defined. In linear
force-assemblability, the admittance function is linear and is given by a nominal

velocity and an accommodation matrix.

Section 5 presents a systematic means of evaluating whether a particular nominal
velocity/accommodation matrix combination provides force-assemblability. Section
6 outlines our procedure for the design of the nominal velocity/accommodation
matrix combination that ensures force-assemblability. For each deterministic fixture
there exists a space of nominal velocities and accommodation matrices for which
each point in the space ensures linear force-assemblability. Section 7 illustrates, in a
planar example, the procedure for obtaining the space of nominal velocities and the

space of accommodation matrices which satisfy the linear force assemblability
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conditions. Section 8 is a summary of our results and a discussion of their

importance.

1.4 Notation

The notation used throughout this paper is given below:

A lowercase character a denotes a scalar.
An underlined bold character a denotes a column vector.
A double underlined bold character a denotes a matrix.

This notation is used to distinguish an nxn matrix A from its "strung-out" n2x1

vector A.
2.0 Workpiece Motion Constraint

Recall that we intend to design the manipulator's admittance so that contact forces
which occur during insertion are used to guide the workpiece into its properly
mated position. The contact forces we investigate here are those associated with the
unilateral point kinematic constraints provided by workpiece/fixel frictionless

contact.
2.1 Kinematic Motion Constraint

A motion of the workpiece which does not conflict with a kinematic constraint is
one for which the virtual work (the product of the contact force and the velocity of
the workpiece; an invariant) is non-negative [Ohwovoriole, 1981 #107]. This can be
stated as:

A motion t is unconstrained iff:
wlt > 0 (1)
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where for planar point contacts?:

Footnote 1:

The vector w is a wrench and the vector t is a twist in the nomenclature of screw
theory (see Ball [Ball, 1900 #102], Roth [Roth, 1984 #115], or Sugimoto and Duffy
[Sugimoto, 1982 #116].) For those readers unfamiliar with screw theory, all
examples presented here are planar, for which case the wrenches and twists simplify
to the 3-vectors described below.

w is the force/torque associated with fixel contact (a zero pitch wrench) given

by:
O f 0o Dfx []

w=0 0=[]fy [] (2)
Orxf O. O

S o=[vy [ (3)

and: fis the constraint force associated with the fixel.
T is the torque associated with the fixel; t1=rxf
r is the position vector from the origin to the point of contact.
Vv is the translational velocity of the workpiece measured at the origin.

w is the angular velocity of the workpiece.

1 The vector w is a wrench and the vector t is a twist in the nomenclature of screw theory (see Ball [3],
Roth [16], or Sugimoto and Duffy [20].) For those readers unfamiliar with screw theory, all examples
presented here are planar, for which case the wrenches and twists simplify to the 3-vectors described
below.
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A planar example illustrating non-negative virtual work is given in Figure 1 below:

Figure 1
Evaluation of Motion Constraint using Non-Negative Virtual Work

Workpiece
The motion t is unconstrained if:

wit=0
Vx

(01 aJ{Vy
W

20

Solution:
Vyx arbitrary

vy+a(o20

Motions which yield non-negative virtual work do not conflict with the geometry of
the parts in contact. Here, an arbitrary selection of velocity along the x-axis and a
selection which satisfies the equation vy + aw = 0 will not conflict with the geometry of

the parts in contact.

Ohwovoriole and Roth [Ohwovoriole, 1981 #107] have classified all twists t into
three categories using the principle of virtual work. They are classified as follows:
Repelling: twists which cause the workpiece to move out of contact with the
fixel; i.e. for which the virtual work is positive (w't > 0).
Reciprocal:  twists which cause the workpiece to maintain contact with the fixel;
i.e. for which the virtual work is zero (wTt = 0).
Contrary: twists which would cause the rigid fixel to penetrate the workpiece
surface; i.e. for which the virtual work is negative (wTt < 0).
Motions which are available to the workpiece upon contact with the fixels (i.e. those
not kinematically constrained) are the motions which are reciprocal or repelling to

all fixels.
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2.2 Total Kinematic Constraint

Total kinematic constraint (form closure) occurs when multiple fixels are used so
that there exists no motion having non-negative virtual work at all fixels, i.e. there

exits no motion reciprocal or repelling to all contacts.

Reuleaux [Reuleaux, 1963 #111] recognized that the minimum number of contact
points required for form closure of a planar rigid body is four. Using screw theory,
Somov [Somov, 1897 #112] determined that the minimum number of point contact
required for the general three dimensional spatial case is seven. Lakshminarayana
[Lakshminarayana, 1978 #61], confirmed the results of Reuleaux and Somov and
clarified their work. Ohwovoriole [Ohwovoriole, 1980 #113] used non-negative
virtual work (reciprocal and repelling screws) to describe the conditions for which

an object is totally constrained and to identify motions that are not constrained.
3.0 Requirements on Fixture Kinematics

In establishing the framework for analyzing force-assemblability, we first address the
requirements on the workpiece/fixture kinematics. To facilitate proper insertion, a
partial fixture is required to be "deterministic" and "strongly accessible/detachable".
These terms were introduced by Asada and By [Asada, 1985 #105] and are defined
here in terms of constraint wrenches and unconstrained twists. The simpler but
equivalent formulation developed here introduces terms which will be later used in

the formulation and definition of force-assemblability.
3.1 Deterministic Fixtures

We will call the position of the workpiece when it is properly mated g*[0 RN, where

N is the number of degrees of freedom of the system. Let Q O RN be the space of

infinitesimal displacements from g* that do not conflict with the geometric
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constraints provided by the fixels. If it is assumed that the workpiece can be placed
by a robot within the vicinity of g* (as is assumed by Asada and By), then only the
uniqueness of the workpiece positioning in Q (i.e. locally unique positioning) need

be considered.

A fixture is deterministic if the fixels of the partial fixture provide N independent
wrenches when the workpiece is located in its properly mated position g*. Three
independent contact wrenches are required for a planar fixture to be deterministic.
Six independent contact wrenches are required for a spatial fixture to be

deterministic. In other words, a fixture is deterministic iff:

rank(W) = N (4)
where: W =[w1 W2 . Wm], i.e. the matrix W is constructed from the contact
wrenches, with each fixel contributing one column to the matrix.
N is the number of degrees of freedom of the workpiece (3 in planar
applications or 6 in spatial applications).
m is the number of fixels. If the deterministic fixture has no redundant

constraints, m = N.

An example of a deterministic fixture is given in Figure 2. Since the constraint
matrix is full rank, any unconstrained motion will cause the workpiece to break
contact with at least one fixel. An example of a non-deterministic fixture in shown
in Figure 3. Since the constraint matrix is not full rank, there exists a motion that

will maintain contact with all fixels.
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Figure 2
Example of a Deterministic Fixture
1
O w1
—
j yi
™ X
O O GV/J j * 15
w w
2 3

The independence of the constraint wrenches dictates
whether the fixture is or is not deterministic.

The contact wrenches are given by: wil = [fy, fy, 1.
wiT=[1,0,-05] wp =[0,1,05] wsl=]011]
Nl 0 0 0
rank&):rankﬂ 0 1 1[FE3
(05 05 1 0

which equals the degrees of freedom for the system, N = 3;
therefore, the partial fixture is deterministic.

Figure 3
Example of a Non-Deterministic Fixture

Rotation about the point where all wrenches intersect
will allow all fixels to remain in contact with all fixels.
The contact wrenches are given by:
w1l =[1,0,-1] wp!=[0.707,0.707,0] w3T=[0,1,1]
nl 0.707 0

rank(W) =rank [J0 0.707 1 2

o 01 o 10
which is less than the degrees of freedom for the system, N = 3;
therefore, the partial fixture is not deterministic.
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3.2 Accessible/Detachable Fixtures

Asada and By [Asada, 1985 #105] defined an accessible/detachable fixture to be one
for which there exists at least one unconstrained trajectory between the desired
workpiece location and an outside position. They defined a strongly
accessible/detachable fixture to be one for which there exists a detaching motion
which detaches all fixels at the same time. Here, an equivalent definition in terms

of unconstrained twists is developed.

We define a detaching motion, d 0 RN, to be a motion for which, if the workpiece
were at its properly mated position in the partial fixture g* the motion d causes the
workpiece to move away from g* while not violating the constraints imposed by the
fixels. The space of detaching motions D O RN is the space of all motions that are
available (i.e. do not violate the unilateral motion constraints) when all fixels of the
partial fixture are in contact. This space consists of all motions which are reciprocal
or repelling to all fixels of the partial fixture (i.e. satisfy the non-negative virtual
work condition for all fixels).

The twist d is a detaching motion (and thus d O D) iff:

aniali=gs

H— H, withcij=0 0O, i=1,....m
H'_VmT Hm
or in "mathematical shorthand":
d oD iff:
WTd=0 ()

where: ﬂT is the full rank matrix of the transposed constraint wrenches.

0 is a m-element column vector of zeros.



IEEE Transactions. . . Schimmels, Peshkin: Force-Assemblability . . . page 15

A fixture is defined to be accessible/detachable if the space of detaching motions D
includes any motion other than the trivial solution, d =0. A fixture is defined to be
strongly accessible/detachable if there exists a detaching motion for which all fixels
break contact at the same time (i.e. the motion is repelling to all fixels). Note the
strict inequality in the definition.
A fixture is strongly accessible/detachable iff:

OdoOD

st. WTd>0 (6)

Figure 4 illustrates the space of detaching motions D for a deterministic, strongly
accessible/detachable fixture. Any instantaneous planar motion can be described as
a rotation about a point in the plane (i.e. a rotation center); a rotation about a point
at infinity is a pure translation. The locus of instantaneous rotation centers is used

in Figure 4 to illustrate the space of detaching motions.

The hatched shaded area in Figure 4 indicates the points in the plane about which
clockwise rotation detaches the workpiece from the fixture; the non-hatched shaded
area identifies points about which counterclockwise rotation detaches the workpiece
from the fixture. A rotation about any point strictly within these bounds will cause

fixel/workpiece contact to be broken at all fixels at the same time.
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Figure 4
Space of Detaching Motion for a Planar Fixture
A
/
f]/
—

A detaching motion is reciprocal or repelling to all fixels.

Clockwise rotation about any point in the hatched shaded area or

counterclockwise rotation about any point in the non-hatched

shaded area is a detaching motion.
For our planar examples, the space of detachable motions D, defined above, can be
described as a polyhedral convex cone [Goldman, 1956 #106] in 3 dimensional space
(or in 6 dimensional space for spatial cases). When a fixture is strongly
accessible/detachable, the space of detachable motions has an interior. When a
fixture is accessible/detachable but not strongly accessible/detachable, the space
contains only its boundary. It can be shown that all minimum fixel deterministic

fixtures (six fixel spatial deterministic fixtures or three fixel planar deterministic

fixtures) satisfy the conditions of a strongly accessible/detachable fixture.
4.0 Requirements on Manipulator/Fixture Mechanical Interaction

In establishing the framework for analyzing force-assemblability, the second topic
we address is the identification of the requirements on the properties of mechanical
interaction of the manipulator with the fixture. Our objective is to design the
manipulator's response to forces so that all all possible infinitesimal positional
errors the forces of contact always lead to error-reducing motions. Here we identify:
1) the model of mechanical interaction used in our analysis; 2) the space of all

possible infinitesimal positional errors; 3) the space of possible forces that may occur
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at each possible positional error; and 4) the space of error-reducing motions at each

possible positional error.

4.1 Admittance

An admittance is a mapping from forces to velocities. This mapping may take many
forms. Its most general form is given as:
vV = Vo + A(f) (7
where:
Vo is the nominal trajectory, the zero order term of the admittance function.
A(f) is the operator which maps input force to a velocity modification, the first

order and higher order terms of the admittance function.

Because today's currently available manipulators are position controlled and
nonbackdrivable, they have, in effect, an admittance that does not include the
second term of the admittance function (i.e., A(f) =0). With such an admittance, a
small misalignment of parts can lead to contact forces large enough to damage the
parts in contact or damage the manipulator itself. Force control alone (i.e., A(f) #0),
can regulate the contact force so that damage does not occur, but does so without
regard to producing error-reducing motions. The objective of force guided assembly
is to eliminate these limitations. Our goal is to "program” the admittance of the
manipulator off-line so that during an assembly operation: 1) forces are regulated,
and 2) motions that are error-reducing are executed for all possible possible

positional errors.

If, for a given fixture, there exists an admittance function which causes the
workpiece to monotonically increase the number of fixels in contact and ultimately
results in contact with all fixels of a deterministic fixture, the fixture is force-

assemblable.
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4.2 Contact Force

The admittance function requires as input a contact force f. The force that results
from contact with an individual frictionless fixel is given by f = @w, where @ is some
positive scalar and w is the unit constraint wrench of the fixel in contact. The force
that results from frictionless contact with multiple fixels is given by a nonnegative
linear combination of the individual constraint wrenches. The space of possible
forces F is given by all nonnegative linear combinations:
F=@wi + @wy + ... + gwn (8)
where: w; is unit wrench associated with contacting fixel i.
@; is magnitude of the constraint force at fixel "i"; ¢ = 0 for i=1,...,n
n is number of fixels in contact.
The wrench magnitudes, @'s, are a function of the admittance operator, vy + A(f).
In terms of the wrench matrix W defined in equation 4.
F=CW % (9)
where: CW is the matrix of unit wrenches of fixels in contact; a submatrix of W.

Cg is a vector of wrench magnitudesof the fixels in contact in which each

element has an arbitrary nonnegative value.
4.3 Error-Reducing Velocity

Each workpiece position q in the vicinity of g* can be obtained from g* by a single
infinitesimal motion:
g=g*+dat (10)
where: &t is an infinitesimal period of time.

d is a detaching motion; d O D defined above.

For each unit-twist d there exists a corresponding infinitesimal displacement from

g*. For a given &t and for all unit-twists d 0 D, the set of g given by equation 10
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defines a space Q of infinitesimal displacements from g*. All g in Q correspond to
contact with N-1 or fewer fixels (2 or fewer in the planar case; 5 or fewer in the

spatial case).

At position g, a velocity which complies with the contacting fixels (i.e. maintains
contact with the contacting fixels) and causes the workpiece to move toward those
fixels not in contact is defined here to be an error-reducing velocity. In the
nomenclature of screw theory and virtual work, an error-reducing velocity is a twist
which is reciprocal to the constraint-wrenches w; for all of the contacting fixels "i",
and contrary to the wrenches wj for all of the non-contacting fixels "j*. The space
E(qg) of error-reducing velocities consists of all velocities that satisfy these conditions

at a given workpiece position.

Formally, a motion v is error-reducing at workpiece position g, (i.e. v 0 E(q)) iff:
wilv=0 0Oi where "i" is a fixel in contact. (11)

ijy <0 0j where "j" is a fixel not in contact. (12)

Figures 5 and 6 illustrate the space of error-reducing velocities for two different
configurations of a planar fixture. Figure 5 illustrates the locus of rotation centers
which yield motions that are contrary to all three fixels when no fixels are in
contact. The hatched shaded area indicates the points in the plane about which
counterclockwise rotation is contrary to all fixels; the non-hatched shaded area

identifies points about which clockwise rotation is contrary to all fixels.
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Figure 5
Space of Error-Reducing Motion for a Workpiece/Fixture

J—

2 3

An error-reducing motion is contrary to the wrenches fixels 1, 2, and 3 would
provide if they were in contact. Counterclockwise rotation about any point
in the hatched shaded area and clockwise rotation about any point in the
non-hatched shaded area is contrary to all fixels.

Figure 6 illustrates the locus of rotation centers that are contrary to two non-

contacting fixels and reciprocal to one contacting fixel. The thick hatched arrow

indicates points about which counterclockwise motion is reciprocal to fixel 1 and

contrary to fixels 2 and 3; the thick non-hatched arrow identifies points about

which clockwise rotation is reciprocal to fixel 1 and contrary to fixels 2 and 3.

Figure 6
Space of Error-Reducing Motion for Contact with Fixel 1.

*gét _
¢ © i +W +W 15

An error-reducing motion is reciprocal to the wrench provided by fixel 1 and is
contrary to the wrenches fixels 2 and 3 would provide if they were in contact.
Counterclockwise rotation about any point on the thick hatched line and
clockwise rotation about any point on the thick shaded line is reciprocal to

fixel 1 and contrary to fixels 2 and 3
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4.4 Definition of Linear Force-Assemblability
One of the simplest forms of admittance is the generalized damper. The generalized
damper control law linearly maps an applied force into a deviation from a nominal
velocity (A(f) = A f). Itcan be expressed as:
V=Vo+Af (13)
where: v is the actual velocity of the manipulator, an N dimensional twist.
Vo is the nominal velocity, also an N dimensional twist.
A isan N x N accommodation matrix, the inverse of a damping matrix.
fis an N dimensional wrench, f O F
The accommodation matrix A takes contact force f as input and yields a velocity
modification output. This velocity modification is then added to the nominal

velocity vo, yielding the actual velocity of the workpiece v,

A fixture for which a single nominal velocity v and a single accommodation matrix
A can be synthesized to accomplish the desired behavior of error-reduction for all
possible infinitesimal initial positional errors will be defined to be linearly force-

assemblable. We formally define linear force-assemblability as follows:

Given a properly mated position (g* 0 RN) and a strongly accessible/detachable
deterministic partial fixture with the space of detaching motions given by D O RN,

the fixture is linearly force-assemblable iff:

Oe>0, Ovo O -D, OA ORN
st. vo+ Af(g*+dat) OE(q) O0dOD, D®t<e, wheef(q) OF@)  (14)

In words, the fixture is linearly force-assemblable if we can find a single
accommodation matrix A and a single nominal velocity v, such that the actual
velocity of the workpiece brings the workpiece closer to those fixels not in contact

while maintaining contact with those fixels already in contact. This condition must
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hold for all infinitesimal initial positional errors (JgOQ) and for any contact force

the manipulator may encounter at each infinitesimal initial error (f(g)OF(q)).

In the remainder of this paper we address the conditions of linear force-
assemblability. In other words, we will address methods of identifying the space of
nominal velocities that satisfy the linear force-assemblability conditions and the
space of accommodation matrices which will satisfy the linear force-assemblability
conditions. Future references to the conditions of force-assemblability will be to the

conditions of linear force-assemblability.
5.0 Satisfaction of the Conditions of Force-Assemblability

In this section, the mathematical conditions of force-assemblability identified in the
previous sections are combined to facilitate the evaluation of an admittance that
will ensure force-assemblability. A procedure to evaluate whether a particular
nominal velocity v, and a particular accommodation matrix A will satisfy the force-

assemblability conditions is provided.
5.1 Conditions of Force-Assemblability

As defined above, a fixture is force-assemblable if there exists a damper control law
(a Vo and A) that will allow the fixels to guide the workpiece into the properly mated
position for any infinitesimal initial positional error. Therefore, all possible
infinitesimal initial positional errors must be considered in the evaluation force-

assemblability. These conditions are given below.

In minimum fixel deterministic fixtures (m = N), all infinitesimal positional errors

involve contact with m-1 or fewer fixels and zero positional error implies contact
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with all m fixels. Let the set of all fixels be K, consisting of the set of fixels in contact?
C and the set of fixels not in contact C, with CO C = K. Using this notation, the
space of error-reducing motions at all possible initial positional errors E(Q) satisfies

the following conditions:

CwTv=0 (15)
0 C O P(K)

where: CﬂT is the matrix of transposed unit constraint wrenches of the fixels
in contact,
e.g. if, in a three fixel fixture with C = {2}, then CWT=[ woT ]
éﬂT is the matrix of transposed unit constraint wrenches of the fixels

not in contact,
_ _ Ow; T O
e.g.ifC={2}thenCWT=0] O
— ows' g
v is a velocity vector (twist) obtained from the control law.
V=Vo+ éf (13)
P(K) is the "power set" of K, the set of all subsets of K.

e.g. if K ={1,2,3} then P(K) = {00}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.

After substituting equation 13 for v and equation 9 for all f O F, the conditions that

require error-reducing motions at all possible positional errors (equations 15 and 16)

become:
CﬂT Vo + CﬂTé Cﬂ C@: 0 (17)
éﬂTMo"'éﬂTécﬂ CQ<Q (18)
O C OP(K)

2 For example, if the set of all fixels is given by K = {1,2,3} and C = {2}, then C = {1,3}.
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where: Cgis the vector of constraint wrench magnitudes for those fixels in

contact (i O C) for which each element must be nonnegative.

A particular nominal velocity vo and a particular accommodation matrix A satisfy
the conditions of force-assemblability if the motion of the workpiece causes it to: 1)
maintain contact with those fixels already in contact (for which case the contact
wrench magnitudes must be nonnegative; equation 19), and 2) move into contact
with those fixels not in contact (for which case the motion is contrary to those fixels;

equation 20). Therefore, a fixture is force-assemblable iff:

Cgp = (CﬂTé Cﬂ )-1 CﬂT Vo0 (19)
éﬂT Vo + éﬂTé Cﬂ (CﬂTé Cﬂ )—1 CﬂT Vo <0 (20)
0 C 0O P(K)

Equations 19 and 20 express nonlinear necessary and sufficient conditions on the
design parameters Vo and A. These nonlinear constraints make topological analysis
of the space of nominal velocities and accommodation matrices that satisfy the

force-assemblability conditions difficult.
5.2 Simplification of the Conditions of Force-Assemblability

For the purpose of admittance design (addressed in the following section), the
constraints on v, and A for force guided assembly (equations 17 and 18 or equations
19 and 20) may be separated, simplified and reduced in number. Here we identify a
set of linear sufficient conditions on v, a set of linear conditions on A, and a set of
nonlinear conditions on A. The union of the conditions on A imposes a set of

sufficient conditions on A. We will illustrate the simplification for a general three-

fixel planar fixture below; the spatial six-fixel case is similar.

Given a set of fixels, K ={1, 2, 3}, and the set of all subsets of K, P(K) = {{U}, {1}, {2}, {3},
{1,2}, {1, 3}, {2, 3}, {1, 2, 3}}, force-assemblability requires that the motion of the
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workpiece is error-reducing (satisfies equations 17 and 18) for all possible initial

positional errors (O C O P(K).

For the single case in which no fixels contact the workpiece:
c={0O}%
CW is null; Eﬂ = [wy, wo, wa].

The reciprocal condition is trivial; and the individual contrary conditions are:

wiTve<0 (21)
woTve <0 (22)
w3Tve <0 (23)

These equations (21-23) will be part of the final set of sufficient conditions.

Now we consider the three cases for which contact occurs at a single fixel:
When contact occurs at fixel 1 only (i.e. C = {1}):

CW = [wy]; CW = [wy, ws].

The reciprocal condition is:
wiTvo+wiTA wg g =0 (24)

And the individual contrary conditions are:
WoTvo + wWoTA wg gy <0 (25)
w3Tvo + w3TA wg (e <0 (26)

We see that the equations:

woTAw;<0 (28)
w3TAw <0 (29)

in conjunction with equations 21-23 above are sufficient conditions for satisfying
the reciprocal and contrary conditions (equations 24-26) for some positive {1}
that satisfies the reciprocal condition. Therefore, we drop equations 24-26 and

keep the sufficient conditions, equations 27-29.
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Similarly,
_ ﬂZTé W < 0 (30)
wiTAw,<0 (31)
w3TAw,<0 (32)

are sufficient conditions for satisfying the reciprocal and contrary conditions for

the second case of single fixel contact, when C = {2}.

And,
wiTAws<0 (34)
wrTAwsz<0 (35)

are sufficient conditions for satisfying the reciprocal and contrary conditions
when C = {3}.

Equations 27-35 are also part of the final set of sufficient conditions.

Next, we consider the three cases for which contact occurs at two fixels:
When contact occurs at fixels 1 and 2, i.e. C = {1, 2:
CW = [wy, wo]; CW = [ws].
The individual reciprocal conditions are:
wiTvo + wiTA wy 82 + Wi TA wy (L2 =0 (36)
WoTvo + WoTA wi (12 + woTA wy (L2 =0 @37)
and the contrary condition is:
w3Tvo + W3TA wy (12 + waTA wo (12qp <0 (38)
We see that the previously stated conditions (in particular, equations 23, 29 and
32) are sufficient to meet the contrary condition (equation 38), i.e. all components
are negative therefore the sum must be negative.
The reciprocal conditions are more difficult to satisfy. In addition to the

previously stated conditions, we see that the following must be satisfied:
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owiTA wi wiTA wp
Det [J >0 (39)
OwaTA wi wWoTA wy [
This additional condition, in combination with the previously stated conditions,
guarantees that {12}, and {12}y (the wrench magnitudes) are positive. This is
required if the workpiece is to remain in contact with the fixels already in

contact.

Similarly, an additional condition is obtained when both fixels 2 and 3 are in

contact, i.e. C = {2, 3}.
OW2TA wo  WoTA w3 [

Det O >0 (40)
OwsTA wyo  w3TA wiz [J

And, when C = {1, 3} the additional condition is:
owiTA wi wiTA w3

Det 00 0> 0 (41)
OwsTA wi;  w3TA wiz [0

Finally, we consider the case for which contact occurs at all three fixels, C ={1, 2, 3:
CW =[wi, wo, wal; W is null.

The individual reciprocal conditions are:

w1Tvo + WiTA wy 123y + wiTA wo 123k + wiTA w3 {123k =0 (42)
WoTvo + WoTA wy 123y + WoTA wo {123k + woTA w3 {123k =0 (43)
waTvo + waTA wy 123y + waTA wo {123k + waTA w3 {123k =0 (44)

and there are no contrary conditions.
Once again, in addition to the previously stated conditions, we see that the
following must be satisfied to guarantee that the wrench magnitudes are

positive:
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[wiTA wi wiTA wo  wiTA ws []

Det Dszé w1 WA wo  wrTA ws % 0 (45)

N

Ows™A wi - wsTA wo  wsTA ws [

The sufficient conditions listed above are of three types: 1) linear conditions on the
nominal velocity (equations 21-23); 2) linear conditions on the accommodation
matrix (equations 27-35); and 3) non-linear conditions on the accommodation
matrix (equations 39, 40, 41, and 45). We now express each of these in a compact

notation.
5.2.1 Linear Conditions on vg

The sufficient force-assemblability linear conditions on v (equations 21-23) can be
compactly expressed as the following:

A nominal velocity vg is in the space Vo of nominal velocities which satisfy the
force-assemblability conditions (i.e. vo O V) if:

5.2.2 Linear Conditions on A

Six of the nine linear equations involving A (equations 27-35) satisfy the force-
assemblability conditions with inequalities of the "less than or equal to" form; the
other three are strict inequalities of the "less than"” form. In order to compactly
express these equations in vector form, we will, in the remainder of this section, use
the strict inequalities ("less than") for all the equations; these will be sufficient

conditions.

Each equation involving A can be rearranged to facilitate the evaluation of the

linear conditions on A. Each of these conditions, previously in the form:
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mTéﬂj <0, can be expressed as the multiplication of row vector and a column
vector:
gij'A<0
where: A is the “accommodation vector”, a column vector obtained by
"stringing out horizontally” then transposing the accommodation

matrix é,

. oa b T g%
e.g.ifA= then ASOH Y 1= A =
"2%4: qd (A%7) a%

gijT is the row vector obtained by "stringing out horizontally" the outer

product3 of the vectors which pre- and post-multiply the
accommodation matrix, gijT = (w; w;T)SOH.
i.e. gij’ = + (wj w;T)SOH when i # .

and gjjT = — (w; w;T)SOH when i =j.
e.g.ifwiT=[e f],and woT =[g hi:

SR CR) e TR )
For example, if wi, A, w» are as given above:

wiTA wy =gpT A

gl

[e f]@i gg];g 0=[eg eh fg fh]l:IbD
EHD

The sufficient force-assemblability linear conditions on A can be compactly

expressed as the following:

3 The outer product of two column vectors a and b is given by a bT. If a is a 3-element column vector and b
is a 3-element column vector the outer product yields a 3x3 matrix.
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An accommodation vector A will satisfy the force-assemblability linear conditions
on A if:
GTA<0 (47)
where:
GT is the N2 x N2 matrix (9x9 for planar fixtures) for which each row is
obtained by "stringing out horizontally” the matrix obtained from the outer
product of the vectors which multiply the accommodation matrix.

GT takes the form:

I:Igll |:| Wi1iwi1  —Wi1iWiz2  -W1iwiz .. “WimWim
|:|912 W11W21 W11W22 W1i1W23 .. WimW2m
GT= Dgls D— D W1iW31  W11W32  W11W33 . WimW3m |:|

|:bmm Wmlel “WmiWm2 “WmiWm3 ... “WmmWmm |:|

where:  wy refers to the "I"th element of the wrench resulting from contact

with the "k"th fixel.
5.2.3 Non-Linear Conditions on A

The non-linear conditions on A (equations 37, 38, 39 and 43) are satisfied if the
matrix ﬂTAﬂ is positive definite. In fact, the combination of equation 27, 39, and
45 (or the combination of equations 30, 40, and 45, or the combination of equations
33, 41, and 45) are necessary and sufficient conditions for a matrix to be positive
definite [Strang, 1980 #73]. By Sylvester’s Law of Inertia%, this requires that the

accommodation matrix A be positive definite [Strang, 1980 #73].

4 WTA W is a congruent transformation on A. Sylvester’s Law of Inertia states that a congruent
transformation does not change the signs of the eigenvalues; therefore, if WTA W is positive definite

(all its eigenvalues are positive) then all eigenvalues of A must be positive and A must be positive
definite.
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The sufficient force-assemblability non-linear conditions on A can be compactly

expressed as the following:
A>0 (i.e. A is positive definite) (48)

An accommodation matrix A is in the space A of accommodation matrices which
satisfy the force-assemblability conditions (i.e. A O A) if both equations 45 and 46 are

satisfied.
5.2.4 Summary of the Force-Assemblability Conditions

In summary, we can constructﬂT and gr from the constraint wrenches and derive
a set of sufficient conditions for vo and A to confer force-assemblability on a fixture.

The sufficient conditions in compact form are:

1. ﬂT Vo<0 (46)
2. GTA<Q (47)
3. A>0 (i.e. A is positive definite) (48)

6.0 Design of the Manipulator Admittance

For the purpose of designing the manipulator admittance, we wish to characterize
the spaces (Vo and A) of nominal velocities vo and accommodation matrices A
which confer force-assemblability on a given fixture. Equations 19 and 20 are the set
of nonlinear necessary and sufficient conditions for force-assemblability. Equations
46, 47, and 48 are the set of sufficient conditions for force-assemblability. Both sets
are useful as tools in evaluating whether a particular v, and a particular A satisfy
the force-assemblability conditions. Their use as tools for design is limited by the
fact that a search is required to find any v, or any A which will satisfy these

conditions.
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We can fully describe the spaces Vg and A as positive linear combinations of "basis
vectors"®. These easily constructed basis vectors span the space of force-
assemblability sufficient conditions. They are useful as design tools since their use

eliminates the need to search for a solution to the force-assemblability conditions.

Footnote 5:
In the nomenclature of polyhedral convex cones [Goldman, 1956 #106], these vectors

are the "edges" of the convex cone.

6.1 Basis Vectors in Vo and A

The space V(o of nominal velocities satisfying the force-assemblability conditions
(equation 46) can be fully described through the use of a set of basis vectors which
span Vg. Any positive linear combination of the basis vectors is in V. Similarly,
the space A of accommodation matrices satisfying the force-assemblability
conditions (equations 47 and 48) can be fully described through the use of basis
matrices which span the linear conditions on A. Positive linear combinations of the

basis matrices which yield positive definiteé A , are in A.
6.1.1 Basis Vectors in Vo

The space Vo can be described as the space consisting of all positive linear
combinations of a set of N basis vectors. Each basis vector b, "marginally" satisfies
the force-assemblability nominal velocity conditions. Each basis vector satisfies one
of the inequalities in equation 46 and satisfies the other N-1 as equalities. For
example, a single basis vector byjin a three fixel planar fixture satisfies the following

conditions:

5 In the nomenclature of polyhedral convex cones [6], these vectors are the "edges" of the convex cone.
6 Positive definiteness is not a linear condition, so it is imposed separately.
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w;iT byi<0 (49)
WjT byi=0 (50)
wiT byi=0 (51)

The remaining 2 independent basis vectors are obtained when the inequality is

associated with the other two constraint wrenches (j and k).

Since the rank of ﬂT for a deterministic fixture is by definition full (equation 4), a
complete set of independent basis vectors in Vg is obtained from the following
operation:
By =-(WT)1m (52)
where: 1M is the mxm identity matrix.
and By is the mxm matrix for which each column provides an independent
basis vector in the space V.

Bv=[bv1 bwn .. bym).

6.1.2 Basis Vectors in A

Similarly, the space A can also be expressed as a positive linear combination of a set
of basis matrices which yield positive definite A. IfgT is full rank, a complete set of
basis matrices in A can be obtained by a process analogous to that of obtaining the
basis vectors of V. Since the matrix gr is essentially’ the Kronecker product of
matrix ﬂT with ﬂT, it can be shown to be full rank. The Kronecker product is

defined as [Marcus, 1960 #114]:

7 The sign difference on those rows in which the constraint wrenches multiply themselves (i.e. those
rows for which —w;TAw;j < 0) prevents the matrix G from being exactly the Kronecker product of WT

with WT.
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%nc bi2C ... bimC
21C b C ... bpmC %
(53)
Hmlg bm2£ bmmg E
A property of the Kronecker product is that its rank is given by:
rank(B x C) = (rank(B))(rank(C)). (54)

Since the rank ofﬂT is full, the rank of QT is full.

BxC=

Therefore, a complete set of basis matrices which satisfy the linear conditions on A
(equation 47) is obtained by the following operation:
Ba=-(GT)11m? (55)
where:  [M?js the m2xm?2 identity matrix.
and Ba is the m2xm?2 matrix for which each column provides an
independent basis vector in A;
Ba=[ba1 ba> .. bam2).
Each basis matrix is obtained by reversing the "stringing-out™ process described

previously. Each column vector baj in Ba yields a basis matrix A;.
6.2 Positive Definite A

As stated previously, only those positive linear combinations of the basis matrices
which yield a positive definite A will satisfy both the force-assemblability linear and
non-linear conditions. The objective here is to find the conditions on the positive
scalars which multiply the basis matrices so that their sum yields a positive definite
matrix. In other words:

Find the set of positive scalars, qj

st A=A+ 0A2 +. . .+ dm2Am2>0 (56)

where:  Ajis a basis matrix.
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Recall that the expression QTA was derived from ﬂTAﬂ and that, by the definition
of a basis vector, QTAi yields a vector with only one non-zero element located in the

"i"th row. It can be shown that the pre- and post- multiplication of each basis matrix
by the constraint wrench matrix (ﬂTéi W) yields a matrix with only one non-zero

element; and thatﬂTéﬂ :ﬂT(alél +02A2 +..+ dm2Am2)W vyields a matrix of the

H a1 -0 . —0m H

—Om+1 Om+2 ... =02

wiaw=— """ T " a0 (57)
H Om2 H

Om2-m+1 —0m2-m+2 -..

form:

where each basis matrix independently contributes only one non-zero element to
the design matrix all The design matrix allis made up of the positive coefficients
a;j which multiply the basis matrices A;. If allis positive definite, then ﬂTéﬂ and
A are both positive definite. The set of positive linear combinations of basis
matrices which satisfy the non-linear conditions on A is given by:

ab>0  where alis the design matrix defined above. (58)
6.3 Summary of Motion Control Law Design

The manipulator admittance design procedure which ensures force-assemblability is

summarized as follows:

1) A nominal velocity vg is in the space Vo of nominal velocities which satisfy the
force-assemblability conditions (i.e. vq O V) if:
Vo = Bw where: v>0 (59)
where: 0 is a m-element column vector of zeros.
and By is a matrix of basis vectors describing Vo; given in equation 52.
2) An accommodation matrix A is in the space A of accommodation matrices

which satisfy the force-assemblability conditions (i.e. AU A) if:



IEEE Transactions. . . Schimmels, Peshkin: Force-Assemblability . . . page 36

A=Baa where: (@ >0 and a[> 0) (60)
where: 0 is a m2-element column vector of zeros.

allis the mxm matrix constructed from a (defined in equation 57).
and Ba is a matrix of basis vectors describing the linear condition on A;

given in equation 55.
6.4 Geometric and Topological Implications of Force-Assemblability

Here, we show that all deterministic fixtures are force-assemblable. In other words,
all deterministic partial fixtures have a non-null space of nominal velocities Vo and
a non-null space of accommodation matrices A that satisfy the conditions of force-

assemblability.

The existence of a non-null space of nominal velocities Vg is clear by construction:
All deterministic fixtures yield a set of independent nominal velocity basis vectors;
and, any positive linear combination of the independent basis vectors satisfies the

conditions of force-assemblability.

The existence of a non-null space of accommodation matrices A is also clear by
construction: All deterministic fixtures yield a set of independent accommodation
basis matrices; some positive linear combinations of the basis matrices satisfy the
condition that A be positive definite; and any set of positive linear combinations
which correspond to a diagonal all (positive diagonal elements, zero elsewhere;

necessarily positive definite) yields a positive definite A.
7.0 Example

The admittance design procedure is illustrated below for a planar fixure. In this
example, Vg, the three-dimensional space of nominal velocities which satisfy the

force-assemblability conditions, is generated and illustrated. The nine-dimensional
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space of accommodation matrices which satisfy the force-assemblability conditions,

A, is generated.

Consider the workpart and fixture illustrated in Figure 7. The space D of detaching
motion for this deterministic partial fixture is illustrated by the locus of rotation
centers which do not conflict with the kinematic constraints imposed by the fixels.
The hatched shaded region corresponds to points about which clockwise rotations
are repelling to the constraint wrenches and the boundary of this hatched area
corresponds to points about which clockwise rotations are reciprocal to at least one
of the constraint wrenches. Similarly, the non-hatched shaded region corresponds
to those points about which counter-clockwise rotations are repelling to the
constraint wrenches and the boundary of this space corresponds to points about
which counter-clockwise rotations are reciprocal to at least one of the constraint

wrenches.

Figure 7
Space of Detaching Motion for a Planar Fixture

2V2

] | P

2w ¥
A detaching motion is reciprocal or repelling to all fixels.
Clockwise rotation about any point in the hatched shaded area or
counterclockwise rotation about any point in the non-hatched
shaded area is a detaching motion.

For the coordinate system shown, the set of constraint wrenches is given by:
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w=[wi we wi] = D\/z . 1%
|:|~2\/2 -1 2 |:|

7.1 Nominal Velocity

The set of basis vectors which span the space of nominal velocities satisfying the

force assemblability conditions is given by:

[bvi bv2 b ] = —(WT)Lin (52)

Exlz 21

2V2 2 -

B
V2 -11%

The rotation centers that correspond to the nominal velocity basis vectors8 (the
"vertices" of the shaded region) are illustrated in Figure 8. The locus of rotation
centers that correspond to a positive linear combination of these basis vectors (the
shaded region) is also illustrated. We see that the space of possible nominal
velocities Vg is the negative interior of the space of detaching motions D given in
Figure 7. In other words, a clockwise rotation about a point in the interior of the

shaded area illustrated in Figure 7 corresponds to a counter-clockwise rotation about

WXV
w -

8 The location of the rotation center is obtained from the operation [8]: r =

IS_
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the same point in Figure 8 and vise versa; and points on the boundary of the shaded

area of Figure 7 are not included in Figure 8.

Footnote 8:

The location of the rotation center is obtained from the operation [Lipkin, 1985

WXV
#121]: r = .
w-0

Figure 8
Space of Acceptable Nominal Velocities for Force-Assemblability

bv3
v

Clockwise rotation about any point in the hatched shaded area

or counterclockwise rotation about any point in the non-hatched

shaded area corresponds to an acceptable nominal velocity.
The choice of nominal velocity within the space defined by the basis vectors is
arbitrary, since any positive linear combination of the basis vectors satisfies the force

assemblability conditions. Below we motivate the selection of a nominal velocity

that is obtained from an equal contribution of the basis vectors.

Recall that each basis vector "marginally” satisfies the nominal velocity force-
assemblability conditions. The basis vectors bound the space of acceptable nominal
velocities Vg; in fact, each basis vector satisfies one of the force-assemblability
conditions and marginally violates the others. An equal contribution of the basis
vectors (i.e. vT = B [1, 1, 1] in equation 59) places the nominal velocity well within V

and is equally contrary to each fixel. An equally contrary nominal velocity causes
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the workpiece to approach each fixel at the same rate. In this planar case, the equally

contrary nominal velocity (illustrated in Figure 9) is:

DO.414 []

Vo =by1 +by2 + byz = D3-828 D
[11.414 U

Figure 9
Equally Contrary Nominal Velocity

0.293

Counterclockwise rotation about point P is equally contrary to each
fixel. This motion will cause the workpiece to approach each fixel
at the same rate.

In practice, the workpiece could be moved into the vicinity of its properly mated

position in any trajectory, then during insertion, the desired nominal velocity could

be executed.
7.2 Accommodation Matrix

The set of basis vectors which span the space of accommodation matrices satisfying

the force assemblability conditions is given by:

Ba = [baba . bap] = _@nlIm (55)
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-0.500 0.500 2.000 0.500 -0.500 -2.000 2.000 -2.000 -8.000 -1
0.707 0.000 -0.707 -0.707 0.000 0.707 -2.828 0.000 2.828
0.000 0.707 1.414 0.000 -0.707 -1.414 0.000 -2.828 -5.657
0.707 -0.707 -2.828 0.000 0.000 0.000 -0.707 0.707 2.828
= — -1.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 -1.000
0.000 1.000 2.000 0.000 0.000 0.000 0.000 -1.000 -2.000
0.000 0.000 0.000 0.707 -0.707 -2.828 1414 -1.414 -5.657
0.000 0.000 0.000 1.000 0.000 -1.000 2.000 0.000 -2.000
L 0.000 0.000 0.000 0.000 -1.000 -2.000 0.000 -2.000 -4.000 !

2.000 2.828 -1.414 2.828 4.000 2.000 -1.414 2.000 1.000

-4.000 -2.828 4.243 -5.657 -4.000 -6.000 2.828 -2.000 -3.000

2.000 1414 -1414 2.828 2.000 2.000 -1.414 1.000 1.000

-4.000 -5.657 2.828 -2.828 -4.000 -2.000 4242 -6.000 -3.000

= 8.000 5.657 -8.485 5.657 4.000 6.000 -8.485 6.000 9.000
-4.000 -2.828 2.828 -2.828 -2.000 -2.000 4.242 -3.000 -3.000
2.000 2.828 -1.414 1.414 2.000 1.000 -1.414 2.000 1.000
-4.000 -2.828 4.243 -2.828 -2.000 -3.000 2.828 -2.000 -3.000

L 2000 1414 -1414 1414 1.000 1.000 -1.414 1000 1.000 !

Each column of Ba is a “strung-out” accommodation matrix. The basis matrix A;
which corresponds to the basis vector baj is obtained by reversing the "stringing-
out" process. For example, the first column of Ba yields the first basis
accommodation matrix, Ai:
2 -4 2
[ [l

Ar=[14 8 -4[]
[ 4 20

These basis matrices span the linear conditions on the space A. Any positive linear
combination of the basis matrices which yields a positive definite A is a point in A.
A is positive definite if and only if the design matrix a*, which consists of the
positive coefficients which multiply the basis matrices (given by equation 57), is
positive definite. Below we motivate the selection of an accommodation matrix
that corresponds to a diagonal design matrix, consisting of an equal contribution of

columns 1, 5, and 9 of Ba and a zero contribution of columns 2, 3, 4, 6, 7, and 8 of Ba,

A diagonal a* (positive diagonal elements, zero valued off-diagonal elements) is

necessarily positive definite. It has the additional advantage that the magnitudes of
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the individual constraint wrenches do not increase during the insertion process.
The magnitude of an individual wrench is the same for single fixel contact as the
magnitude of the same wrench when the workpiece contacts all N fixels. This can
be shown by considering the reciprocal conditions for contact with fixel 1 alone and
for contact with fixels 1 and 2.

C={1} wiTvo+wiTA wg g =0 (24)

C={12}  wiTvo+wiTA w12 +wiTA wo 2@ =0 (36)
If the third term of equation 36 equals zero (which occurs when the off-diagonal
term, a2 equals zero) then wrench magnitudes L and {1.2}¢@, are equal. If this term
is less than zero, then the wrench magnitude corresponding to multiple fixel contact

{12} is greater than that corresponding to single fixel contact {Liq;.

Equal magnitude wrenches at each contacting fixel can be obtained if the ratio of the
positive coefficient which multiplies the "j"th nominal velocity basis vector (the
"j"th element of v from equation 59) and the positive coefficient which multiplies
the basis accommodation matrix which complies only with the the same wrench

(the "j"th diagonal element of a from equation 60, i.e. a(j_l)N+j) is equal for all

wrenches. Formally:

"
g=———=h OjOK (61)

A (G-1)N+j

If equal contribution of the nominal velocity basis vectors is selected as above (i.e.
vl =B[1, 1, 1]), the wrench magnitudes at each fixel will be equal, if, in addition, an

equal contribution of columns 1, 5 and 9 of Ba (those basis matrices that correspond

to a diagonal a*) are selected.

In this planar example, an equal contribution diagonal design matrix (equal

contribution of columns 1, 5and 9, i.e. a1 = a5 =dag =1, and a zero contribution of
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columns 2, 3, 4, 6, 7, and 8, i.e. 02 = a3 =04=0 =07 = 0ag =0) yields the

accommodation matrix listed below:

07 115
= [}1 21 -9 []
(s o 40

which can be transformed to yield its "normal™” [Loncaric, 1987 #12] form at position
(2.25, 1.25). The "normal” form of an accommodation matrix is the form which
provides maximum decoupling of the translational and rotational components of

the velocity. The transformation and the normal form for this example are given

_ El 0 -y Egaﬂ a1 a3 El 0 o%
5

= =0 1 x a1 azz a3
—yxl%

by:

A" = TTA

-

(62)

5
EO 0 1 Haagl az> ass H
0.75 025 0
EO 25 075 0 %
Ho o 4O

where: x is the x-component of the vector from the base of the coordinate
system of A to the base of the coordinate system of A' (x = 2.25 in
this example).
y is the y-component of the vector from the base of the coordinate
system of A to the base of the coordinate system of A' (y = 1.25 in

this example).

The selected nominal velocity and accommodation matrix are illustrated in Figure

10.
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Figure 10

Illustration of the Selected Nominal Velocity and
the Selected Accommodation Matrix

+A
O
1.‘25 0.293ky o
V V@I

g ——2.707——

The selected nominal velocity is illustrated by the location of its rotation
center and the direction of rotation. This nominal velocity will cause the
workpiece to approach each fixel at the same rate. The selected
accommodation matrix is illustrated by the location at which it obtains
its "normal” form. The normal form for this matrix is given in Equation
60 and results in equal magnitude forces at each contacting fixel.

8.0 Summary

Our work to date has shown that contact forces which occur during the insertion of
a workpiece into a deterministic, frictionless, partial fixture can be used to guide the
workpiece into the properly mated position in the fixture. We have shown that all
such fixtures have a non-null space of nominal velocities Vo and a non-null space of
accommodation matrices A which satisfy the force-assemblability conditions. We
have shown: 1) how to evaluate whether a damper control law (a v, A
combination) satisfies the force-assemblability conditons (equations 19 and 20); and
2) how to design a control law which necessarily confers force-assemblability from a
set of basis vectors (and basis matrices) obtained from the constraint wrenches

(equations 57-60).

As a result of this work, the proper insertion of a workpiece into a rigid fixel partial

deterministic fixture can be ensured by the use of frictionless point supports and the
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appropriate choice of manipulator admittance. Once the properly mated position is
obtained, the addition of one or more closure fixels can then be used to totally
constrain the motion of the workpiece. The proper insertion of the workpiece into
the fixture ensures that the workpiece is uniquely positioned and that all fixels
required to constrain the motion of the workpiece actually make contact with the

workpiece.
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