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Abstract 
 

Conventional force sensors are overdesigned for use in measuring human force inputs, 

such as is needed in research and application of human/robot interaction.  A new class of force 

sensors is introduced that is suited to human-robot interaction.  The sensor allows larger 

displacements in response to forces than present commercial sensors, and orthogonalizes the axes 

to be measured by a combination of the properties of the flexure and the displacement sensing 

mechanism.  Two methods of measuring the displacement, optoelectronic and electromagnetic, 

are discussed.  Criteria for material selection and dimensioning are given, and experimental 

results are reported. 
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1.  Introduction 
 

 The purpose of this thesis is to present a force sensor design that is less expensive and 

easier to construct than existing force sensors, but still has enough resolution, linearity and 

robustness to be used in a wide variety of applications.  It is specifically designed with the 

requirements of human-robot interaction in mind.  It can be utilized in such areas as human-robot 

coordination, ([3],[4]) teleoperation ([5]), and collaborative robots ([1],[2]). 

In most situations where humans are applying forces, they are not sensitive to deflections 

on the order of a millimeter, and yet commercial force sensors deflect much less than this.  In 

addition, there are many situations where only a few axes of human input are required.  Yet most 

multi-axis force sensors are designed to measure all six axes. 

Many force sensors must use many individual sensors to find one component of the 

applied force.  To find how these sensors combine to give force components, each new force 

sensor must be calibrated, and a calibration matrix determined.  The force sensor presented here 

is designed such that measurements of different force components are independent.  Thus only 

one individual sensor is needed to measure one component of force.  

Presently, commercial force sensors cost thousands of dollars.  By allowing larger 

deflections and measuring fewer degrees of freedom, it becomes possible to design a much less 

expensive force sensor.  It is hard at this point to estimate the cost to produce the force sensors 

presented here, but it is believed that the Lexan force sensor, which could be injection-molded, 

could be made for well under $100.  All electronic components for the sensing mechanisms are 

very cheap.  The tolerances of construction are large.  Calibration is trivial and takes under a 

minute. 
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2. Benefits of relaxed design requirements 
 

Human-robot interaction requires different properties of a force sensor than typical robot 

applications such as machining and assembly.  These differences have substantial impact on how 

a force sensor can be designed. 

2.1 Larger deflections 
 

Humans are relatively insensitive to small displacements on the order of a millimeter.  

These same displacements would cause trouble if they occurred at the end effector of a robot, 

which can be thought of as needing (or benefiting from) the accuracy of a machine tool such as a 

mill.  So what advantages are obtained by loosening the restrictions on how much displacement 

is allowed? 

Presently, strain gauges are used in most commercially available force sensors.  Strain 

gauges measure the very slight bend of a flexure element caused by applied forces.  However, 

they are difficult to install and calibrate and are easy to break.  While the strain gauge elements 

themselves are inexpensive, in practice their difficulty of application results in sensors costing 

thousands of dollars. 

The allowance of larger deflections allows the use of new kinds of sensors which have 

advantages.  In the design presented here, two such sensors have been implemented.  The first is 

optoelectronic in nature.  Infrared LED/photodiode pairs are used as the sensor element in place 

of strain gauges. Strain gauges can measure deflections on the order of microns, and so are 

applied to very stiff flexure elements.  Photosensors can be used to measure deflections on the 

order of millimeters, and thus are applied to much more compliant flexures.  Photosensors suffer 

from some of the same problems as strain gauges, including nonlinearity and temperature 
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sensitivity.  However, these have distinct advantages.  Photosensors are cheap, easy to mount, are 

a non-contact sensor element, and are relatively hard to break.  It should be noted here that other 

force sensor designs using optoelectronic devices exist. ([8]) 

The second displacement sensing device is electromagnetic in nature.  Two zigzags of 

conducting material slide past each other.  An AC current is applied to one zigzag, inducing a 

current in the other.  This sensor as well is easier to construct when large displacements are to be 

measured.  Like the photosensor, it is a non-contact sensor, and it is relatively cheap, robust and 

easy to mount.. 

As discussed above, due to properties of the sensors and the flexure, the axes are 

intrinsically decoupled.  Separate sensor elements are used to measure the x and y force 

components.  Since the axes are decoupled, less electronics is needed, and calibration issues are 

much simpler. 

2.2 Fewer degrees of freedom 
 

In an instance where a human controls a robot with fewer than six degrees of freedom, the 

force sensor need not have six degrees of freedom. Fewer degrees of freedom means a simpler 

mechanical design, less electronics and wires, fewer sensor elements, and less calibration. 

One benefit of the design, which follows partially from having fewer degrees of freedom, 

is the stiffness of the force sensor to large undesired force components.   

For example, consider a person moving a heavy object suspended from an overhead rail 

system.  Where does one put a force sensor to read the forces applied by the human?  If one uses 

a handle, then the person must grab the device by the handle, even if it might easier for the 

person to grasp the object directly.  If one puts the force sensor between the object and the rail, 

then manipulating the object directly is allowed, but the force sensor must withstand the weight 

of the object.  The force sensor presented here would be ideal for this problem, as it can 

withstand large forces out of the plane to be measured. 
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3. Design 

3.1 Physical Overview 
 

The force sensor is shown in figure 1.  (The dimensions given in figure 1 are for the 

spring steel flexure.)  The outer piece is the housing, while the handle is connected to the inner 

piece.  Connecting the outer and inner pieces is a flexure element, best seen in the upper part of 

figure 2.  The flexure itself is shown in the lower part of figure 2.  As forces are applied to the 

handle, the flexure allows a displacement to occur between the two pieces.  Due to the large 

aspect ratio of the flexure, it does not bend significantly in response to forces in the z-direction or 

torques about the x and y axes. 

 

Figure 1 
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Figure 2 

The flexure is designed to withstand approximately one millimeter of motion between the 

inner and outer pieces at which point the two pieces physically make contact preventing further 

motion.  This protects the flexure from being broken. 

Note the dimensions L, w, and t in figure 2.  These dimensions are key to the design of 

the flexure and are used through much of the paper. 

The displacement of the inner piece is measured using either optoelectronic or 

electromagnetic sensors. 

3.1.1 Optoelectronic sensor 
 

The optoelectronic sensors used are what are commonly referred to as infrared “reflective 

object” sensors. These sensors are mounted on a printed circuit board which is attached to the 
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inner piece.  Light from an LED reflects off the inner wall of the outer piece and is detected by a 

photodiode, as shown in figure 3. 

For each axis, there are two photosensors measuring the distance to the two walls of the 

outer object.  The photosensors labeled A and B in figure 3, for example, are for measuring the x 

direction.  These correspond to the photodiodes labeled A and B in figure 4. 

Each LED actually shines on two photodiodes. Each photodiode produces a current 

proportional to the amount of light it receives.  One photodiode, the reference, does not move 

with respect to LED, and is used to regulate the output of the LED.  This significantly reduces the 

drift and temperature sensitivity of the circuit.  This is the photodiode shown in the top part of 

figure 4.   

The other photodiode receives light from the LED off the outer wall, as in figure 3.  There 

are two of these photodiodes per axis.  They are shown in the circuit in the bottom half of figure 

4.  These photodiodes measure the distance to the wall using the constant LED output.  The 

difference in the amount of light received by these diodes causes a current, resulting in the 

voltage output.  The output voltage is approximately linearly related to the displacement, for 

relatively small displacements.  For the small deflections discussed here, the displacement is 

proportional to the force applied. 

It was found for the photosensors used, Panasonic photo diode PN334 and infrared LED 

LN175, that a decent trade-off between sensitivity and linearity of the sensor response could be 

obtained if the maximum displacement allowed by the flexure was ±1mm. 
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Figure 3 

 

Figure 4 
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3.1.2 Electromagnetic sensor 
  

The other displacement sensor used was the electromagnetic sensor.  This sensor is 

shown in figure 5.  We have two circuit boards mounted parallel to each other, one attached to 

the inner piece and one to the outer piece.  When the flexure displaces in the x and y directions, 

due to the x and y components of the force, these two boards move relative to each other.  The 

flexure can only displace significantly in the plane, so the boards will only slide by each-other, 

not getting significantly closer or farther. 

x

y

z

x

y

measures x direction

measures y direction

 

Figure 5 
 A zigzag conductive trace is put on each board.  An alternating current is driven through 

the zigzag on one of the boards, which we will call the driving board.  If the two zigzags of the 

two boards are perfectly lined up one on top of the other, the zigzag on the driving board will 

induce a current in the zigzag on the other board, which we will call the driven board.  This is 
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because the changing current creates a changing magnetic field in the vicinity of each line of the 

zigzag on the driven board.  This changing magnetic field creates an alternating voltage in the 

lines in the driven board.  Note that all of these induced voltages will add up with one another. 

 If the two zigzags were shifted with respect to each other the width between two lines, 

then the current that the each conductive line on the driven board 'sees' on the driven board is the 

same magnitude and opposite sign.  This is because the nearby conductive lines on the driving 

board have current going in the opposite direction as before.  An AC voltage is induced, but its 

amplitude is the negative of the voltage induced before.  Halfway in between these two locations, 

no voltage is induced.  Thus the magnitude of the AC voltage can be used to determine the 

displacement of the two boards.  Note that the relationship between displacement and voltage is 

not linear, but it will be linear for a small range.   

 One such zigzag is set up on each board for the x and y directions respectively, as shown 

in figure 5.    Note that the sensor decouples the x and y axes.  A displacement in the x direction 

causes no change in the voltage read in the y direction. 

 For the electromagnetic sensor, displacements considerably smaller than a millimeter may 

be measured.  The displacement to be measured depends on the spacing of the zigzags on each 

board.  A smaller displacement can result in smaller designs, as shown in the table in section 

3.3.5. 

3.2 Compliance matrix 
 
 The shape of the square flexure can be used to determine its compliance matrix.  The 

flexure can be considered to be constructed of four identical L’s (See figure 2).  The compliance 

matrix of these L’s is determined, assuming small deflections and simple stress distributions 

within the cross-section of the beam, as in [7].  The compliance matrix for one L is given below. 
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where ∆rx  is the displacement, L is the length of one side of the square sheet, E, t, and w are the 

modulus of elasticity, thickness, and width of the material, a2=t2/h2, k E
G

=  is the ratio of the 

modulus of elasticity and the modulus of rigidity of the material, and 
r
f  is the applied force. 

Note that L has been chosen as the characteristic length for the angles and moments. 

 These compliance matrices are translated and rotated so that they are positioned as in 

figure 2 ([10]).  Then the compliance matrix, C, is found by combining these four matrices by the 

following equation 

C Ai
i

= F
HG

I
KJ−

−

∑ 1
1

                                                   (3) 

For the flexures described as above, we find that 
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 A number of insights can be gained from this compliance matrix.  First, we notice that it 

is diagonal, which tells us that forces and torques create only their corresponding motions.  This 

is due to the symmetry of the part.  It also tells us how the choice of our aspect ratio parameter a2 

affects the design.  If a2 is small, then the flexure moves significantly only in response to the 

forces fx, fy, and τz.  This is how the present design is made.  However, if a2 is large, then we 

have a flexure that responds to fz, τx, and τy.  Also we see how the dimensions of the flexure, L, t 

and w, matter. 

  We note that, for t2/w2≡ a2<<1, as in the present design, since k is of order 1, a2<<k, and 

the compliance matrix simplifies further to  
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3.3 Decoupling of axes 
 

Through a combination of the flexure (flexing element of force sensor) properties, the 

displacement sensor properties, and the design of the interface between the force sensor and the 

human, the measurement of the components of the forces becomes decoupled, allowing one 

displacement sensor per axis of force.  The goal of this force sensor is to measure forces in a 

plane, or the fx and fy components of a force as shown in figure 6. 
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Figure 6 

3.3.1 Flexure properties 
 
 

In standard force sensors, the flexure is allowed to bend in all six available degrees of 

freedom.  The specific force sensor presented here bends only in response to three of the six 

components of the applied force, the fx, fy and τz components, as shown in figure 6.  The 

geometry of the flexure prevents significant bending in the other directions.  This can be seen as 

a result of the compliance matrix of the flexure, which was discussed in the last section.  Because 

the force sensor only deflects due to certain force components, the sensors designed to measure 

deflections will not be affected by the other force components. 
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3.3.2 Displacement sensor properties  
 

The standard method for measuring the amount of bend in a flexure is to use strain gages.  

These are resistors whose resistance changes depending on the strain at the point of the flexure 

on which they are placed.  However, with the larger displacement allowed in this design, new 

types of sensors become available.  Two have been implemented so far.  These are optoelectronic 

and electromagnetic sensors. 

A major reason for choosing these kind of sensor is that deflections due to forces in the x 

direction do not affect the sensor elements designed to measure forces in the y direction.  Thus 

the x and y forces are decoupled. 

 3.3.3 Human interface design 
  

These sensors are less sensitive to τz forces than x and y forces, but this torque does cause 

an error.  To minimize or eliminate this error, the interface between the human and the force 

sensor must be considered.  The easiest method is to reduce the moment arm of the device.  

Another method is to have a ball bearing between the user and the device, to negate all such 

applied torques. 

If these methods do not fit a design, another flexure should be used, such as the one in 

figure 10.  This flexure only deflects in response to x and y forces and is not deflected by τz 

forces, and thus the axes are decoupled without considering the human interface.  However, the 

design is not as simple to construct. 

3.4 Parameter selection/Material selection 
 
 In this section, we will determine the size of the force sensor as well as the best materials 

to use.  The general trend we find is that for any given applied forces, there is a minimum size 
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that the force sensor can be.  So the question becomes, how small can I make my force sensor?    

As we will see, this depends on the material chosen. 

 In section 3.4.1, only in-plane forces (fx, fy, and τz) will be considered.  This leads to some 

simple and insightful results.  To simplify analysis, we assume that the parameter w has already 

been decided, and is assumed to be sufficient to prevent problems due to out of plane torques.  

This is the method that was used to decide parameters for the existing prototypes. 

 In sections 3.4.2 through 3.4.4, out of plane forces are considered as well (fz, τx, and τy).  

We find that the sensor properties of the first section must be reevaluated.  We determine 

equations for the amount of deflection caused by forces the flexure is designed to resist.  We do a 

more thorough stress analysis, and determine new constraints on L and w required for the flexure 

not to break in response to a given applied force. 

 In section 3.4.5, these results are used to determine what values of L, t and w can be used 

in a design given certain applied forces.  We find that regardless of the applied force there exist 

values of L, w, and t that satisfy all constraints.  The parameters L and w determine the size of 

the flexure and thus the force sensor. 

 Finally, in section 3.4.6, we determine material properties that should be maximized 

when deciding the material with which to construct the flexure.  We find that it is not clear that 

we have chosen the best materials, and some possible alternatives are listed. 

3.4.1 In-plane force analysis  
 

The flexure must be able to deflect a desired distance, xd when the full scale force F is 

applied in the x (or y) direction.  In addition, the flexure must not break at this deflection.  The 

deflection as a function of force can be obtained from equation 5.  It is 

x x FL
Et wd ≡ =∆ 1

20

3

3                                 (7) 

where F = f x  from equation 1.  From simple mechanics of materials [7] type analysis, we find 

that the maximum moment Mmax, is related to the applied force by  
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M FLmax = 3
40

                                           (8) 

The moment of inertia, I, of the flexure when bent about the z-axis is 

I wt= 1
12

3                                                      (9) 

We want the maximum stress to be a factor of safety less than the yield stress.  The 

equation for the maximum stress is then 

σ
σ
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max

. .
= = <M c

I
FL
wt F S

y9
20 2                      (10) 

 

where c =t/2 is the maximum distance from the normal axis of the flexure, σ y  is the yield stress, 

and F.S. is the factor of safety desired.  From equations (7) and (10), we can find equations 

restricting the length L and thickness t of the material. 
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Ed
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2 3 1 3

1 3

2 3( . .) / /

/

/

σ
                        (11) 

t F
x Ew
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3                                             (12) 

  We want to be able to make a sensor as small as is possible. This implies minimizing L.  

Thus we should choose a material that will minimize E2/3/σ y , or will maximize 

σ y

E

3 2/

.                                                           (13) 

 Certain materials score well by this criteria ([6]).  One is high tensile strength steel such 

as the “spring steel” we have used.  Other high scores are certain plastics, such as the Lexan 

used, and elastomers, such as rubber.  Elastomers are probably not reasonable as the thickness, t, 

would have to be so large as to make the design unreasonable.  Spring steel has good fatigue 

properties (when a F.S. of 2 or greater is used), but this may be a problem with plastics.  
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However, spring steel is difficult to machine and bend, as its hardness is similar to that of 

machine tools and it is rather brittle outside its elastic range. 

 We have made one force sensor prototype out of spring steel and the other out of Lexan.  

Spring steel has the difficulty of being difficult to machine and bend.  Lexan is much easier to 

machine.  However spring steel resists out of plane forces better.  This is due to the modulus of 

elasticity of the material, as will be discussed in section 3.3.3. 

 For spring steel, F.S.=2, xd=1 mm, w=1.9 cm, F=294 N, we find Lmin=4 cm.  This is the 

value used in the spring steel prototype.  Similarly, for Lexan, F.S.=2.4, xd=1 mm, w=2.5 cm, 

F=68 N, L=6.1 cm. 
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3.4.2 More complete force analysis 
 

 We wish to be able to specify what parameters L, t, and w can be used given certain 

applied maximum forces that are to be read or resisted.  The most general applied force consists 

of six components, fx, fy, fz, τx, τy, and τz. See figure 6.  However, since fx and fy have similar 

effects on the flexure, and τx and τy have similar effects on the flexure, and τz will be eliminated 

by the human interface, we need only analyze fx, fz, and τy.  (The forces fx and τy tend to exist 

together.) The force component fx is the component to be measured.  The other out of plane 

forces, fz and τy, are to be resisted. 

 In the following sections, fz and τy are considered to be the maximum force and torque 

applied in these directions. The force component fx is considered to be the force in the x direction 

at which the flexure flexes the desired displacement xd (set to 1mm for the prototypes built), at 

which point a physical stop is hit.  Thus it is also the maximum force in the x direction that is 

exerted on the flexure.   

In considering the impact of the forces to be resisted, there are two issues.  One is how 

much will these forces bend the flexure.  The other is whether these forces will break the flexure. 

For these two issues, we will find equations relating w and L to other parameters which can be 

considered constants, either being properties of the chosen material or design constraints. 

3.4.3 Bending due to out of plane forces 
 

As we shall see in the experimental section, bending due to out of plane forces causes 

errors in the force read-out.  One can quickly determine how much a flexure bends due to a 

known applied force using equation 5 and plugging in the compliance matrix from equation 6.  

For the forces fz and τy, these equations give 

θ τy y z
L

Etw
z L

Etw
f

4 43

3

3,            (14) 
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Let's assume there exists a maximum allowable angular and positional displacement, 

∆θxmax and ∆zmax.  Substituting equation (12) for t, and setting ∆θx<∆θxmax, ∆z<∆zmax, we find 

w
x

E f
w L x f

E f z
d y

x y

d z

x

5
16

5
16
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2 38
3 4

3

2 3
8

τ
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,        (15) 

Thus we have restrictions on the parameter w.  The only variable that relates to material 

properties in the above equation is E, the modulus of elasticity of the material.  We see that to 

make the flexure small, we want a large value of E.  This is a different requirement than equation 

13.  We see that in this respect spring steel is better than Lexan, and in general, metals are better 

than plastics.  This is verified in the experimental section. 

3.4.4 Stresses due to all applied forces 
 

The components of the force we are considering (fz, τx, and τy) cause stresses in the 

material.  In determining what the maximum stress is in the material, we find that equation 10 

becomes more complicated.  With some elasticity analysis [7][9] and a few conservative 

approximations we find that  

σ
τ σ

max ( )(
/

)
. .

9
20

3
4

1
22 2

L
t w

f L
tw tw

f
L F Sx z

y y          (16) 

(See Appendix A, note that a similar method can be used for different flexure shapes.) 

Note that this equation reduces to equation 10 when we neglect fz and τy.  

 As before, we're combining an equation for the desired flexing of element, equation 7 

still, with an equation for the stress on the element, now equation 16.  As before, we use these to 

determine acceptable values for the parameters L, t, and w.  (Before w was assumed to be 

known.)  Note that L, t and w are the only unknowns in the equation. We plug equation 12, 

which is equivalent to equation 7, into equation 16.  We then have an equation in the unknowns 

L and w.  Solving this equation for L in terms of w and known constants, we get 
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This equation is not very nice, but it can be plotted, and some insight can be gained from 

it.  One thing we can see is that as w becomes large, the minimum L becomes smaller.  Thus 

there is a trade-off here.  In the next section, we will take this relation between the parameters L 

and w and answer the question of what values for these parameters will create a flexure that will 

not break under predetermined applied loads. 

3.4.5 Results, how to determine size parameters based on design constraints 
 

We can take the inequalities that occur as a result of design parameters and plot them as 

functions between L and w. We can see what ranges of the parameters L and w can be used in the 

design.  Then we can determine the parameter t from equation 12. 

To obtain the plot, we need to know the following values: the material, and its modulus 

of elasticity E and yield stress σy; the factor of safety F.S., which is the ratio between the 

maximum stress in the flexure and the yield stress; the maximum displacement of the flexure, xd, 

which is determined by the properties of your sensor and your desired force resolution (1mm has 

been typical for our designs); the force to be measured, fx, and the other applied forces, fz and τy, 

which are determined by the application. 

Once we have these values, it's relatively straightforward to plug these values into the 

appropriate equations.  The plots shown here were done in Mathematica, but other programs such 

as Matlab can be used.  We plot equation 17 to determine for what values the flexure will break.  

If we wish, we can plot the two equations 15 to determine for what values the out of plane 

deflections will be small enough.  And if necessary, we can plot the curve t=constant, 
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substituting in equation 12, if there is a minimum wall thickness that can be used, or if there are 

only discrete thicknesses available.   

Let's do the above analysis for certain applied forces for both of the materials used so far, 

Lexan and spring steel.  For spring steel, E=200GPa, σy=1550MPa.  For Lexan, E=2.5GPa, 

σy=60MPa.  Suppose the desired force range to be measured is 0-133N, this force is to be applied 

5 cm from the flexure, causing a maximum torque of 6.8Nm, and a maximum vertical force (fz) 

of 100 lbs. (440N) must be withstood without the device breaking. 

For our factor of safety, we choose 2.4.  Why?  A factor of safety of 2 will, for both 

materials considered, allow stresses to reach the fatigue stress, which is the highest stress at 

which theoretically the material will not fatigue.  We want a little more to incorporate other 

uncertainties.  Other methods of choosing a factor of safety are possible. 

We need to choose the maximum deflection of the sensor, xd.  For the optoelectronic 

sensor, we find that a reasonable compromise between linearity and resolution is found by letting 

xd=1 mm. 

Plugging all of these values into equation 17, we obtain the following plot. 

 

Figure 7 
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The vertical lines are asymptotes that show the minimum possible value that can be used 

for the width, w, regardless of the length, L.   

Anything above a curve is an acceptable set of values for L and w.  In general, a value 

along the curve will be chosen, as small values of L and w are desired in order to make the 

device small.  We can plug in different values of w and find the corresponding values for L.  For 

our example, reasonable values for spring steel are L=4.6cm, w=1.9cm.  For Lexan L=7.6cm, 

w=3.6cm.  Using equation 12, we find t=.56mm for spring steel, and t=3.19mm for Lexan. 

With designs actually constructed as we have done, some simple assumptions (same 

placement of electronics, same electronics used, some machining issues for Lexan, reasonable 

thickness of outer piece, some strength issues at connection points for flexures to inner and outer 

pieces) leads us to an estimate of the size of the actual force sensor.  (Different designs may 

improve these estimates.)  We estimate the resulting steel force sensor to be 3"x3"x1 1/8", and 

the Lexan force sensor to be 5"x5"x1.75".  We see that the steel force sensor is significantly 

smaller.  However, the Lexan force sensor is much easier to construct. 

Below is a table with various acceptable values for L and w for different applied forces.  

The factor of safety is 2.4 for all cases.  Note that the maximum displacement affects the size of 

the force sensor.  One can sacrifice resolution lost due to less deflection to obtain a smaller size. 

material fx (N) fz(N) τy(Nm) xd(mm) w(cm) 

     

L(cm) projected size 

(cm x cm x cm) 

Lexan 18 45 0.45 1 1.7 3.6 5.5x5.5x2.4 

Lexan 18 45 0.45 0.5 1.4 2.8 4.7x4.7x2.1 

spring steel 18 45 0.45 1 1.2 2.3 3.9x3.9x1.8 

Lexan 133 440 6.8 1 3.6 7.6 12.7x12.7x4.4 

Lexan 133 440 6.8 0.5 3.0 6.1 11.3x11.3x3.8 

spring steel 133 440 6.8 1 1.9 4.6 7.6x7.6x2.8 

spring steel 20 44500 13560 1 34 34 50x50x38(?) 
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The last example is extreme and demonstrates that for any input forces, a length and 

width can be found to measure these forces.  Thus we can measure very small forces while 

resisting very large ones.  We have to have a large flexure to do so, however.  New flexure 

geometries may be useful in these cases. 

3.4.6 Material considerations 
 
 The choice of material out of which to make the flexure is very significant in determining 

the overall dimensions of the device, as can be seen in the table in the last section.  Certain 

materials clearly perform better than others.  The properties of a material that are desired can be 

determined from the equations above, specifically equations 13, 15, and 16. 

 Equation 13 tells us that we should choose a material with a large value of 

σ y

E

3 2/

.                                                           (18) 

 A large value for this parameter allows a large amount of flex given a certain magnitude 

in-plane applied force.   

However, this is not the only aspect of the flexure which is important.  From equation 15, 

we see that for a material to not flex much in the out of plane direction, we wish to maximize the 

modulus of elasticity, E. 

 The third material property that should be maximized can be derived from equation 16.  

If, in this equation, we set fx=0, and plug in equation 12 for the thickness t, we find that we can 

factor out a new material parameter that should be maximized.  This parameter is 

σ y

E

3

.            (19) 

 A large value of this parameter gives a material that can withstand large out of plane 

forces without breaking. 
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 Now that we have these 3 material properties (σy

3/2/E , σy
3/E and E) that we wish to 

maximize, we can use these to find out which materials are suitable for use.  We can make a   

logarithmic plot of the yield stress σy versus the modulus of elasticity (Young's modulus) E.  

(The elastic limit is similar but is less than the yield stress σy, but since inelastic deformations are 

unacceptable in a force sensor, this is the material value that has been used and that needs to be 

considered.)  It then turns out that lines of slope 3/2 give level curves for σy
3/2/E.  Similarly lines 

of slope 3 give level curves for σy
3/E. 

 The plots below show all major types of existing materials and what ranges of values they 

have for these quantities.  These plots are obtained from a program called CMS (Cambridge 

Material Selector) made by the company Granta Design Ltd.  The first plot shows level curves 

for σy
3/2/E, the second for σy

3/E.  Materials on the same level curve have the same value for the 

particular parameter being measured in the plot.  Materials farther to the right have higher values 

for the parameters σy
3/2/E and σy

3/E and materials higher on the plot have higher values of the 

modulus of elasticity, E. 

In these plots, major material groups are given different colored ovals.  Polymers are blue, 

natural materials are green, composites are light blue, metals are red, and ceramics are purple. 
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 What can we deduce from these plots?  The first thing to notice is that for the two 

materials that we have used, spring steel (high tensile strength carbon steel) and Lexan 

(polycarbonate), they have similar values for the parameter σy
3/2/E but spring steel has a larger 

value for the parameter σy
3/E.  Also, steel has a larger value of E.  This tells us that while the 

materials will have similar in-plane flexing properties, spring steel will be able to better 

withstand and flex less in response to out of plane forces.  This reduced out of plane flex is noted 

in the experimental section of this paper. 

 Clearly by these metrics spring steel is the better material.  However, spring steel is hard 

to machine and bend, and can't be welded without losing its temper and thus its properties.  

When it is not welded but fastened, large forces can cause slip, causing an offset in the zero of 

the sensor.  Lexan, on the other hand, is easy to machine, or even to injection mold.  Thus while 

steel has better material properties, Lexan has much better fabrication properties. 

 In finding a material alternative to the ones used, it would be desirable to find a material 

that has the good material properties discussed above and also good fabrication properties.  A 

few possibilities are listed in the figure, such as cast irons, bronzes, some wrought aluminum 

alloys, and fiberglass (GFRP).  (Natural materials, such as silk, and ceramics have not been 

considered.)  All of these materials have decent material properties.  The ease of fabrication for 

these materials has not been explored.   

As a final note, ceramics score very well by our material property considerations.  This 

seems counterintuitive, and may not be reasonable due to fabrication issues.  Also these materials 

are brittle, and a ductile material assumption was used in the analysis used to determine the 

above material parameters.  Still, this is an interesting finding, and suggests that ceramics may be 

the best material for flexures of the type discussed here. 
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4. Alternative flexure designs 
 

We can modify the present flexure by changing the position and shape of the legs of the 

flexure.  This will change the properties of the flexure, but it will retain some basic properties. 

The distinguishing characteristic of the flexure chosen is that the elements of the flexure have a 

large aspect ratio.  That is, they are much wider than they are thick.  Any flexure designed like 

this allows motions in the plane (∆x, ∆y, ∆θz) while preventing other motions (∆z, ∆θx, ∆θy). 

In addition to this we can use different flexures that allow and prevent different motions.  

The idea behind the resulting force sensor is the same.  Prevent some directions of motion, 

measure the other directions.  (It seems reasonable to measure the other directions as 

orthogonally as possible.)  To measure a torque, either a new or modified sensor should be 

introduced or linear motion a distance from the axis of twist would be measured.   

 A flexure which allows only x and y motion is shown in figure 10.  It is two flexures in 

series, each of which allow only one degree of motion.  This could be used if one needed to resist 

τz torque.  In figure 10, the flexing elements labeled 1 allow flexing in the x direction, while the 

flexing elements labeled 2 allow flexing in the y direction. 

Three flexures in series create the flexure in figure 11.  This flexure allows motions in x, 

y and z, and prevents twists.  The 'inner piece' would be attached to the four points labeled A.  

The 'outer piece' would be attached to the 2 points labeled B.  The pairs of flexures labeled α, β, 

and γ allow the device to flex in the x, y and z directions respectively.  Note that this design 

prevents buckling, which the design in figure 10 does not.  However, the design has become 

complicated.  A better idea for a flexure with these degrees of freedom is needed.  

A flexure allowing only twist (∆θz in the figure) is shown in figure 12.  The compliance 

matrix of this flexure has only one large element, relating ∆θz to τz. 

 In all of these flexures, the sensors would have to be repositioned or modified to measure 

the different degrees of freedom.  Note for example that the flexure in figure 11 could not use 
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electromagnetic sensing as we have presently done, as motion in the z direction would cause the 

2 boards in figure 5 to approach each-other.  The optoelectronic method would still work in this 

case.  Motion in the y and z directions does not affect the reading in the x direction.  Similar 

issues may arise with other flexures. 

Many other flexures are, of course, possible.  In choosing a flexure to use, we wish to find 

one that 1) only allows motions in the direction desired, 2) can be small and still allow large 

deflections in certain directions and prevent deflections in others, and 3) is as simple to make as 

possible.  
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Figure 10 
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5. Experimental Results 
 

  The force sensors described above have been built and calibrated.  It has been compared 

to an existing force sensor, the ATI Gamma model 6 axis force sensor.  Results comparing these 

two sensors are summarized in the table below. 
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 ATI  Two-axis optical 

spring steel 

Two-axis optical 

Lexan 

Two-axis 

electromagnetic 

Lexan 

Max force(fx) 

(Newtons) 

65 170 68 22.4 

Max displacement 

(millimeters) 

0.0074 0.60 1.0 0.33 

Sensitivity, Volts/N 0.0734 0.010 0.0425 0.0533 

Long term drift, % 

of full scale in 24 

hours 

0.10% (1.5%)* 0.90% 1.07% 

Short term drift, % 

of full scale in 5 

minutes 

0.025% (0.047%)* 0.028% 0.034% 

Maximum 

nonlinearity 

not 

measured 

(0.5%)* 1.25% 2% 

Ratio of  

response to 

τy/2.5cm to 

response to fx 

NA 0.01 0.065 not measured 

*-calculated, not measured 
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5.1 Deflection 
 

The maximum deflection of the two-axis spring steel sensor was 0.60 mm (in either direction).  

This required a force of 170 N.  This is very close to the force expected from the theory, which is 

177 N.  For the Lexan force sensor the maximum deflection occurred around 68 N.  This is close 

to the 60 N predicted in theory.   

5.2 Noise and drift 
 

All drift terms above are in terms of peak to peak measurement.  Short-term noise was 

significantly less than the drift terms given in the above.  This is after both digital and analog 

filtering using a time constant of approximately 0.1 seconds.  This time constant is reasonable for 

human interaction, but may be too large for other applications.  In this case, the noise 

contribution would have to be reevaluated. 

The five minute drift is the amount the measured force varies in five minutes for a 

constant applied force, and is much less than the long term drift.  For applications involving 

humans interacting with the sensor, forces tend to be applied for short periods of time. 

 Note that for both the optoelectonic and the electomagnetic sensors, the five minute drift 

is similar to that of the ATI force sensor.  However, the long term drift is approximately ten 

times larger for both.  This still gives adequate resolution for many applications.   

However, the long-term drift in these tests was monotonic and exponentially decaying.  

This suggests settling of some kind, possibly of the Lexan flexure itself.  This must be tested.  

The drift does not seem random and may be eliminated, promising even greater resolution. 

5.3 Linearity 
 



 33 
 

 
 

Linearity results for the two sensors were very promising.  The output for the two sensors 

is shown in the graphs below.  One can see for the optoelectronic sensor, the voltages start to trail 

off at high forces.  This is when the physical stop is met, hindering further motion.   

For the electromagnetic circuit, the output steadily becomes increasingly nonlinear.  One 

can then choose a range as a compromise between linearity and resolution.  In this case, a 

maximum nonlinearity of 2% was chosen.  If so desired, nonlinearities can be compensated for 

by extra calibration, but for the small values found here, this should not be necessary. 

 

 

Figure 13 
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Figure 14 

5.4 Response to out of plane forces 
 

For the spring steel force sensor, forces (and torques) applied to the device in the z, τx, 

and τy directions caused very small but measurable changes in the measured force.  For the Lexan 

sensor, there was more sensitivity to these forces. 

For the Lexan force sensor, a difference of 6.5% is measured in an applied force fx if it is 

applied to two locations an inch apart.  This is a large error, and may in some cases be 

unacceptable.  The flexure would then have to be designed to flex less in the ∆θy direction, as 

discussed in section 3.3.3. 

For the spring steel force sensor, a difference of approximately 1% is measured under the 

same conditions.  This seems better.  But again, if this is unacceptable, the flexure can be 

designed to perform any amount better by reducing the flex ∆θy as discussed in section 3.3.3.  As 

with all design improvements mentioned, it will increase the size of the force sensor. 
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 A torque in the τz direction does cause a measured force in the x-y plane.  For the spring 

steel sensor, a torque of 0.5 Nm caused a recorded force change of 9.8 N.  This seems tolerable 

for a hand-held device, where the characteristic length is on the order of 2 to 3 cm, but could be 

troublesome in other applications. 

5.5 Experimental summary 
 

The ATI force sensor outperforms the two-axis sensor in long term resolution, however in 

many applications its high performance may not be needed.  The present long-term drift looks 

suspiciously like some kind of settling and its source will have to be determined.   

The spring steel force sensor has better resistance to out of plane forces.  This is due to 

the mechanical properties of spring steel, and the geometries of the flexures chosen. 

There was little nonlinearity in either the optoelectronic or electromagnetic circuit.  For 

the electromagnetic circuit, the maximum displacement can be chosen to limit nonlinearity, at the 

cost of resolution. 

We intend to further increase the sensitivity and reduce the noise and drift levels of the 

two-axis sensor. 

6. Summary 
 

A new force sensor design was described in this paper.  It is much cheaper and easier to 

construct than existing commercial force sensors. 

This force sensor differs in many respects from conventional force sensors.  The relaxed 

design requirements of human-robot interaction allows for new design innovations.  The reduced 

degrees of freedom allows a different class of flexures to be used. The greater allowable 

compliance in human/robot applications makes the force sensor easier to construct.  In addition it 

allows the use of new types of sensors elements.  Two such sensor elements, optoelectronic and 

electromagnetic, have been used. 
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The force sensor consists of a flexure and a displacement sensor.  The flexure allows 

motions in certain directions due to certain components of the applied force and prevents motions 

in other directions.  The displacement sensor measures the distance displaced, and thus the force, 

in the allowed directions. The combination of this class of flexures and photosensors allows the 

axes to be orthogonal, simplifying sensor placement, electrical design, and calibration. 
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Appendix 
In the appendix, we will show how to derive equation 17.  The steps are as follows. 

1) Find the stresses in a cross-section of an element as a function of the force applied to the 

element. 

2) Estimate the maximum stress in an element of the flexure as a function of the force applied to 

the element. 

3) Determine the applied force on an element from the applied force on the entire flexure. 

4) Use these to estimate the maximum stress in the flexure as a function of applied force. 

Step 1) 

 The flexure is made of 4 L-shaped elements, such as that shown in figure 2.  We will 

analyze one such element.  Suppose a force is applied to one end of the element, as shown in 

figure 15.  Some terminology must be introduced here.  A force (or torque) with an L superscript, 

such as fx
L or τz

L, is a force applied at the end of the flexure.  A force with a s superscript, such as 

fx
s, is the force applied on a cross-section a distance s along the flexure, where s is a variable.  A 

force without such a superscript, such as τy, is a force applied to the entire flexure. 

f
f

x

L/2

L

L

L

 

Figure 15 
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 Using a free body diagram, the torque applied to any cross-section can be determined, as 

shown in figure 16.  From this, using the equations of equilibrium, we get the equations for the 

force and torque applied to any cross-section of the flexure. 
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Figure 16 
Step 2) 

We determine the stress distribution using local coordinates.  The global coordinates are 

the x, y and z directions mentioned above.  We call the local coordinates x', y' and z (this is 

because the z direction agrees between local and global coordinates).  See figure 17. 
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Figure 17 
 For each force applied to a cross-section, there is a corresponding stress distribution.  

Here a couple of conservative simplifying assumptions are made.  Each stress distribution has a 

maximum somewhere in the cross-section.  We assume all of these maximums occur at the same 

location in the cross-section.  Next, we neglect shearing stresses in the $ ' 'σ x y  direction, assuming 

all shearing stresses are in the same direction.  Now our maximum stress 
r
σ  can be found in 

terms of the stress unit vectors $σ x , the normal stress, and $ 'σ x z , the shear stress.  The maximum 

stress, 
rσ s , is a function of s, the location of the cross-section, but because of our assumptions, is 

not a function of where we are in the cross-section. 

 The maximum stress, 
rσ s , is a sum of the stresses caused by each of the applied forces and 

torques.  We can write this as 
r r r r r r r
σ σ σ σ σ σ στ τ τ

s
f f fx

s
y
s

z
s

x
s

y
s

z
s

' ' ' '
      (A2) 
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 We neglect tensile and shear stresses caused by the force components fx and fy.  In 

general, forces cause less stresses (are of higher order) than moments.  The force component fz is 

still considered, because there are instances when the force component fz is very large compared 

to other applied forces and torques.  Standard elasticity analysis gives us a value for the 

maximum stress due to each of these applied forces.  We find ([7],[9]) 
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 The absolute value signs ensure that these terms do not subtract from each-other.  In 

reality, there are certain areas on the cross-section where the sections add and others where they 

cancel.  Since we want the maximum stress, we use absolute values. 

Now we make two substitutions.  First, we change to global coordinates.  For our flexures 

this is relatively simple.  For s<L/2, x'=x, y'=y.  For s>L/2, x'=y, y'=-x.  Second, we substitute in 

equation A1 for the forces.  We obtain 
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Step 3) 

We see that the deflection of the flexure is related to the force by equation 5. 

∆r
r

x L
Et w

C f=
3

3             (5) 

The matrix C is the compliance matrix for the entire flexure.  Let the matrix A be the compliance 

matrix for one of the legs of flexure.  A similar relation exists for the matrix A. 

r r
x L

Et w
AfL L

3

3           (A6) 

Note a couple of things about this equation.  The displacement is due to the force on the leg of 

the flexure, denoted as 
r
f L .  The displacement of each leg of the flexure is the same as the 

displacement of the entire flexure.  Thus 

x xL            (A7) 

Combining these equations gives 
r r
f A C fL 1

          (A8) 

There are also translations and rotations of the legs of the flexure involved in the derivation of 

equation 5 and equation A8 ([10]).  These are relatively simple.  For our geometry, we find that 
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   (A9) 

where we call this substitution matrix D, and a2=t2/h2, k E
G

= , as before.  We have used the fact 

that a2<<1 to simplify the above matrix. 

Step 4) 

We want the maximum stress in the flexure.  First we find the stress, 
rσ s , in terms of forces on 

the flexure by substituting equation A9 into equation A5.  Since the forces fx and fy act similarly 

on the flexure, and similarly so do the torques τx and τy, and since we are assuming τz is small or 

is accounted for mechanically, we can set fy=τx=τz=0.  We find an expression for 
rσ s  which is 

clearly maximum at s=0.  These simplifications lead to the following expression for the stress 

(again using fact that a2<<1) 

 

r
σ τ σ τ σmax '(

/
) $ (

/
) $9

20
3

4 2
3

8 22 2
L
wt

f L
w t

f
L tw

f
Lx z

x
x z

x
xz  (A10) 

where we have removed the s superscript (since we found the maximum value at s=0) and added 

a max subscript to denote that this is the maximum stress in the flexure.   

The material is assumed to be ductile.  This means it will fail in shear.  The formula for 

the maximum shear is 
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          (A11) 

Here the fact is used that for the materials considered, (and for most ductile materials) the shear 

yield strength is approximately half the tensile yield strength.  For other materials this can be 

altered.  We can approximate equation (A11) with the inequality 

σ σ σ σx
xz

x
xz2 2

2
2FHGIKJ         (A12) 

This is used to simplify the final results.  This approximation is most conservative when the two 

terms are of similar magnitudes.  The analysis can be done without this approximation, it just 

becomes less manageable.  Combining equations (A10)-(A12) we get 

9
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22 2

L
t w

f L
tw tw

f
L F Sx z

x y( )(
/

)
. .

τ σ
        (A13) 

This is equation 16 so we are done. 

 Note that the above analysis can be modified at many points as far as what 

approximations are made.  A more exact answer can be obtained at the cost of computational 

complexity.  Note also that the above analysis transfers straightforwardly to other flexure shapes. 

  


