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	 High-bandwidth tribometry as a means of recording natural textures

Roman V. Grigorii Michael A. Peshkin J. Edward Colgate

Abstract— The measurement of perceptually relevant infor-
mation about textures has been approached through profilom-
etry, vibrometry, and tribometry. Manfredi et al. [1] used a
laser Doppler vibrometer to measure skin surface vibrations as
a texture sample slides across a fingertip. In our work, we treat
the Manfredi et al. measurements as a gold standard, and assess
the performance of a simpler and more portable device: a high-
bandwidth tribometer. The tribometer was used to measure
shear and normal forces applied to each of six texture samples
as a fingertip scanned across them. The collected data was used
to build two classifiers: one based on features extracted from
the spectra (which treats the data as stationary); and a second
based on the first through fourth order statistics associated
with a set of band-pass filters (which treats the data as non-
stationary). The results indicate that tribometry, while not as
effective as vibrometry, may nonetheless prove effective as a
means of recording natural texture. Additionally, we find that
the non-stationarity of skin vibrations may serve as means of
texture classification. Ongoing work aims to couple tribometric
recordings with texture rendering and playback via surface
haptic devices, and to understand the perceptual significance
of non-stationarity in vibrations.

I. INTRODUCTION

In everyday life, humans encounter a great variety of tex-
tures. What are the factors that distinguish one texture from
another? Psychophysical studies typically point to a modest
number of perceptual dimensions, such as rough-smooth,
hard-soft, and warm cool [2]–[6], while other studies have
pointed to underlying physical factors such as shape features
[7], friction and stiction [4], [8], and spatial wavelengths [9],
[10]. Of particular note are the vibrations induced by a finger
scanning across a surface, which have received considerable
attention in recent years [1], [11], [12].

While there is little doubt that texture-induced vibra-
tions carry perceptually relevant information, only a few
attempts have been made to extract such information from
measurements. One approach is to employ the power spec-
tra of finger-skin vibrations. For example, by correlating
psychophysical and skin vibration measurements, Bensmaia
[13] found that most of the perceived dissimilarity among
a group of fine textures could be accounted for by spectral
dissimilarities. Similarly, using the apparatus shown in Fig.
1, Manfredi et al. [1] found that the spectral content of skin
vibrations could be used to classify a set of 55 textures with
up to 93 percent accuracy.

The use of spectra, however, is subject to stationarity, a
characteristic that may be absent in many natural textures.
By way of example, consider a fabric like burlap: spectral
content arising from the individual fibers is not uniformly
distributed across space, but is modulated according to the

coarse texture of the weave. The spectrum of a signal asso-
ciated with burlap would be expected to be cyclostationary,
but not stationary. Non-stationary signals may be analyzed
using any of a variety of space-frequency or time-frequency
techniques such as wavelets or the short-time Fourier trans-
form (STFT) in the form of a spectrogram [10]. A related
approach involves passing the time domain vibration signal
through a set of band pass filters, then computing statistics
based on the time-varying output magnitudes of the filters.
Research in image and sound textures has demonstrated the
value of these filter statistics in the creation of realistic
synthetic textures [14]–[17]. Additionally, one recent study
in haptics [18] showed that natural textures cluster according
to the statistical parameters extracted from STFTs of shear
force data, suggesting that such parameters may play a role
in tactile perception. With a number of well characterized
surface friction modulation haptic devices [19] identification
and extraction of perceptually important parameters is one
of the leading research motivations for the work presented
in this paper.

In this paper we explore two questions. First, we ask
how effective both spectra and filter statistics are when used
separately to classify a set of vibration data obtained by
scanning a finger across natural textures. We hypothesize
that filter statistics will hold unique information by which
texture can be classified. Second, we ask how effective high-
bandwidth lateral force measurement (i.e., tribometry) is as a
source of this data. While our group [18] and others [8], [20],

Fig. 1. (a) Side view of vibrometry device used by Manfredi et al. to
capture texture information. (b) Top view of a tribometry device.
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[21] have used tribometric methods to record texture-induced
vibrations, this work is the first to use these data in texture
classification, especially via filter statistics. Additionally, by
comparing to a well established vibrometric approach, we
hope to establish that tribometry is a valid methodology,
able to distinguish among natural textures and, potentially,
to capture perceptually relevant information.

Our work is motivated by the desire to find a low-cost, ro-
bust, and rapid technique with which to capture perceptually
relevant texture data. We wish to build a “texture camera”.
There exist a number of ways to collect skin vibration data
(e.g. using a microphone to capture the sound elicited from
finger during motion across a surface [22]), however, most
methods limit the movement of the finger, reducing freedom
in natural exploration. Laser-Doppler vibrometry may be
employed for high precision acquisition of skin vibration
presented in Fig. 1 but it typically requires a stationary
finger, does not allow a direct measurement of data from
the contact region between finger and surface, and can be
expensive to integrate into a texture camera. Additionally,
many surface haptic devices are based on friction modulation
[23], [24], and would benefit by a direct and intuitive relation
between lateral force and the rendered virtual texture. For
these reasons, the tribometric approach presented in this
paper offers an appealing alternative to vibrometry.

II. METHODS

A. Apparatus

A custom-built, stationary-mount tribometer (Fig. 2) was
used for data acquisition. One highly trained subject scanned
his right index finger left to right across a texture sample
mounted on the tribometer. Finger position was recorded
by a high resolution (3.86 µm) encoder connected to a
finger holder by a flexible metal wire. Each texture sample
(on a carrier) was mounted magnetically to the tribometer
platform. A piezo force sensor (Kistler 9203) was used
to record lateral forces of finger texture interaction. This
sensor was found to have a 3 dB bandwidth up to 1000Hz.
Normal force was measured with two strain gauge sensors.
The lateral force, position, and normal force sensors were
sampled at 125kHz, and data were filtered according to their
respective bandwidths.

B. Texture samples

To test the ability of the tribometer to capture perceptually
relevant information, 6 natural textures, presented in Table I,

position encoder

brass flexure

piezo 

strain gauge sensor

texture sample

texture sample

force
sensor

mount

Fig. 2. Schematic representation of the tribometer.

1 Denim
2 Empire Velveteen
3 Faux Leather
4 Hucktowel
5 Microsuede
6 Swimwear

TABLE I
SCANNED TEXTURES

were selected from the set used by Manfredi et al. Each
texture was adhered to the surface of 25x80mm acrylic
substrate using strong double sided masking tape. A thin
steel sheet was adhered to the opposite side of the acrylic to
enable magnetic mounting.

C. Experimental procedure

We recorded data at two scanning speeds common in
patterns of free texture exploration: 80 and 120 mm/s [25].
We conducted 60 trials for each of the textures and each of
the speeds resulting in 720 swipes.

Each scanning session lasted 30 s, during which the
subject attempted to keep the velocity of each swipe constant
and the normal force within .5±.1N while scanning the
texture left-to-right and right-to-left until the session time
ended. Only the left-to-right data were retained. The subject
used a metronome for pacing and had no knowledge of
instantaneous scanning speed or normal force. The scanning
velocity was allowed to deviate by 15% during phases
where the subject attempted to keep a constant velocity. An
algorithm was later applied to extract pieces of lateral force
data 400 ms in length, that fell within the allowed range of
deviation for normal force and scanning velocity, with the
rest of swipes being discarded.

Every 5-10 sessions, or after a break, the subject wiped his
finger with an alcohol pad in order to remove any moisture
and dust collected on the finger. After being in use for some
time, the microsuede and swimwear samples showed signs
of deterioration and were replaced with new samples.

D. Data extraction and correction

Although the intent was to keep scanning speed constant
during texture exploration, this could not be achieved per-
fectly. The higher speeds tended to occur in the middle of
the movement range where our window function also peaked,
over-emphasizing high-speed data. To correct for this, we
stretched or compressed the time axis according to a local
average velocity, effectively mapping the movement to one
with the correct velocity. Shifting and sharpening of spectral
peaks was readily observed post-correction.

E. Analysis

In order to evaluate the capability of the tribometer to
capture information of value for texture discrimination, and
to provide a basis for comparison with vibrometry, we exam-
ined two feature sets. The fist was based on spectral power,
and the second was based on filter statistics. Vibrometry
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source data was provided by the Bensmaia Lab, and were
the same data used in [1].

Spectral power information was analyzed by first dividing
lateral force data by the corresponding normal force to
obtain instantaneous friction coefficient data. This was then
band-pass filtered by a second order Butterworth filter with
cutoff frequencies of 51Hz and 600Hz, corresponding to the
bandwidth of the vibrometry device. The filtered friction
coefficient data was windowed with a Hanning window after
which the power spectra were computed and normalized. For
analysis of both vibrometry and tribometry data, we extracted
a feature set consisting of power amplitudes at every integer
frequency in the bandwidth range (550 features). A limitation
to using most or all features was the spectral leakage due
to windowing. Mutual information analysis showed that up
to 10 neighboring integer frequencies are significantly corre-
lated and therefore form a redundant feature set. With this in
mind, we created 10 sets of 55 features each corresponding
to unique set of frequencies spaced 10Hz apart. Classification
results over the 10 sets were averaged, and reflect the overall
quality of data sampled from the entire spectral bandwidth.

Because of a limited number of trials, further scaling of the
over-complete feature set was necessary. A one-way ANOVA
F-test rating computed by dividing between-class by within-
class variance was used as a heuristic to extract the 5 most
discriminative features from each of the 10 sets. The use
of this metric reflects our intuition that features which are
different across textures and highly repetitive across swipes
are most likely to be utilized as perceptual cues. The F-
test rating showed that most discriminant spectral features
aligned with prominent spectral peaks of textures. In order
to include a degree of freedom in the classification scheme
that was not biased toward texture periodicity we added a
feature that characterized the 1/f curve by which smooth
and fine textures have previously been classified. We fit a
function

β

fα

through normalized spectra and added α to the feature set
increasing the number of features to 6. Parameter β was
highly correlated to α and was therefore ignored as a feature.

The classifier algorithm uses Euclidean distance to mea-
sure the proximity of textures in the feature space. The basics
of the technique are loosely adapted from the method used
by Manfredi et al., with the steps outlined as follows:

1) Two sets, S1 and S2, are filled with N randomly se-
lected spectra features for each texture and a given scan
velocity, where 1≤N≤5 and 1≤N≤30 for vibrometry
tribometry data respectively, and S1∩S2 = ∅.

2) The means of the spectral features from each of the
two sets were computed and grouped by texture and
velocity in two separate groups.

3) Each set of mean spectral features from one group
corresponding to the same scan velocity was compared
to those from the other. A cumulative error between
the features of the two groups was computed by
summing the absolute difference between the values

corresponding to each of the features. A 6x6 matrix
of error values (similar to a confusion matrix) was
computed for each scanning speed. Every entry in
the matrix corresponded to the distance between two
textures within the feature set.

4) Classification accuracy based on similarity of mean
spectral features was computed by summing the num-
ber of times a diagonal entry in a given matrix of error
was the lowest value in its row. Perfect classification
is observed when each of the diagonal entries is the
smallest value in its row.

5) This process was completed multiple times for all scan-
ning speeds, increasing N from 1 to 5/30 in order to
evaluate the improvement in classification as function
of the number of spectra used to compute the mean
feature set. Because 8 subjects were involved in ex-
perimentation using the vibrometer, their classification
results were averaged.

A separate feature set consisting of filter statistics was built
as illustrated in Fig. 3. The basic idea here is to capture
the non-stationarity of the underlying frequency content,
as discussed in the introduction. To accomplish this, band-
pass filters were first used to extract the signal in a set of
frequency bands. An envelope was found for each filtered
signal, after which we computed the mean value of the
envelope (representing average strength of that band), its
variance (representing variability of that band), it’s skewness
(representing envelope symmetry about the mean) and its
kurtosis (representing the peakiness of the envelope). Note
that envelopes contain rich information which can be further
analyzed with auto/cross-correlations and envelope spectra,
but here we sought only to understand whether it would be
valuable to capture any degree of non-stationarity at all. We
first apply a set of second order zero-lag filters to extract
signal components of given band-pass frequencies. We then
apply a Hilbert transform to compute the magnitude of band
signal and low-pass filter it at the lower bound frequency
of the underlying bandpass. The resulting magnitude of
the signal constitutes its envelope from which statistical
parameters are extracted.

One question is how to select the band-pass filters. Ideally,
these filters would mimic the perceptual process, each one
covering a band of indiscriminable frequencies. Although
frequency JNDs are yet to be determined for a sufficiently
wide range, research conducted on electrostatic devices has
shown that values drop from 25% to 10% in the 80-400Hz
range, with the steepest negative slope centered at 250Hz,
before and after which a somewhat constant JND threshold
value is observed. [24]. We therefore created a set of 16
bands which assume a 23% JND in 51-250Hz and and 10%
in the 250-600Hz ranges. Using a similar F-test technique
as before to separately extract 5 most salient features from
envelope mean, variance, skewness and kurtosis, a set of
classifiers was built based on these statistics alone. For
computing 2nd-4th order statistical parameters the envelopes
were scaled to range from -1 to 1 in order to remove any
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Fig. 3. Feature extraction as presented in this paper for a sample signal. Box 1 illustrates the computation of spectral features. In this illustration, only
three frequencies have finite amplitude treated as a feature, but in practice we collected 550/600 amplitudes to generate the spectral feature set. Box 2
illustrates the computation of first and second order filter statistics. Although only three bands are shown, in practice we used 16.

correlation to the mean.
As described above, the tribometry data were limited to

the bandwidth of the vibrometry to ensure a fair comparison.
However, the tribometer with which data were captured is a
high bandwidth device, prompting additional classifiers to
be built to reflect information contained in a wider spectral
range. Specifically, we wanted to see how much salient
information is contained in the low frequency domain (1-
50Hz) and at DC, which is inaccessible by vibrometry.
An additional spectral classifier was built using tribometry
data over the full 1-600Hz range, and a separate F-test
analysis was performed on DC friction (although this was
not incorporated into a classifier because it would have been
difficult to compare to vibrometry).

III. RESULTS

Classification accuracy as a function of the number of
samples averaged is illustrated in Fig. 4 for both tribometry
and vibrometry. At the lower speed of 80mm/s, vibrometry
significantly outperformed tribometry when spectral features
from the same frequency range were used; at 120mm/s the
results were much more comparable. There are a number
of possible explanations, one of which is the consistency of
the vibrometry data due to the controlled conditions under
which it was acquired. As explained in [1], the finger was
adhered to a post, establishing a uniform normal force, and
the textures were scanned across the finger at a steady rate.
These measures would maintain the stationarity of the data
to the extent possible.

The standard deviations shown in Fig. 4 illustrate the
consistency of collected data. Thus, while classification
based on 80mm/s tribometry data is close to 90% when
spectral features from 30 samples are used, the relatively high
standard deviation makes it apparent that some combinations
of 30 samples are very different from others. Vibrometry data
were typically more consistent.

When lower frequencies were included in the feature
set a considerable improvement in classification results was
observed indicating that there is texture discriminant infor-

Fig. 4. Classification results based on 6 features extracted from texture
spectra for both sets of data. Dashed black line represents chance classifi-
cation. Bottom figure represents standard deviation of classification results.

mation in the 1-50 Hz frequency range. Our tribometer is
capable of capturing a number of highly salient features,
producing a classification accuracy of up to 84% (80% for
vibrometry) when features extracted from five 120 mm/s
swipes are used. Near-perfect classification results are ob-
served for a set of 30 swipes collected at 120 mm/s as well
as for feature sets containing low frequency components. To
confirm the salience of these features, we tested them under
the null hypothesis that they arise from a single distribution
(instead of separate textures) and report the results in Fig.
5. Most of the features used for classification resulted in F-
values corresponding to .005<P<.05. Moreover, the relative
magnitudes of the F-values serves as a good approximation
of relative classification results. Additionally, it is worth
noting that DC friction is the most discriminant quality of

632



Fig. 5. F-test values for each of the 5 spectral features (f1-f5), the fitting
parameter α extracted from both tribometry (T) and vibromtetry (V) data,
and the kinetic friction coefficient µk . Red lines represent F-values at which
p = .05 and p = .005 from bottom to top respectively. Note that µk was not
used in any of the classifiers and is shown for reference.

textures across all features.
When filter statistics were used, the vibrometry data

continued to outperform tribometry to a varying degree.
Overall classification results in Fig. 6 suggests that variability
in the both tribometry and vibrometry spectra is not just
random, but that it contains texture-specific information. This
is consistent with the hypothesis that variations in the spec-
tra associated with touch are in fact perceptually relevant.
Indeed, the importance of such variations has been firmly
established in audition [15], so it is not altogether surprising
to discover this in the tactile context. In terms of comparing
the two measurement methods, it is evident that tribometry
is able to capture some level of variation in spectra, but that
it requires many more samples than vibrometry to achieve
the same results for feature sets based on variance, skew and
kurtosis. Vibrometry data also shows slight improvement in
classification results with larger scanning speed, something
that was observed in [1], however, the same trend is absent
in tribometry data with results fluctuating drastically as a
function of speed.

While the superior classification of vibrometry data may
be ascribed in part to greater control over the speed and
normal force of the scanning finger, the difference in clas-
sification results for higher order statistics points to factors
in the underlying nature of data rather than protocol alone.
The most intuitive explanation is that tribometry lateral
force data does not capture local skin-texture interactions
but instead sums the bulk contribution of contact points
to the overall friction detected by the force sensor. In that
fashion, much variation in envelopes may be blurred, hence
still providing a good estimate of the envelope means but
not their temporal variation. Because vibrometry is a highly
localized measurement collecting the skin response due to

actuation at the contact boundary it is not surprising that the
modulation envelopes are captured to a better degree.

IV. DISCUSSION

When a texture is explored by a human finger, local
shear forces are elicited by the contact points between the
skin and texture surfaces. These shear forces give rise to
vibrations in the tissue which are known to be correlated
to perception [1]. In this work, we have asked whether a
direct measurement of the shear forces via tribometry might
plausibly capture texture-specific information, and if so, how
that information might be extracted. We tested the ability
of two techniques – spectral features and band-pass filter
statistics – to classify textures based on both vibrometry
and tribometry. In general, the vibrometry data proved more
highly discriminating, especially when employing higher-
order band-pass filter statistics. Successful classifiers were
also built upon tribometry data, however it is very clear
that non-stationarity is not captured to the same degree of
accuracy.

While these results do not establish the perceptual rele-
vance of either tribometric measurements or band-pass filter
statistics, they do encourage continued research, especially
when considered in light of work in the auditory domain
[15]. The work of McDermott and Simoncelli has shown
unequivocally that statistics of modulation envelopes in-
cluding the marginal moments considered here as well as
auto- and cross-correlations, are perceptually significant. It
is intriguing to note that, when computing the envelopes of
band-passed texture data, many displayed cyclical behavior
and could therefore be further analyzed in terms of corre-
lations. Another implication of work presented here is that
vibrometry and tribometry may each provide only part of
the information necessary to parameterize natural texture for
playback on friction modulation devices. Vibrometry fails to
capture DC and low frequencies, while tribometry may blur
the underlying vibration data. Perhaps a combined approach
is called for.

V. FUTURE WORK

Our future work in this area includes one, gathering
tribometry data for a larger set of textures; two, incorporating
DC levels of lateral force (i.e., average friction), something
that tribometry is uniquely positioned to measure, into the
classification technique; three, incorporating additional filter
statistics, especially auto and cross-correlations; four, com-
paring the clustering of band-pass filter statistics with percep-
tual clustering obtained through psychophysical experiments;
and five, using filter statistics to synthesize artificial textures
for display via surface haptic devices. This final point speaks
to the long-term goal of our research: developing techniques
for the recording and realistic playback of tactile textures.
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