
Michael
Text Box
Planning robotic manipulation strategies for workpieces that slide
M. A. Peshkin and A. C. Sanderson
IEEE Transactions on Robotics and Automation 4:5 (October 1988)

Planning robotic manipulation strategies for workpieces that slide (pdf file)

M. A. Peshkin and A. C. Sanderson
IEEE Transactions on Robotics and Automation 4:5 (October 1988)

Abstract:

A configuration map is defined and computed, mapping all configurations of a part
before an elementary manipulative operation to all possible outcomes. Configuration
maps provide a basis for planning the operation sequences which occur in parts-feeder
designs or in more general sensorless manipulation strategies for robots. Sequences of
elementary operations are represented as matrix-products of configuration maps for the
individual operations. Efficient methods for searching the space of all operations
sequences are described.

As an example we consider a class of parts feeders based on a conveyor belt. Parts arrive
on the belt in random initial orientations. By interacting with a series of stationary fences
angled across the belt, the parts are aligned into a unique final orientation independent of
their initial orientation. The planning problem is to create (given the shape of a part) a
sequence of fences which will align that part. We demonstrate the automated design of
such parts feeders.

Keywords:

Planning, manipulation, sliding, friction, parts feeder, alignment, robot.

Text of paper:

IEEE Transactions on Robotics and Automation 4:5 (October 1988) PLANNING ROBOTIC MANIPULATION STRATEGIES FOR
SLIDING OBJECTS M. A. Peshkin A. C. Sanderson Robotics Institute Carnegie-Mellon University ABSTRACT A configuration map is
defined and computed, mapping all configurations of a part before an elementary manipulative operation to all possible outcomes.
Configuration maps provide a basis for planning the operation sequences which occur in parts-feeder designs or in more general sensorless
manipulation strategies for robots. Sequences of elementary operations are represented as matrix-products of configuration maps for the
individual operations. Efficient methods for searching the space of all operations sequences are described. As an example we consider a class
of parts feeders based on a conveyor belt. Parts arrive on the belt in random initial orientations. By interacting with a series of stationary fences
angled across the belt, the parts are aligned into a unique final orientation independent of their initial orientation. The planning problem is to
create (given the shape of a part) a sequence of fences which will align that part. We demonstrate the automated design of such parts feeders.
KEYWORDS Planning, manipulation, sliding, friction, parts feeder, alignment, robot. ACKNOWLEDGEMENTS This work was supported by
a grant from Xerox Corporation, and by the Robotics Institute, Carnegie-Mellon University. INTRODUCTION Many robotic operations
involve a part which is free to slide on a tabletop or a conveyor belt. Strategies have been suggested which take advantage of sliding friction
between the part and the surface it slides on to facilitate accurate positioning of the part or reliable grasping of it. Examples of such strategies
include the hinge-grasp strategy used by Paul @cite(pingle74) and analyzed by Mason @cite(mason86a); a centering and aligning strategy
analyzed by Brost @cite(brost86); a programmable parts-aligner based on sequential pushing of an object with a straight fence studied by Mani
and Wilson @cite(mani85); and a system devised by Erdmann and Mason @cite(erdmann86) in which a part dropped at random into a
rectangular tray is aligned by a sequence of tipping motions of the tray. The above examples reduce positional and orientational uncertainty
without using sensing. In each case the geometry of the part is known, the initial position and orientation are unknown, and a model of the
interaction of the part with a manipulation device is used to develop sensorless manipulation strategies. The above strategies base their models
of interaction on the results of Mason @cite(mason86a), which provide partial information about the motion of a sliding object. In this paper
we utilize our previous results @cite(peshkin-cor1) @cite(peshkin-cor2) @cite(peshkin-aaai-86) @cite(peshkin-ieee-86) @cite(peshkin-phd)
which provide complete bounds on the possible motions of a sliding object, as a basis for planning sensorless manipulation strategies. The use
of exact motion bounds derived from physical models leads to more efficient manipulation strategies, and enables performance of tasks which

would not otherwise be achievable without sensors. The planning method introduced here is based on a mapping between bounded sets of part
configurations, called a @i(configuration map), which describes a single operation. The configuration map is a convenient tool for planning
operation sequences using an appropriate search strategy. The application of this planning method to the automated design of a sequential fence
parts feeder is described in section @ref(example). @Section(Physics of Sliding) In this section we summarize the results which are used to
calculate bounds on the motion of a pushed sliding part @cite(peshkin-cor1) @cite(peshkin-cor2) @cite(peshkin-aaai-86) @cite(peshkin-ieee-
86) @cite(peshkin-phd). A sliding object has three degrees of freedom. If we require the object to be in contact with another object (a pusher),
the sliding object retains two degrees of freedom, which are most conveniently expressed as the coordinates of a point in the plane called the
@i(center of rotation) (COR). Any infinitesimal motion of the object can be expressed as a pure rotation @g(dq) about some COR. The motion
of a sliding object (and therefore the location of the COR) is substantially affected by the object's distribution of weight on the sliding surface.
The distribution of weight depends on the location of any "bumps" on the underside of the object, or in the case of nominally flat surfaces may
be affected dramatically by tiny deviations from flatness. Since we wish to determine the motion of any object, without knowing the
distribution of weight, our goal is to find the locus of CORs under @i(all) possible weight distributions. The coefficient of friction with the
sliding surface (@g(m)@-(s)) does not affect the motion of the object if we use a simple Coulomb model of friction. It is also assumed that all
motions are slow (the @i(quasistatic approximation.)) Quasistatic speeds are discussed by Mason @cite[Mason85] and by Peshkin
@cite(peshkin-phd). Recent work by Wang @cite(wang86) treats the high speed limit. The object being pushed is assumed to be a disk with its
center of mass (CM) at the center. Given another object of interest (e.g. a pentagon) we can consider a disk centered at the CM of the pentagon,
big enough to enclose it. Since any weight distribution on the pentagon could also be a weight distribution on the disk, the COR locus of the
disk must enclose the COR locus of the pentagon. The locus for the disk therefore provides bounds on the locus for the real object. The
parameters of the COR problem are the point of contact @math[@vec(c)##] between the pusher and the object, and the angle @g(a) between
the edge and the line of pushing, as shown in figure @ref(parameters). The values of @g(a) and @math[@vec(c)##] shown are the ones which
are needed in considering the motion of the five-sided object shown inscribed in the disk. We do not require the point of contact
@math[@vec(c)##] to be on the perimeter of the disk, as this would eliminate applicability of the results to objects inscribed in the disk.
Similarly, we do not require @g(a) to be such that the edge being pushed is perpendicular to vector @math[@vec(c)##], as it would be if the
object were truly a disk. The disk (with radius @math(a)), @g(a), @math[@vec(c)##], and the CM, are shown in figure @ref(parameters),
along with what might be the COR for some particular distribution of weight. @begin(fullpagefigure) @blankspace(8.5 inches)
@caption(Parameters of the pushing problem) @tag(parameters) @end(fullpagefigure) Figure @ref(various-cor-LOCI) shows examples of the
COR loci we found @cite(peshkin-cor1) @cite(peshkin-ieee-86) for various values of @g(a) and @math[@vec(c)##]. In each section the angle
@g(a) of the edge with respect to the line of pushing is indicated. The edge may be the edge of a pusher in contact with a corner of the
inscribed object, or it may be an edge of the inscribed object in contact with a pushing point (as in figure @ref(parameters)).
@math[@vec(c)##] is the vector from the CM (at the center of the disk) to the point of contact indicated by the arrowhead. The boundary of
the COR locus is shown in bold outline. Every point within the locus is the COR for some possible distribution of weight on the disk. No
distribution of weight can result in a COR outside the boundary shown. In figure @ref(various-cor-loci), the coefficient of friction between the
pusher and the object @math[(@g(m)@-(c))] is zero. These elementary COR loci are denoted @math[{COR}@-(@g(a))].
@begin(fullpagefigure) @blankspace(8.5 inches) @caption(Boundaries of COR loci for various @math[@vec(c)] and @g(a)) @tag(various-
cor-loci) @end(fullpagefigure) Defining the unit vector @math[@vec(@g(a)) ##=## (@cos @g(a),## @sin @g(a))], we observe that the COR
loci have an axis of symmetry about @vec(@g(a)). Note that the pushing force is directed perpendicular to @vec(@g(a)), (not parallel to the
line of motion,) since @math[@g(m)@-(c)#=#0]. The distance @math[r@-(tip)] from the CM to the farthest point of the COR locus is of
particular usefulness, and we found @cite(peshkin-cor1) @cite(peshkin-ieee-86) @cite(peshkin-aaai-86) that it is @blankspace(.1 inch)
@begin(equation) @begin(mathdisplay) @tag(EP01)##r@-(tip)###=##@over(num "a#@+(2)", denom "@vec(@g(a)):@vec(c)##")
@end(mathdisplay) @end(equation) As the angle @g(a) is varied, the tip of @math[{COR}@-(@g(a))] traces out a straight line called the
@i(tip line). The tip line, (figure @ref(tip-line)), is perpendicular to @math[@vec(#c)], and a distance @math(a#@+(2)/c) from the CM.
@begin(fullpagefigure) @blankspace(8.5 inches) @caption{@math[#r@-(tip)#](@g(a)) vs. @g(a), and construction of the tip line} @tag(tip-
line) @end(fullpagefigure) If the coefficient of friction between pusher and object @math[@g(m)@-(c)] is non-zero, we found in
@cite(peshkin-cor2) @cite(peshkin-aaai-86) that we can combine two of the elementary (@math[@g(m)@-(c)#=#0]) COR loci (such as are
shown in figure @ref(various-cor-loci)), and the tip line construction, to create the COR locus comprising all the possible locations of the
COR. @subsection(Application to interaction with a fence) As an example, consider a fence in linear motion which strikes and pushes an
object. For a given initial orientation of the part, a particular point will be first struck by the fence. Whether a clockwise or a counterclockwise
mode of rotation then occurs can be determined. As the fence advances the part rotates, and it may also slip along the fence. The rates of
rotation and slipping as the fence advances are bounded by the COR locus. The leftmost and rightmost points of the COR locus give the
extremal slipping rates, and the highest and lowest points gives extremal rotation rate. The bounds allow calculation of the maximum distance
the fence must advance to assure that an edge of the part has rotated into alignment, and the distance the part has slipped along the fence during
alignment. Finally, the part leaves the end of the fence (figure @ref(endpoint).) Two points of the COR locus (shaded) in the figure are of
particular interest. If the COR is at point "A", the part will rotate without slipping relative to the fence. Rotation without slipping may persist
until a face of the part is aligned with the motion of the belt, as shown in inset A. Point "B" gives another extreme of the possible motions of
the part, in which the part slips relative to the fence as fast as possible for each increment of rotation. Maximal slipping may persist until the
part loses contact with the fence, as shown in inset B. The extreme orientations shown in the two insets define the range of possible outcomes
as the part interacts with the end of the fence. Point "A" and "B" have simple analytic forms. The motion of the part specified by point "B" can
be integrated to find the extreme possible final orientation of the part shown in inset B. @begin(fullpagefigure) @blankspace(8.5 inches)
@caption(Extremal outcomes of interaction of part with of fence.) @tag(ENDPOINT) @end(fullpagefigure) @section(Configuration Maps)
The physics of an operation (for instance a collision between a fence and a part) may be encapsulated in a @i(configuration map). A
configuration map is a function of two copies of configuration space @cite[Lozano-Perez83] (C-space @math(@mult) C-space), taking on
logical values. A part lying on a tabletop has a three dimensional configuration space: it has two positional degrees of freedom and one
rotational degree of freedom. The configuration map is therefore a function of six dimensions. Often, however, not all the degrees of freedom
are of equal interest. For many purposes (e.g. planning a conveyor-belt based parts aligner), all we care about is the orientation of the part
before and after its collision with a fence (or some other operation.) So while the configuration map representation is quite general, we will use
here only a two-dimensional projection of it. Figure @ref(map) shows the configuration map @math(M@-(-60)) for the part and operation
(interaction with a @math(-60) degree fence) shown. We will consider the part to be on a moving surface traveling downward, but it could
equally well be on a stationary surface with the fence moving upward, under robot control. The horizontal axis of the map gives the initial
orientation @math(@g(q)@-(i)###) of the part, before it contacts the fence. (Outlines of the part illustrate the orientations at several points
along the axis.) The vertical axis gives the final orientation @math(@g(q)@-(f)###) of the part after it has collided with the fence, rolled along
the fence until a stable edge comes into contact with the fence, and finally slid down the fence and off the end. A point @math(M@-(-
60)(@g(q)@-(i)###,#@g(q)@-(f)####)) is shown shaded if it is nonzero (logical 1), where nonzero values indicate it is possible for a part with
initial orientation @math(@g(q)@-(i)###) to emerge with orientation @math(@g(q)@-(f)###) from its interaction with the fence.
@begin(fullpagefigure) @blankspace(8.5 inches) @caption(Configuration map for part interacting with @math(-60) deg. fence.) @tag(MAP)
@end(fullpagefigure) For any initial configuration of the part, the configuration map gives the final configuration. Note that in the case shown,

for a single initial configuration there is a range of final configurations. This does not reflect a deficit in our physical understanding of the
operation. The "one-to-many" mapping occurs because we are given only the outline of a part and do not know the distribution of the weight of
the part upon the surface it slides on. The behavior of the part depends on the distribution of weight, which in turn depends on the generally
unknown details of the surfaces in contact. Using our results @cite(peshkin-cor2) @cite(peshkin-aaai-86), the set of final orientations for all
distributions of weight is calculated. The horizontal bands in this configuration map are associated with discrete alignments of the polygonal
faces of the part. The utility of the configuration map representation lies in the ease with which configuration maps for sequential operations
can be calculated. In figure @ref(product), a part is being carried along a belt, and will interact first with a @math(-60) degree fence, and then
with a @math(+60) degree fence. A configuration map can be created which maps the part's initial configuration before colliding with the first
fence, into its final configurations after leaving the second fence. That configuration map is simply the matrix product of the configuration
maps for the two individual interactions. In the figure the two maps to be multiplied and their product are shown. The product @math(M@-
(+60-60)) is defined as @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Product of two configuration maps.) @tag(PRODUCT)
@end(fullpagefigure) @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) M@-(+60-60)(@g(q)@-(i)###, @g(q)@-(f)###) ##=##
M@-(+60)#M@-(-60) ##=## @or@-(@g(a))### {M@-(+60)(@g(a)###,@g(q)@-(f)#) ###@and### M@-(-60)(#@g(q)@-(i)##,@g(a)#)}
@end(mathdisplay) @end(equation) @subsection(Symbolic encoding) @label(symbolic-encoding) To take advantage of the "bands" evident
in the configuration map, we construct @math(N) subintervals @math(B@-(j)) of the @math(@g(q)@-(f)###) axis, each bounding one of the
bands. For each band @math(B@-(j)) a kernel @math(K@-(j)) of the @math(@g(q)@-(i)#) axis is defined as @blankspace(.1 inch)
@begin(equation) @begin(mathdisplay) K@-(j) ##=## @union@-(@g(a) @in B@-(j))### {@g(q)@-(i)###@vbar##M(@g(q)@-
(i)##,@g(a)##)###>###0} @end(mathdisplay) @end(equation) which is the set of initial configurations which lead to a final configuration in
the band @math(B@-(j)). A new "rectangularized" map @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) M#' ##=## @union@-
(j)##### @math(K@-(j)##@mult##B@-(j)) @end(mathdisplay) @end(equation) is nonzero wherever @math(M) is nonzero, and perhaps at
other locations as well. When @math(M) is made up entirely of rectangular bands, as in figure @ref(map), we have @math(M#'##=##M).
Now consider a product of two maps @math(M@-(2)#M@-(1)) (operation @math(M@-(1)) followed by operation @math(M@-(2))). Using
superscript 1 or 2 to indicate correspondence with one of the maps, we can express the product @math(M@-(2)#M@-(1)) in terms of the bands
of @math(M@-(2)) and the kernels of @math(M@-(1)): @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) M@-(2)M@-(1)
##=## @union@-(j)######## @+(2)B@-(j) ##### @mult ##### {@union@-(k @in @+(21)C@-(j))##### @+(1)K@-(k)} @sr(where) ###
@+(21)C@-(j) ##=## {#k##@vbar##### @+(2)K@-(j)### @inter ### @+(1)B@-(k) #@neq# @emptyset###} @end(mathdisplay)
@end(equation) The code sets @math[@+(21)C@-(j)] contain all the information about the product. In the example shown in the figure, with
the bands @math(B@-(j)) as labeled, we have @math[C@-(1)#=#{1,2},###C@-(2)#=#{2},###C@-(3)#=#{3},###C@-(4)#=#C@-
(5)#=#@emptyset]. (In figures, this code set would be written @math(1,2@rightarrow 1,#######2@rightarrow 2,#######3@rightarrow 3).)
Further products can be computed using the code sets only, e.g. the code sets @math[@+(321)C@-(j)] for the product @math[M@-(3)M@-
(2)M@-(1)] are @blankspace(.1 inch) @begin(equation) @begin(mathdisplay) @+(321)C@-(j) #=# @union@-(k @in @+(32)C@-
(j))###@+(21)C@-(k) @end(mathdisplay) @end(equation) @section(Planning Operations Sequences) The space of all operations sequences
may be represented as a tree. Arcs correspond to operations, e.g. collisions with fences of various angles in our example. The root is labeled
with the set of all initial configurations. Each node of the tree is labeled with the set of possible configurations of a part after execution of the
operations on the path from the root to that node. In figure @ref(TREE), part of a tree for operations which are collisions with fences of various
angles is shown. The possible configurations of a part at a given node are obtained by multiplying the configuration maps for the operations on
the path from the root to that node. The product maps for the six nodes shown along the left edge of figure @ref(TREE) are shown in figure
@ref(SIX-PRODUCTS). Traversing the tree in order to search it is facilitated by the ease with which products of multiple configuration maps
can be computed using the code sets @math(C@-(j)). In figure @ref(TREE), each arc is labeled with a fence angle @g(a) as well as the code
sets for that fence angle. The sets of possible configurations which label a node are indicated as a subset of the indices @math(j) of the bands
@math(@+(@g(a))B@-(j)) for the fence angle @g(a) of the arc above it. @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Tree for
searching for an effective operations sequence.) @tag(TREE) @end(fullpagefigure) A goal node is one in which the set of possible
configurations has been reduced to one, or to a sufficiently narrow range. In figure @ref(TREE) therefore, a goal node is labeled with just one
band index @math(j), such as is the depth 6 node on the left. @subsection(Pruning the Tree) Searching the tree exhaustively (to any reasonable
depth, e.g. six) is essentially impossible because the branching factor at each node is so high. Two techniques may be used to make the search
practical. Among the many arcs (fences) leaving a node, only a few distinct code sets will be observed. Suppose the arcs for fence angles
@math(+50) through @math(+60) share code sets @math(1,2@rightarrow 1,#######2@rightarrow 2,#######3@rightarrow 3). It turns out (a
result of the physics) that the final-orientation bands of a given fence are entirely contained in the corresponding final-orientation bands of a
less steep fence. If a solution exists using the @math(+55) degree arc from a given node, it must also exist using the @math(+60) degree arc
from that node. Given several arcs @i(having common code sets), it is always safe to follow only the arc for the steepest fence. The pruning
step just described keeps the branching factor to a manageable level (typically 6-12). It is worth noting that for any particular incoming arc to a
node, the collection of distinctly coded outgoing arcs can be precomputed. Secondly, branches of the tree can be pruned while the tree is being
searched. For each fence angle @g(a), a list is kept of all node values computed after traversing an arc labeled @g(a). If a node value is
computed which is a superset of a previous value on the list, at a greater depth, the branch may be pruned. As an example, consider the depth
four node labeled "1,2,4" in figure @ref(tree). It follows an arc for a fence angle of @math(-20) degrees. A previously visited node of depth
three labeled "1,2" also follows a @math(-20) degree arc. "1,2,4" is a superset of "1,2". If a solution exists in @math(n) steps from "1,2,4", the
same solution must also exist from "1,2". The total depth of the solution will be less starting from "1,2", so it is pointless to follow the "1,2,4"
branch further. @section(Example: Automated Design of a Parts-feeder) @label(example) @label(planning) Figure @ref(feeder) shows a top
view of a system of fences suspended across a conveyor belt. The configuration map for the part shown with the first (@math(-60) degree)
fence was given in figure @ref(map). The configuration map for the first two fences, considered as a unit, was given in figure @ref(product).
The configuration map for the entire system of six fences is shown in figure @ref(six-products)(f). Figure @ref(six-products)(a-e) are the
partial products as labeled. @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Top view of a parts-feeder design.) @tag(FEEDER)
@end(fullpagefigure) @begin(fullpagefigure) @blankspace(8.5 inches) @caption(Configuration map products of successive fences.)
@tag(SIX-PRODUCTS) @end(fullpagefigure) The configuration map for the system (figure @ref(six-products)(f)) has but one final-
orientation band. Therefore the system of fences (figure @ref(feeder)) is a parts-feeder: parts in any initial orientation emerge from their
interaction with the system of fences in but one range of final orientations. To reduce the range of final orientations to a single final orientation,
the parts can be "used" (e.g. picked up by a robot) before they leave the final fence. Some parts have two (or more) indistinguishable
orientations. A rectangle, for instance, has two. For such parts the configuration map of a parts feeder has two (or more) final-orientation bands.
A goal node of the search tree would be labeled with two (or more) band indices @math(j). @subsection(Some Solutions) Figure
@ref(SOLUTIONS) shows several parts and the lowest number of fences for which a parts feeder was found. In one case, no feeder design was
found in a search to a depth of 20. Planning a feeder requires only a few seconds of computation. @begin(fullpagefigure) @blankspace(8.5
inches) @caption(No. of fences required in a feeder for each part shape) @tag(SOLUTIONS) @end(fullpagefigure)

