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Abstract: 

A configuration map is defined and computed, mapping all configurations of a part 
before an elementary manipulative operation to all possible outcomes. Configuration 
maps provide a basis for planning the operation sequences which occur in parts-feeder 
designs or in more general sensorless manipulation strategies for robots. Sequences of 
elementary operations are represented as matrix-products of configuration maps for the 
individual operations. Efficient methods for searching the space of all operations 
sequences are described.  

As an example we consider a class of parts feeders based on a conveyor belt. Parts arrive 
on the belt in random initial orientations. By interacting with a series of stationary fences 
angled across the belt, the parts are aligned into a unique final orientation independent of 
their initial orientation. The planning problem is to create (given the shape of a part) a 
sequence of fences which will align that part. We demonstrate the automated design of 
such parts feeders.  
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Text of paper: 

IEEE Transactions on Robotics and Automation 4:5 (October 1988) PLANNING ROBOTIC MANIPULATION STRATEGIES FOR 
SLIDING OBJECTS M. A. Peshkin A. C. Sanderson Robotics Institute Carnegie-Mellon University ABSTRACT A configuration map is 
defined and computed, mapping all configurations of a part before an elementary manipulative operation to all possible outcomes. 
Configuration maps provide a basis for planning the operation sequences which occur in parts-feeder designs or in more general sensorless 
manipulation strategies for robots. Sequences of elementary operations are represented as matrix-products of configuration maps for the 
individual operations. Efficient methods for searching the space of all operations sequences are described. As an example we consider a class 
of parts feeders based on a conveyor belt. Parts arrive on the belt in random initial orientations. By interacting with a series of stationary fences 
angled across the belt, the parts are aligned into a unique final orientation independent of their initial orientation. The planning problem is to 
create (given the shape of a part) a sequence of fences which will align that part. We demonstrate the automated design of such parts feeders. 
KEYWORDS Planning, manipulation, sliding, friction, parts feeder, alignment, robot. ACKNOWLEDGEMENTS This work was supported by 
a grant from Xerox Corporation, and by the Robotics Institute, Carnegie-Mellon University. INTRODUCTION Many robotic operations 
involve a part which is free to slide on a tabletop or a conveyor belt. Strategies have been suggested which take advantage of sliding friction 
between the part and the surface it slides on to facilitate accurate positioning of the part or reliable grasping of it. Examples of such strategies 
include the hinge-grasp strategy used by Paul @cite(pingle74) and analyzed by Mason @cite(mason86a); a centering and aligning strategy 
analyzed by Brost @cite(brost86); a programmable parts-aligner based on sequential pushing of an object with a straight fence studied by Mani 
and Wilson @cite(mani85); and a system devised by Erdmann and Mason @cite(erdmann86) in which a part dropped at random into a 
rectangular tray is aligned by a sequence of tipping motions of the tray. The above examples reduce positional and orientational uncertainty 
without using sensing. In each case the geometry of the part is known, the initial position and orientation are unknown, and a model of the 
interaction of the part with a manipulation device is used to develop sensorless manipulation strategies. The above strategies base their models 
of interaction on the results of Mason @cite(mason86a), which provide partial information about the motion of a sliding object. In this paper 
we utilize our previous results @cite(peshkin-cor1) @cite(peshkin-cor2) @cite(peshkin-aaai-86) @cite(peshkin-ieee-86) @cite(peshkin-phd) 
which provide complete bounds on the possible motions of a sliding object, as a basis for planning sensorless manipulation strategies. The use 
of exact motion bounds derived from physical models leads to more efficient manipulation strategies, and enables performance of tasks which 



would not otherwise be achievable without sensors. The planning method introduced here is based on a mapping between bounded sets of part 
configurations, called a @i(configuration map), which describes a single operation. The configuration map is a convenient tool for planning 
operation sequences using an appropriate search strategy. The application of this planning method to the automated design of a sequential fence 
parts feeder is described in section @ref(example). @Section(Physics of Sliding) In this section we summarize the results which are used to 
calculate bounds on the motion of a pushed sliding part @cite(peshkin-cor1) @cite(peshkin-cor2) @cite(peshkin-aaai-86) @cite(peshkin-ieee-
86) @cite(peshkin-phd). A sliding object has three degrees of freedom. If we require the object to be in contact with another object (a pusher), 
the sliding object retains two degrees of freedom, which are most conveniently expressed as the coordinates of a point in the plane called the 
@i(center of rotation) (COR). Any infinitesimal motion of the object can be expressed as a pure rotation @g(dq) about some COR. The motion 
of a sliding object (and therefore the location of the COR) is substantially affected by the object's distribution of weight on the sliding surface. 
The distribution of weight depends on the location of any "bumps" on the underside of the object, or in the case of nominally flat surfaces may 
be affected dramatically by tiny deviations from flatness. Since we wish to determine the motion of any object, without knowing the 
distribution of weight, our goal is to find the locus of CORs under @i(all) possible weight distributions. The coefficient of friction with the 
sliding surface (@g(m)@-(s)) does not affect the motion of the object if we use a simple Coulomb model of friction. It is also assumed that all 
motions are slow (the @i(quasistatic approximation.)) Quasistatic speeds are discussed by Mason @cite[Mason85] and by Peshkin 
@cite(peshkin-phd). Recent work by Wang @cite(wang86) treats the high speed limit. The object being pushed is assumed to be a disk with its 
center of mass (CM) at the center. Given another object of interest (e.g. a pentagon) we can consider a disk centered at the CM of the pentagon, 
big enough to enclose it. Since any weight distribution on the pentagon could also be a weight distribution on the disk, the COR locus of the 
disk must enclose the COR locus of the pentagon. The locus for the disk therefore provides bounds on the locus for the real object. The 
parameters of the COR problem are the point of contact @math[@vec(c)##] between the pusher and the object, and the angle @g(a) between 
the edge and the line of pushing, as shown in figure @ref(parameters). The values of @g(a) and @math[@vec(c)##] shown are the ones which 
are needed in considering the motion of the five-sided object shown inscribed in the disk. We do not require the point of contact 
@math[@vec(c)##] to be on the perimeter of the disk, as this would eliminate applicability of the results to objects inscribed in the disk. 
Similarly, we do not require @g(a) to be such that the edge being pushed is perpendicular to vector @math[@vec(c)##], as it would be if the 
object were truly a disk. The disk (with radius @math(a)), @g(a), @math[@vec(c)##], and the CM, are shown in figure @ref(parameters), 
along with what might be the COR for some particular distribution of weight. @begin(fullpagefigure) @blankspace(8.5 inches) 
@caption(Parameters of the pushing problem) @tag(parameters) @end(fullpagefigure) Figure @ref(various-cor-LOCI) shows examples of the 
COR loci we found @cite(peshkin-cor1) @cite(peshkin-ieee-86) for various values of @g(a) and @math[@vec(c)##]. In each section the angle 
@g(a) of the edge with respect to the line of pushing is indicated. The edge may be the edge of a pusher in contact with a corner of the 
inscribed object, or it may be an edge of the inscribed object in contact with a pushing point (as in figure @ref(parameters)). 
@math[@vec(c)##] is the vector from the CM (at the center of the disk) to the point of contact indicated by the arrowhead. The boundary of 
the COR locus is shown in bold outline. Every point within the locus is the COR for some possible distribution of weight on the disk. No 
distribution of weight can result in a COR outside the boundary shown. In figure @ref(various-cor-loci), the coefficient of friction between the 
pusher and the object @math[(@g(m)@-(c))] is zero. These elementary COR loci are denoted @math[{COR}@-(@g(a))]. 
@begin(fullpagefigure) @blankspace(8.5 inches) @caption(Boundaries of COR loci for various @math[@vec(c)] and @g(a)) @tag(various-
cor-loci) @end(fullpagefigure) Defining the unit vector @math[@vec(@g(a)) ##=## (@cos @g(a),## @sin @g(a))], we observe that the COR 
loci have an axis of symmetry about @vec(@g(a)). Note that the pushing force is directed perpendicular to @vec(@g(a)), (not parallel to the 
line of motion,) since @math[@g(m)@-(c)#=#0]. The distance @math[r@-(tip)] from the CM to the farthest point of the COR locus is of 
particular usefulness, and we found @cite(peshkin-cor1) @cite(peshkin-ieee-86) @cite(peshkin-aaai-86) that it is @blankspace(.1 inch) 
@begin(equation) @begin(mathdisplay) @tag(EP01)##r@-(tip)###=##@over(num "a#@+(2)", denom "@vec(@g(a)):@vec(c)##") 
@end(mathdisplay) @end(equation) As the angle @g(a) is varied, the tip of @math[{COR}@-(@g(a))] traces out a straight line called the 
@i(tip line). The tip line, (figure @ref(tip-line)), is perpendicular to @math[@vec(#c)], and a distance @math(a#@+(2)/c) from the CM. 
@begin(fullpagefigure) @blankspace(8.5 inches) @caption{@math[#r@-(tip)#](@g(a)) vs. @g(a), and construction of the tip line} @tag(tip-
line) @end(fullpagefigure) If the coefficient of friction between pusher and object @math[@g(m)@-(c)] is non-zero, we found in 
@cite(peshkin-cor2) @cite(peshkin-aaai-86) that we can combine two of the elementary (@math[@g(m)@-(c)#=#0]) COR loci (such as are 
shown in figure @ref(various-cor-loci)), and the tip line construction, to create the COR locus comprising all the possible locations of the 
COR. @subsection(Application to interaction with a fence) As an example, consider a fence in linear motion which strikes and pushes an 
object. For a given initial orientation of the part, a particular point will be first struck by the fence. Whether a clockwise or a counterclockwise 
mode of rotation then occurs can be determined. As the fence advances the part rotates, and it may also slip along the fence. The rates of 
rotation and slipping as the fence advances are bounded by the COR locus. The leftmost and rightmost points of the COR locus give the 
extremal slipping rates, and the highest and lowest points gives extremal rotation rate. The bounds allow calculation of the maximum distance 
the fence must advance to assure that an edge of the part has rotated into alignment, and the distance the part has slipped along the fence during 
alignment. Finally, the part leaves the end of the fence (figure @ref(endpoint).) Two points of the COR locus (shaded) in the figure are of 
particular interest. If the COR is at point "A", the part will rotate without slipping relative to the fence. Rotation without slipping may persist 
until a face of the part is aligned with the motion of the belt, as shown in inset A. Point "B" gives another extreme of the possible motions of 
the part, in which the part slips relative to the fence as fast as possible for each increment of rotation. Maximal slipping may persist until the 
part loses contact with the fence, as shown in inset B. The extreme orientations shown in the two insets define the range of possible outcomes 
as the part interacts with the end of the fence. Point "A" and "B" have simple analytic forms. The motion of the part specified by point "B" can 
be integrated to find the extreme possible final orientation of the part shown in inset B. @begin(fullpagefigure) @blankspace(8.5 inches) 
@caption(Extremal outcomes of interaction of part with of fence.) @tag(ENDPOINT) @end(fullpagefigure) @section(Configuration Maps) 
The physics of an operation (for instance a collision between a fence and a part) may be encapsulated in a @i(configuration map). A 
configuration map is a function of two copies of configuration space @cite[Lozano-Perez83] (C-space @math(@mult) C-space), taking on 
logical values. A part lying on a tabletop has a three dimensional configuration space: it has two positional degrees of freedom and one 
rotational degree of freedom. The configuration map is therefore a function of six dimensions. Often, however, not all the degrees of freedom 
are of equal interest. For many purposes (e.g. planning a conveyor-belt based parts aligner), all we care about is the orientation of the part 
before and after its collision with a fence (or some other operation.) So while the configuration map representation is quite general, we will use 
here only a two-dimensional projection of it. Figure @ref(map) shows the configuration map @math(M@-(-60)) for the part and operation 
(interaction with a @math(-60) degree fence) shown. We will consider the part to be on a moving surface traveling downward, but it could 
equally well be on a stationary surface with the fence moving upward, under robot control. The horizontal axis of the map gives the initial 
orientation @math(@g(q)@-(i)###) of the part, before it contacts the fence. (Outlines of the part illustrate the orientations at several points 
along the axis.) The vertical axis gives the final orientation @math(@g(q)@-(f)###) of the part after it has collided with the fence, rolled along 
the fence until a stable edge comes into contact with the fence, and finally slid down the fence and off the end. A point @math(M@-(-
60)(@g(q)@-(i)###,#@g(q)@-(f)####)) is shown shaded if it is nonzero (logical 1), where nonzero values indicate it is possible for a part with 
initial orientation @math(@g(q)@-(i)###) to emerge with orientation @math(@g(q)@-(f)###) from its interaction with the fence. 
@begin(fullpagefigure) @blankspace(8.5 inches) @caption(Configuration map for part interacting with @math(-60) deg. fence.) @tag(MAP) 
@end(fullpagefigure) For any initial configuration of the part, the configuration map gives the final configuration. Note that in the case shown, 



for a single initial configuration there is a range of final configurations. This does not reflect a deficit in our physical understanding of the 
operation. The "one-to-many" mapping occurs because we are given only the outline of a part and do not know the distribution of the weight of 
the part upon the surface it slides on. The behavior of the part depends on the distribution of weight, which in turn depends on the generally 
unknown details of the surfaces in contact. Using our results @cite(peshkin-cor2) @cite(peshkin-aaai-86), the set of final orientations for all 
distributions of weight is calculated. The horizontal bands in this configuration map are associated with discrete alignments of the polygonal 
faces of the part. The utility of the configuration map representation lies in the ease with which configuration maps for sequential operations 
can be calculated. In figure @ref(product), a part is being carried along a belt, and will interact first with a @math(-60) degree fence, and then 
with a @math(+60) degree fence. A configuration map can be created which maps the part's initial configuration before colliding with the first 
fence, into its final configurations after leaving the second fence. That configuration map is simply the matrix product of the configuration 
maps for the two individual interactions. In the figure the two maps to be multiplied and their product are shown. The product @math(M@-
(+60-60)) is defined as @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Product of two configuration maps.) @tag(PRODUCT) 
@end(fullpagefigure) @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) M@-(+60-60)(@g(q)@-(i)###, @g(q)@-(f)###) ##=## 
M@-(+60)#M@-(-60) ##=## @or@-(@g(a))### {M@-(+60)(@g(a)###,@g(q)@-(f)#) ###@and### M@-(-60)(#@g(q)@-(i)##,@g(a)#)} 
@end(mathdisplay) @end(equation) @subsection(Symbolic encoding) @label(symbolic-encoding) To take advantage of the "bands" evident 
in the configuration map, we construct @math(N) subintervals @math(B@-(j)) of the @math(@g(q)@-(f)###) axis, each bounding one of the 
bands. For each band @math(B@-(j)) a kernel @math(K@-(j)) of the @math(@g(q)@-(i)#) axis is defined as @blankspace(.1 inch) 
@begin(equation) @begin(mathdisplay) K@-(j) ##=## @union@-(@g(a) @in B@-(j))### {@g(q)@-(i)###@vbar##M(@g(q)@-
(i)##,@g(a)##)###>###0} @end(mathdisplay) @end(equation) which is the set of initial configurations which lead to a final configuration in 
the band @math(B@-(j)). A new "rectangularized" map @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) M#' ##=## @union@-
(j)##### @math(K@-(j)##@mult##B@-(j)) @end(mathdisplay) @end(equation) is nonzero wherever @math(M) is nonzero, and perhaps at 
other locations as well. When @math(M) is made up entirely of rectangular bands, as in figure @ref(map), we have @math(M#'##=##M). 
Now consider a product of two maps @math(M@-(2)#M@-(1)) (operation @math(M@-(1)) followed by operation @math(M@-(2))). Using 
superscript 1 or 2 to indicate correspondence with one of the maps, we can express the product @math(M@-(2)#M@-(1)) in terms of the bands 
of @math(M@-(2)) and the kernels of @math(M@-(1)): @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) M@-(2)M@-(1) 
##=## @union@-(j)######## @+(2)B@-(j) ##### @mult ##### {@union@-(k @in @+(21)C@-(j))##### @+(1)K@-(k)} @sr(where) ### 
@+(21)C@-(j) ##=## {#k##@vbar##### @+(2)K@-(j)### @inter ### @+(1)B@-(k) #@neq# @emptyset###} @end(mathdisplay) 
@end(equation) The code sets @math[@+(21)C@-(j)] contain all the information about the product. In the example shown in the figure, with 
the bands @math(B@-(j)) as labeled, we have @math[C@-(1)#=#{1,2},###C@-(2)#=#{2},###C@-(3)#=#{3},###C@-(4)#=#C@-
(5)#=#@emptyset]. (In figures, this code set would be written @math(1,2@rightarrow 1,#######2@rightarrow 2,#######3@rightarrow 3). ) 
Further products can be computed using the code sets only, e.g. the code sets @math[@+(321)C@-(j)] for the product @math[M@-(3)M@-
(2)M@-(1)] are @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) @+(321)C@-(j) #=# @union@-(k @in @+(32)C@-
(j))###@+(21)C@-(k) @end(mathdisplay) @end(equation) @section(Planning Operations Sequences) The space of all operations sequences 
may be represented as a tree. Arcs correspond to operations, e.g. collisions with fences of various angles in our example. The root is labeled 
with the set of all initial configurations. Each node of the tree is labeled with the set of possible configurations of a part after execution of the 
operations on the path from the root to that node. In figure @ref(TREE), part of a tree for operations which are collisions with fences of various 
angles is shown. The possible configurations of a part at a given node are obtained by multiplying the configuration maps for the operations on 
the path from the root to that node. The product maps for the six nodes shown along the left edge of figure @ref(TREE) are shown in figure 
@ref(SIX-PRODUCTS). Traversing the tree in order to search it is facilitated by the ease with which products of multiple configuration maps 
can be computed using the code sets @math(C@-(j)). In figure @ref(TREE), each arc is labeled with a fence angle @g(a) as well as the code 
sets for that fence angle. The sets of possible configurations which label a node are indicated as a subset of the indices @math(j) of the bands 
@math(@+(@g(a))B@-(j)) for the fence angle @g(a) of the arc above it. @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Tree for 
searching for an effective operations sequence.) @tag(TREE) @end(fullpagefigure) A goal node is one in which the set of possible 
configurations has been reduced to one, or to a sufficiently narrow range. In figure @ref(TREE) therefore, a goal node is labeled with just one 
band index @math(j), such as is the depth 6 node on the left. @subsection(Pruning the Tree) Searching the tree exhaustively (to any reasonable 
depth, e.g. six) is essentially impossible because the branching factor at each node is so high. Two techniques may be used to make the search 
practical. Among the many arcs (fences) leaving a node, only a few distinct code sets will be observed. Suppose the arcs for fence angles 
@math(+50) through @math(+60) share code sets @math(1,2@rightarrow 1,#######2@rightarrow 2,#######3@rightarrow 3). It turns out (a 
result of the physics) that the final-orientation bands of a given fence are entirely contained in the corresponding final-orientation bands of a 
less steep fence. If a solution exists using the @math(+55) degree arc from a given node, it must also exist using the @math(+60) degree arc 
from that node. Given several arcs @i(having common code sets), it is always safe to follow only the arc for the steepest fence. The pruning 
step just described keeps the branching factor to a manageable level (typically 6-12). It is worth noting that for any particular incoming arc to a 
node, the collection of distinctly coded outgoing arcs can be precomputed. Secondly, branches of the tree can be pruned while the tree is being 
searched. For each fence angle @g(a), a list is kept of all node values computed after traversing an arc labeled @g(a). If a node value is 
computed which is a superset of a previous value on the list, at a greater depth, the branch may be pruned. As an example, consider the depth 
four node labeled "1,2,4" in figure @ref(tree). It follows an arc for a fence angle of @math(-20) degrees. A previously visited node of depth 
three labeled "1,2" also follows a @math(-20) degree arc. "1,2,4" is a superset of "1,2". If a solution exists in @math(n) steps from "1,2,4", the 
same solution must also exist from "1,2". The total depth of the solution will be less starting from "1,2", so it is pointless to follow the "1,2,4" 
branch further. @section(Example: Automated Design of a Parts-feeder) @label(example) @label(planning) Figure @ref(feeder) shows a top 
view of a system of fences suspended across a conveyor belt. The configuration map for the part shown with the first (@math(-60) degree) 
fence was given in figure @ref(map). The configuration map for the first two fences, considered as a unit, was given in figure @ref(product). 
The configuration map for the entire system of six fences is shown in figure @ref(six-products)(f). Figure @ref(six-products)(a-e) are the 
partial products as labeled. @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Top view of a parts-feeder design.) @tag(FEEDER) 
@end(fullpagefigure) @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Configuration map products of successive fences.) 
@tag(SIX-PRODUCTS) @end(fullpagefigure) The configuration map for the system (figure @ref(six-products)(f)) has but one final-
orientation band. Therefore the system of fences (figure @ref(feeder)) is a parts-feeder: parts in any initial orientation emerge from their 
interaction with the system of fences in but one range of final orientations. To reduce the range of final orientations to a single final orientation, 
the parts can be "used" (e.g. picked up by a robot) before they leave the final fence. Some parts have two (or more) indistinguishable 
orientations. A rectangle, for instance, has two. For such parts the configuration map of a parts feeder has two (or more) final-orientation bands. 
A goal node of the search tree would be labeled with two (or more) band indices @math(j). @subsection(Some Solutions) Figure 
@ref(SOLUTIONS) shows several parts and the lowest number of fences for which a parts feeder was found. In one case, no feeder design was 
found in a search to a depth of 20. Planning a feeder requires only a few seconds of computation. @begin(fullpagefigure) @blankspace(8.5 
inches) @caption(No. of fences required in a feeder for each part shape) @tag(SOLUTIONS) @end(fullpagefigure) 




