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Abstract— In this work, we aim to represent tactile textures
in such a way that a given texture may be “painted” onto a
selected spatial region of a tactile display. We recorded a series
of fingertip swipes across eleven textures and stored the data
as spatial friction maps – friction as a function of position.
We analyzed these maps with a space-frequency transform,
and observed stochasticity in our physical measurements. We
modeled the randomness in spectral magnitude across space
with three distributions: Rayleigh, Rice, and Weibull. We
analyzed the quality of parameterizations using goodness of
model fit as well as consistency across multiple swipes of the
same texture. We found that a two-parameter Weibull model
best represented the measured data, and propose to use this
model in the Tactile Paintbrush for applying virtual textures
to spatial regions.

I. INTRODUCTION

As a fingertip scans across a textured surface, mechanore-
ceptors in the skin and subcutaneous tissue encode the the
mechanical interaction for the brain to understand what is be-
ing felt. Although the mechanical interactions between a sur-
face and fingertip create vibrations that are high-dimensional
in nature, the human brain is nevertheless able to distill the
tactile information to categorize and identify textures. In or-
der to create virtual haptic stimuli that predictably elicit these
same mental categorizations, both actuation technology and
a model that describes the mechanics of texture perception
are needed.

With regard to actuation technology, our research has
focused on the development of variable friction technology
for several years. Variable friction technology is currently
being developed in two forms: ultrasonic vibration [1], [2]
and electrostatic friction [3], [4]. Both technologies can
produce wide-bandwidth vibrations in a scanning fingertip
[5], and have been used to produce virtual textures [6], [7].
Even though these widely capable texture displays have been
developed, the presentation of complex, realistic textures
remains primitive. In our recent work, we have begun to
lay framework for modeling spatial haptic textures – those
which modify surface friction as a function of touch position
– in an effort to create tools for building rich tactile scenes
for digital display. To build upon this work, we seek a deeper
understanding of textured surfaces, and focus on statistical
analysis of measured friction data from real-world surfaces
to inform methods for generating virtual texture.
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II. RELATED WORK

A. Vision & Audio
Perhaps the most in-depth study of texture modeling is in

the field of computer graphics. Since the advent of digital
display technology, rendering realistic imagery has been a
topic of great interest. Although many graphics texturing
methods focus on mapping two-dimensional images to three-
dimensional objects (texture mapping) or imposing altered
surface normals (bump mapping), these techniques require
explicit data storage for rendering. Because textures of
this nature are explicitly defined, they are more likely to
exhibit noticeable faults at boundaries of textured regions,
for example in cases in which a textured region is larger
than a source texture and tiling is apparent.

To address this issue, a variety of methods for generating
synthetic textures have been developed, falling under the
category of procedural texturing [8]. Procedural texturing
models computationally generate texture from a relatively
small number of parameters, and thus data storage is more
compact and textures can be generated without disconti-
nuities over large areas. These types of models typically
render textures by modeling the randomness of texture found
in nature. Research in statistical characterization of visual
texture was initiated by the work of Julesz, who originally
proposed that if two graphical scenes had the same second-
order statistics of light intensity, they were indistinguishable
[9]. More recent texture synthesis work has focused on the
statistics of images processed by linear filters [10].

In the field of computational audio, texture is not such
a widely adopted term, but the problem remains the same:
digitally synthesizing realistic sounds is a challenge. In this
area, similar methods of statistical modeling have emerged,
including spectral filtering of noise signals [11] and con-
trolling the joint statistics of the outputs of cochlea-inspired
linear filters [12].

B. Haptic Textures
Texturing in haptics research falls short of that in vision

and audition because haptic actuators have yet to be devel-
oped to the quality of visual displays and speakers. Minsky’s
Sandpaper system for generating haptic texture was one of
the first examples of algorithmic haptic texturing, and is very
similar to graphics bump mapping in that surface normals
are used to compute haptic forces to be rendered with
robotic linkages [13]. Because robotic linkages are difficult
to control at the wide frequency bandwidths necessary for
texture reproduction, more recent works in haptic textures
have focused on vibrotactile actuation [14], [15].
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Fig. 1: Depiction of the space-frequency framework for tactile texture rendering and its analogue in the digital image space.

As in graphics texturing, procedural methods for synthetic
texture generation have emerged. Early work in this area
noted that surface height profiles often were Gaussian in
nature, and synthesized haptic texture from Gaussian white
noise parameterized by a mean and variance only [16].
Gaussian mixture modeling has also been used to generate
haptic textures [17]. Studies of tactile perception have since
shed light on the importance of spectral modeling for haptic
textures [18]. Texture synthesis has shifted towards spectral
modeling of measurements of real-world textured surfaces
for informing the design of filters for generating texture from
noise sources [19], [20].

III. METHODS

In this paper, we present a new procedural texturing
method for creating haptic textures that are designed spa-
tially. Because the textures exist spatially, our texture models
do not take into account scanning velocity. This method was
developed for display of tactile texture on variable friction
displays, and relies on the core principle of a space-frequency
transform for representation. We call it the Tactile Paintbrush
because the texture model is one that can be applied to a
specific location, and from a designer’s perspective it allows
for spectrally designed textures to be “painted” onto a virtual
tactile canvas.

A. Space-Frequency Framework

When a fingertip scans across a surface, small surface fea-
tures induce high-frequency vibrations that are mediated by
rapidly adapting mechanoreceptors. At the same time, larger
features cause slowly-varying changes in these vibrations that
are perceived in time and located by the proprioceptive and

visual systems. A space-frequency analysis is used to repre-
sent data in two dimensions simultaneously: space and spatial
frequency. The high-frequency vibrations are represented by
spatial frequency spectra, and the slowly varying changes
caused by larger surface features are represented explicitly in
space. In effect, the spatial haptic texture is stored as a series
of Fourier magnitude spectra that vary across the virtual
surface. In our work, each Fourier analysis is conducted
within a window of 1mm, and the texture is sampled in
space with a resolution of 0.25mm, so that each analysis
window overlaps with three of its neighbors. Synthesis of a
purely spatial map for rendering is computed via an iterative
overlap-add method [21].

An illustration of our framework for describing digital
tactile scenes is shown in Figure 1. Each of the sampled
points in space, characterized by its local Fourier spectrum,
is a fundamental unit of texture, what we call a texel. In
previous work, we have shown that a texel of about 0.25mm
is the smallest unit that is uniquely detected on a tactile
surface [21]. A texel is very similar to a pixel in an image;
a tactile scene is made up of an array of texels, each of
which has its own fine texture, and an image is made up
of a large array of pixels, each of which has its own color.
Although true color is a complex combination of wavelengths
of light entering the retina, an RGB color model takes
advantage of human perception and replicates color space
with a simple three parameter representation. Each texel is a
complex combination of wavelengths of spatial features, but
may in fact only need to be described by a smaller subset of
parameters. However, we do not investigate this possibility
in this paper.

We focus on studying the distributions of texel information
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TABLE I: Descriptions of the eleven scanned textures

1 plastic 2mm scales 7 leather

2 plastic 2mm square grating 8 cardboard

3 patterned paper 9 wood veneer

4 hard fine-textured plastic 10 carpet

5 rubbery vinyl 11 burlap

6 machined nylon

across space for uniform textures, those which feel perceptu-
ally the same across space. It is clear that the explicit friction
profile of a uniform texture will change across space, i.e.
not all texels will be exactly the same. In fact, since the
texel stores a local spatial signal, if all texels were identical,
the texture would exhibit 0.25mm periodicity. Therefore, a
stochastic representation of texel data is crucial for creating
realistic textures. A surface that is uniform should consist of
texels that do not change their underlying statistics.

B. Stochasticity in Uniform Textures

In order to assess the stochasticity of real textures, we
measured the friction coefficient due to sliding across eleven
physical uniform fine textures, described in Table I. A
diagram of our experimental setup is shown in figure 2. We
mounted these textures to a lightweight aluminum plate in-
strumented with a high-bandwidth piezo force sensor (Kistler
Type 9203) for measuring lateral force, and two strain gauge
load cells for measuring normal force. A 3D-printed plastic
piece clamped to the top of a sliding fingertip moved a
rotary encoder as the finger scanned across the surface of
the texture. The resolution of the encoder was 3.86 µm,
and a data acquisition system collected position and lateral
force data at a rate of 125 kHz. The data was filtered with
non-causal, zero-phase, second-order Butterworth filters. The
lateral force cutoff frequency was 2 kHz, and because the
normal force load cells are not high-bandwidth, the normal
force cutoff was 100 Hz. The normal force remained around
1 N for the duration of the experiment, and the friction
coefficient was calculated as the lateral force divided by the
normal force.

We recorded ten cycles of back-and-forth scanning along
each texture. The velocity was kept roughly constant using
a metronome for timing the cycles. After recording both
friction coefficient and finger position in time, the friction
signal was re-sampled and interpolated to produce a friction
vs position signal, with a resolution of 5 microns. This spatial
friction map was truncated to include only the constant-
velocity sections of the swipe. We analyzed this signal
with a space-frequency transform to represent the data as
a series of texels spaced 0.25 mm apart. Each texel has
101 parameters, one for each wavelength and corresponding
wavenumber, representing the magnitude of the spectrum
within the texel window, which is 1mm wide. The zeroth
wavenumber coefficient corresponds to the average friction
within the texel, the first wavenumber has a wavelength
of 1 mm, and the 101st wavenumber has a wavelength of
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Fig. 2: Diagram of the tribometer used to measure friction
coefficients on a fingertip scanning across textures. The
encoder tracks the position of the finger, the piezo force
sensor records the lateral force at each position, and the strain
gauge load cells record the normal force of contact.

10 microns. We analyzed the rightward-moving swipes on
eleven textures, for a total of 110 swipes.

C. Fitting Statistical Models

To assess the spatial stocasticity of the textures, we gen-
erated histograms of the texel values for each wavelength,
k, over all texels for all scans of the fingertip. Each swipe
yields 101 histograms. With 110 swipes, we have a total
of over eleven thousand histograms. Each histogram is a
distribution of the spectral magnitudes resulting from an
FFT analysis inside every texel in a swipe. To model the
randomness in the spectral magnitudes, we tested three non-
negative distributions on each histogram: Rayleigh, Rice, and
Weibull.

1) Rayleigh Distribution: The Rayleigh distribution is
derived from the magnitude of a vector generated using two
zero-mean Gaussian distributions with equal variance. If a
spatial friction map was modeled as pure Gaussian noise,
the spectral magnitudes would be distributed according to a
Rayleigh distribution. The probability density function is a
one-parameter model described by equation 1 in which the
parameter σ models the variance of Gaussian distributions
in the real-imaginary plane. This model assumes that the
Fourier coefficients of a given wavelength are distributed
about the origin of the real-imaginary plane.

f (x;σ) =
x

σ2 e−x2/2σ2
, x≥ 0 (1)

When modeled with a Rayleigh distribution, each texture
swipe is reduced to a 101-dimensional set, one number for
each wavenumber, that represents the scale of the Rayleigh
distribution across space.

2) Rice Distribution: The Rice distribution is derived
from the magnitude of a vector generated using two Gaussian
distributions that are perhaps not centered at zero. This model
extends the Rayleigh model, and accounts for surfaces that
may have deterministic spectral components in addition to
Gaussian noise. The probability density function is a two-
parameter model given in equation 2 in which ν is the
distance of the mean from the origin of the real-imaginary
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Fig. 3: Selected histograms of texel data with best fit model
shapes plotted for reference

plane, and σ is the variance of the underlying Gaussian
distributions. I0 is the modified Bessel function of the first
kind with order zero.

f (x;ν ,σ) =
x

σ2 exp
(
−(x2 +ν2)

2σ2

)
I0

( xν

σ2

)
, x≥ 0 (2)

When modeled with a Rice distribution, each texture swipe
is reduced to a 202-dimensional set, two numbers for each
wavenumber, that represents the scale and location of the
Rice distribution across space.

3) Weibull Distribution: The Weibull is another gener-
alization of the Rayleigh distribution, with an additional
parameter that allows for shape. It offers similar flexibility
to the Rice distribution, but is much simpler mathematically.
The probability distribution function is given in equation 3,
where λ is the scale factor, a rough estimate of the size of
the parameters. In addition to the scale parameter, a shape
parameter, k, interpolates the shape between an exponential
at k = 1, Rayleigh at k = 2, and Dirac delta function at k =∞.

For k = 2, the distribution is exactly the Rayleigh distribution
where λ =

√
2σ .

f (x;λ ,k) =
k
λ

( x
λ

)k−1
e−(x/λ )k

, x≥ 0 (3)

When modeled with a Weibull distribution, each texture
swipe is reduced to a 202-dimensional set, two numbers for
each wavenumber, that represents the scale and location of
the Weibull distribution across space.

We calculated the maximum likelihood estimates for all
three distributions for each of the 11,110 texel distributions
in our dataset. Figure 3 shows a few example histograms and
their distributions. For the most part, all three distributions
approximate the data with reasonable accuracy, as in the ex-
ample given in Figure 3a. However, some of the data exhibits
non-zero mean, and in these cases, a Rayleigh model does
not fit well, as shown in Figure 3b. The top two wavelengths
are both heavily influenced by the overall average texture in
the texel, and therefore have significant non-zero components
in their Fourier coefficients. An example of this data is shown
in Figure 3c, and clearly a Rayleigh model is inappropriate.

D. Model Validation

To test the validity of these parameterizations, we calcu-
lated the goodness of fit for each histogram and distribution.
We used a Kolmogorov-Smirnov test (K-S test) on each
fit to determine the maximum distance between the fitted
cumulative distribution function (CDF) and the empirical
CDF. The result of this test is called the K-S statistic; a
better fit gives a lower number, and a perfect fit results in
a K-S statistic that approaches 0. The results are shown
in Figure 4. Looking at the image on the left, it is clear
that the first two coefficients in each texel are poorly fit
with a Rayleigh distribution. Overall, comparing the three
distributions, we observe that the Weibull distribution fits
the data most accurately.

We also wanted to test the ability of these distributions to
capture the important textural parameters. We assume that if
a model is capturing a texture perfectly, subsequent swipes
of the texture yield identical measures. For each surface, the
ten swipes we recorded should result in representations that
are clustered together in the parameter space. Because the
similarities may depend on the type of distance metric used,
we tried four different distance metrics for evaluating the
similarity of the textures: Euclidean, standardized Euclidean,
Canberra, and Bray-Curtis. The latter two metrics are both
normalized metrics that have been shown to perform well in
image texture similarity ratings [22].

With each distance metric, we measured the quality of
texture swipe clustering with a silhouette coefficient. The
coefficient is calculated for each point i by equation 4, in
which a(i) is the average distance to each other point in
the same cluster (swipes from the same texture), and b(i) is
the average distance to each point in the nearest neighboring
cluster (swipes from a different texture) [23].

s(i) =
b(i)−a(i)

max{a(i),b(i)}
(4)
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to a high K-S statistic, meaning large error in the fit. Light yellow means a low K-S statistic and good fit. The histograms
of K-S statistics for each distribution model are shown below their respective image representation.

The silhouette coefficient ranges from -1 to 1, higher values
indicate better clustering. A point that is near the edge of
two clusters gives a score around 0, and points that have a
negative are closer to neighboring clusters than their own.
To assess the clustering of our texture swipes, we use the
silhouette score: an average of the coefficients for all data
points in a set. We computed this score for parameter spaces
computed by all three statistical fits, using the four distance
metrics stated above. The results of these clusterings are
shown in Table II.

To aid in visualizing clustering, we computed MDS anal-
yses for the parameter spaces using the same four distance
metrics to create a dissimilarity matrix. Four of the twelve
MDS results are shown in Figure 5. We also place the
average of all swipes for each texture in the MDS space. The
Weibull parameterization is the only model that produces a
positive silhouette score for every distance metric we tested.

IV. DISCUSSION

It is evident that multiple swipes of a single texture will
yield different patterns of friction, even though perceptually
they are indistinguishable. The goal of texture modeling is to
capture the important properties of the texture in a compact

TABLE II: Silhouette coefficients for three distributions and
four distance metrics. Values in bold correspond to MDS
plots in Figure 5.

Rayleigh Rice Weibull

Euclidean -0.074 -0.157 0.098

standardized Euclidean 0.107 0.009 0.033

Canberra 0.069 0.017 0.055

Bray-Curtis -0.067 -0.065 0.154

parameter space. The distances between textures in this
parameter space should be measured by a distance metric that
correlates with human perceptual dissimilarity of textures. In
future modeling work, the perceptual dissimilarity should be
tested to additionally validate mathematical distance metrics.

The Tactile Paintbrush provides a method for creating
stochastic friction patterns by drawing samples from a dis-
tribution for each fine-texture wavelength. In this work, each
texture is represented by a 202-parameter model, or ”brush.”
A Weibull model is particularly well-suited for practical use
in this case because it is computationally simple to generate
Weibull-distributed random variables and because the two-
parameter model is intuitive. By selecting the shape of the
distribution curve to be k = 2, a designer is deciding that any
power in that spectrum comes from a zero-mean distribution.
However, if a designer decides that a specific wavelength
should have more definitive non-zero content, a higher value
of k→ ∞ can be chosen to reduce the randomness of the
texture at a given wavelength. By modifying the scale pa-
rameter, λ , in the distribution model, the rough spectral shape
of the texture can be designed. Once a texture brush has been
designed, it is painted onto a virtual canvas by populating the
space-frequency transformed texture with random samples
drawn from the designed distributions.

V. CONCLUSION

We measured the friction patterns of eleven textures,
and analyzed them using a space-frequency transform. We
observed the distributions of the local Fourier coefficients in
space, and modeled them with three different distributions.
We found that a Weibull distribution was the most suitable
for both fitting measured data and categorizing textures. We
presented the Tactile Paintbrush, a method for generating
stochastic haptic textures from a Weibull distribution.
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