A Modeless Convex Hull Algorithm
for Simple Polygons

M. A. Peshkin and A. C. Sanderson

CMU-RI-TR-85-8

The Robatics Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

May 1984

Copyright © 1985 Carnegie-Mellon University

This work was supported by a grant from the Xerox Corporation, and by the Robotics Institute,
Carnegie-Mellon University.

A Modeless Convex Hull Algorithm for Simple Polygons
M.A. Peshkin and A.C. Sanderson ,
tech. report CMU-RI-TR-85-08, Robotics Institute, Carnegie Mellon University, May, 1984.

Michael
Text Box
A Modeless Convex Hull Algorithm for Simple Polygons
M.A. Peshkin and A.C. Sanderson
tech. report CMU-RI-TR-85-08, Robotics Institute, Carnegie Mellon University, May, 1984.

Table of Contents
1. Background
2. The Moditied Algorithm
3. Convex Hull Algorithm
4. Acknowledgements

D0 W=

List of Figures
Figure 1-1: Bykat’s counterexample to Sklansky’s algorithm
Figure 2-1: A typical polygon used for testing the algorithm

ii

Abstract

We present an order n algorithm which computes the convex hull of a two-dimensional non-self-
intersecting polygon. The algarithm recovers much of the simplicity of the one presented by Skiansky
(Sklansky, 1972), and subsequently disproved. Unlike several algorithms which have been found
since then, the modified algorithm executes a truly uniform {(modeless) traversal of all the vertices of
the polygon. This makes it possible to extend the algorithm to extract geometric information about

the interior of the polygon.

1. Background

A simple algorithm for finding the convex hull of a polygon was described in (Sklansky, 1972). This
algorithm was order n, and used a stack to support a backtracking technique. Subsequently, A. Bykat
(Bykat, 1978) found that Sklansky’s algorithm fails in some cases. Recently several algorithms have
been published (Bhattacharya, 1984) (Graham, 1983) which overcome these failures at the expense

of increased algorithmic complexity.

It is hoped that the algorithm presented here will prove useful because it is simpler than previous
algorithms, and because unlike them it explores the interior of the polygon. it can be used as a
foundation for other algorithms which extract useful geometric information about the interior of the
polygon (Peshkin, 1985).

We assume that the polygon is described as a sequence of vertices in the plane. The vertices form a
closed, non-intersecting chain. They are numbered 0 through n-1 for a counter-clockwise (CCW)

traversal of the polygon’s perimeter. Vertex n is defined for convenience as being identical to vertex

0.

We also require that vertex O (and n) be a point on the convex hull. This condition is satisfied by

choosing vertex O so that it has the most negative x coordinate.

Sklansky's algorithm is simple and intuitive. It is based on a stack, which in the end contains the
vertices of the convex hull. Initially the stack contains vertices 0 and 1. sp is a pointer to the top
element of the stack.

fori =2,n

while i right of ray(stack , stack)
pop discard the top element

pushii push i to the stack

end

The Sklansky algorithm works by considering a triplet of vertices: next-to-top-of-stack, top-of-stack,
and a new vertex i. The top-of-stack vertex is rejected if the triplet forms a right turn.

The Sklansky algorithm sometimes fails, finding a left-turning sequence of vertices which self-
intersects. Figure 1-1 shows the counterexampie found by Bykat, and (dotted) the result of the

algorithm when applied to it. The algorithm fails because after vertex 2 is discarded, the triplet (1, 3,

4) is a left turn, and vertex 3 is not discarded.

Figure 1-1: Bykat's counterexample to Sklansky’s algorithm

2. The Modified Algorithm

The algorithm can be made to work properly in all cases if we can detect a class of situations like
Bykat's counterexample. In Figure 1-1, for example, the situation is detected when i becomes 4. The
proper response is always to reject (pop) the top-of-stack vertex, which in the example is vertex 3.
The situation can be detected by comparing the angle of ray(i-1, i) as computed by two different
methods, calied the cumulative angle and the path angle. Disagreement of the two indicates that the

top vertex on the stack should be discarded regardiess of whether it forms a left turn.

The cumulative angle is the angle of a ray(i-1, i) computed by following the rotation of the polygon,
starting at vertex 0. If the positive x axis is used to define 0 degrees, then ray(0,1) is -70 degrees,
ray(1,2) is + 45 degrees, ray(2,3) is -45 degrees, and ray(3,4) is -180 degrees.

The path angle is the angle of a ray(i-1, i) computed by following the vertices on the stack, starting at
vertex 0. Ray(0,1) is -70 degrees, ray(1,3) is + 15 degrees, and ray(3,4) is + 180 degrees.

The cumulative and path angles always differ by a multiple of 360 degrees. Therefore it is not
necessary to compute them with any precision; computation of the cumulative quadrant and path
quadrant is sufficient. Since the remainder of the algorithm requires only a left/right comparison,
there is no need to compute trigonometric functions at all. If trigonometric functions are used, some
care must be exercised in testing equality of the cumulative and path angles, otherwise round-off

errors may cause disagreement to be reported when in fact there is none.

in the description of the algorithm which follows, we have computed the cumulative and path angles
by using trigonometric functions (implicit in the CCW function). This makes the algorithm easier to
understand, and avoids the uninteresting programming details of quadrant counting. Since the path

angles are then aiready available, we have described the left/right test in terms of path angles as well.

In the algorithm, cumangl is maintained as the cumulative angle of the edge (i-1, i). Pathanglj is at

all times maintained as the path angle of the ray (stackH, stackj).

To verify the correctness of the algorithm, we have tested it on 25000 randomly generated polygons,
of which Figure 2-1 is a typical example. Results were compared with the output of an order n?
algorithm which treats the vertices of the polygon as an unordered collection of points. The modified

algorithm found the correct convex hull in each case.

A straightforward implementation of the modified algorithm in the language "C" was compared to a
similar implementation of Sklansky's algorithm. On a VAX-780 the modified algorithm ran at about
1/5 the speed of Sklansky's algorithm, primarily due to the computation of arctangents. When only
quadranis were computed, to avoid the arctangents, the algorithm ran at about 1/3 the speed of
Sklansky's algorithm. The small improvement is due to the greater complexity of computing the

quadrants.

Figure 2-1: A typical polygon used for testing the algorithm

3. Convex Hull Algorithm

INPUT:

(xi, yi), for 0 < i < n, are the cartesian coordinates of the vertices of the polygon.
Vertex 0 is extremal in the negative x direction.

Vertices O and n are eguivalent.

The polygon is traversed in a CCW sense with increasing subscript.

OUTPUT:

stacki, for 0 £ i < n, are the vertex numbers of the vertices on the convex hull.

THE ALGORITHM:

definition of function CCWI(K, j, i), ranging from -o to o:

if (k

-1) CCWI(K, j, i) = the CCW angle from the positive x axis to ray((xj, yj) (x;, ¥)))

if (k 2 0) CCW(K, j, i) = the CCW angle from ray({x,, y,) (xj, yj))to ray((xj, yl.) (x;, ¥))
initialize
stack0 — -1
stack, — 0 s’tack2 — 1
pathangl1 +- 0 pathangl2 — CCW(-1,0,1)
cumang! « pathangl,
sp — 2
compute
fori = 2ton
cumang! — cumangl + CCW(i-2,i-1, i) update angles
pathangl, pel & pathangl ot CCW(stack -1’ stacksp, i)
if pathangl sprt cumangl > .1 test for disagreement
. reject i-1
sp «— sp-1
pathanglsp+1 — pathangls ot CCW(stackSp_1, stacksp, i)

end

while sp > 1 and pathanglS D41 < pathanglS o test for right turn

sp +— sp-1 reject stacks
pathanglSp+1 — pathangls‘p + CCW(stack sp_1,stac s’ i)
sp +— sp + 1
stac:ksp — i

4. Acknowledgements

The authors acknowledge the helpful comments of Gerard Cornuejols and Chris Van Wyk. We also

thank the anonymous referee who found a mistake in a previous algorithm,

This work was supported by a grant from the Xerox Corporation, and by the Robotics Institute,

Carnegie-Mellon University.

References

B. Bhattacharya and H. Elgindy. A New Linear Convex Hull Algorithm for Simple Polygons. IEFEE
Transactions on Information Theory, Jan 1984, {T-30(1), 85-88.

A. Bykat. Convex Hull of a Finite Set of Points in Two Dimensions. /PL, Oct 1978, 7(6), 296-298.

M. A. Peshkin and A. C. Sanderson. Reachable Grasps on a Polygon: The Convex Rope Algorithm,
Technical Report CMU-RI-TR-85-6, Carnegie-Meillon University Robotics Institute, 1985,

J. Sklansky. Measuring Concavity on a Rectangular Mosaic. /EEE Transactions on Computers, Dec
1972, C-21(12), 1355-1364.

Title: A Simple Order N Algorithm

Alithor(s) M. Peshkin and A. C. Sanderson

V . 3 -
Submitted by:__ '+ Peshkin Date: 28 January 1985

Referced by:__ M. Mason Date; 5 February 1985

Status:

. FEB 19 1985
LM Preskbex Date: ’

2. . In et Dae__ /S

3 ‘ Date:
Technical Report Number: CMU-RI-TR-

Given for Printing:

Comments:

- ™

o

AN CMU Robotics Institute
Technical Report Review

The purpose of the Robotics Institute ‘Technical report serics is to provide scientists and sponsors with a
timely and scientific quality description of institute rescarch. In order to maintain this level of quality, all
submissions arc reviewed in-house before publication. We would appreciate if you could review the enclosed
report and return it and the review sheet to Nancy Scrviou within iwo weeks of receipt. If you find you are
unablc to review the repant, please contact me at x8861.

Title: A Simple Order N Algorithm
Author: M. Peshkin and A. C. Sanderson
Date: -5 February 1985
Reviewer: Matt Masen
Plecase check the appropriate boxes and provide comments where necessary.
Accept
v’ [X } Moadify (specified below) and return.
[]Rejeet (reasons described below)
[] Contains sponsor proprictary material (specify below)

[]Submit to journal

Comments:

1. Simple polvgon ought to be in the title.

2, So it is linear. But since vou're comparing it with other linear
algorithms, more performance details would be useful. If it's linear
but 100 tires slower than some other algorithms, it's useless even if
it is sirple.

3. Your mair point seems to be that it is 2 simple algorithr, but you don't
make the point. You say that the idea of curmulative angle is the kev,
and that it is novel. 1've used it myself in analvsis, to obtain the
order of a pole for instance, so I find that a surprising statement.

The peirt would be easier to accept if vou told us how earlier papers
test for convexity.

(continued)

