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Abstract— In the Cobotic Hand Controller, we have introduced
an admittance display that can render very high impedances (up
to its own structural stiffness). This is due to its use of infinitely
variable transmissions. While admittance displays typically excel
at rendering high impedances, the incorporation of infinitely
variable transmissions in the Cobotic Hand Controller allows
the stable display of a wide dynamic range, including low
impedances. The existence of a display that excels at rendering
high impedance constraints but has high-fidelity control of low
impedances tangent to those constraints has led us to describe an
admittance control architecture not often examined in the haptics
community. In this paper we present an algorithm that enables
rendering of rigid motion constraints while simultaneously pre-
serving the physical integrity of the intended inertial dynamics
tangent to those constraints, unlike conventional impedance
control algorithms that focus on rendering reaction forces along
contact normals with constraints. We examine this algorithm
here, which is general to all admittance displays, and report on
its implementation with the Cobotic Hand Controller. We offer
examples of rigid bodies and linkages subject to holonomic and/or
nonholonomic constraints.

I. INTRODUCTION

WE have recently introduced the Cobotic Hand Con-

troller and described its capabilities as a high-

fidelity six-degree-of-freedom admittance-controlled haptic in-

terface [1].1 Admittance-type haptic displays sense the forces

and torques applied by a user and control motion in response.

Admittance displays are reviewed in [4], [5], [6] and the

Haptic Master [7] and Steady Hand Robot [8] are notable

implementations of the admittance paradigm. Admittance dis-

plays usually contain a fixed-ratio transmission of significant

reduction and are therefore non-backdrivable and consequently

have limited dynamic range. Cobots however, use infinitely

variable transmissions to relate motion of their joints and

can therefore render a broad range of impedances by varying

backdrivability. While cobots excel at rendering smooth rigid

virtual surfaces [9], or bilateral constraints on motion, they

are also able to render low impedances, actively simulating

a virtual environment with little friction or mass to impede

the operator. In this paper we present an algorithm enabling

admittance displays with broad dynamic range to simultane-

ously render rigid bilateral constraints and accurately portray
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grant number DE-FG07-01ER63288.

The authors are with the Department of Mechanical Engineering at North-
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1The word cobot is a contraction of collaborative and robot, meaning
shared control between a human operator and a computer, and denotes a
robot architecture introduced in [2], [3].

inertial dynamics of virtual rigid bodies and linkages tangential

to those constraints.

Although well-engineered admittance devices may have a

higher dynamic range than their dual, impedance displays,

they are rare due to cost and complexity. The required multi-

degree-of-freedom force sensors, as well the extra engineering,

machining and precision components involved in producing a

stiff, tight tolerance mechanism, are costly. Successful com-

mercial haptic displays are often impedance devices, which

unlike admittance displays have low inertia and are highly

backdrivable. Impedance displays include most notably the

Phantom [10] and Whole Arm Manipulator (WAM) [11] along

with those developed by [12], [13], [14], [15], [16], [17].

While today’s impedance and admittance displays may both

be used to simulate a wide range of mechanical behaviors, they

excel in different areas due to the nature of their control and

mechanical structures. Impedance displays are well-adapted to

displaying low inertia, low damping environments, but have

difficulty rendering energetically passive stiff constraints [18],

[19]. Conversely, admittance displays such as [7], [8] are well-

adapted to displaying rigid constraints but struggle to simulate

unencumbered motion (cobots being an exception as they

can vary their backdrivability). Unlike impedance displays,

admittance displays must actively mask inertia and friction

since the operator feels a large reflected inertia of the highly

geared actuator and friction due to this gearing. The presence

of these effects places limits on an admittance display’s ability

to render low impedances.

The requirement that admittance displays must simulate in-

ertia (mask the display inertia) increases controller complexity,

but also allows for a higher level of simulation fidelity. Rarely,

in practice, are inertial dynamics of a haptic display masked

or made to behave like those of the virtual tool. Users of

an impedance-controlled haptic display typically manipulate

an end-effector whose inertia may be quite different from

that of the virtual inertia. The inertia of the end-effector

changes with configuration of the display while that of the

virtual inertia does not. It has been the practice of the hap-

tics community (when using impedance displays) to control

forces along the contact normals between a virtual tool and

constraint, and allow (not control based on a dynamic model)

motion orthogonal to these. Common methods include the

god-object tracker [20], [21] and the virtual-proxy [22], [23]

which compute forces of constraint due to interpenetration

depths. Haptic rendering of these forces and of collisions is

often executed via impulsive methods [24], [25], [26]. When

the forces due to the inverse dynamics in the unconstrained
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directions are neglected, the inertia felt by the user is that of

the haptic display itself, but since both this and the inertia

of the virtual probe are small, the difference is ignored by

the designer. However, the Coriolis and inertial forces of the

haptic display become increasingly apparent as velocities and

accelerations increase. Conversely, algorithms designed for

or amenable to the admittance paradigm ([27], [28], [29],

[30], [31]) compute motions in the unconstrained directions,

focusing solely on the forward-dynamics response (motion) to

user applied forces, ignoring the constraint forces altogether

as computed-torque control is often unnecessary for highly

non-backdrivable admittance displays.

In this paper, we take on the problem of simulating

inertial systems, including those subject to holonomic and

nonholonomic constraints, similar to the methods of [31],

[32], [33]. We provide a complete algorithm required for the

dynamically correct rendering of a desired inertia matrix and

constraint description via an admittance display, along with

worked examples and their implementation on the Cobotic

Hand Controller. In Section II, we define the manipulator

task space and virtual environment frames of reference. The

constrained Euler-Lagrange equations describing the inertial,

constraint, and operator applied forces are reviewed. The

Pfaffian description of holonomic and non-holonomic con-

straints is reviewed. A parametric description of constraints

is provided to prevent drift off of holonomic constraints, and

a feedback motion controller proposed. In Section III, three

example constrained dynamic scenarios are worked through

the framework presented in Section II, demonstrating the use

of the framework to display holonomic and nonholonomic

constraints as well as rigid-body and linkage inertias. Finally,

in Section IV we provide data from the implementation of the

examples on the Cobotic Hand Controller admittance display.

II. CONSTRAINED DYNAMIC SIMULATION

A. Haptic system framework

Figure 1 illustrates terminology we use to describe the

operation of a haptic system. We term the physical device

manipulated by the user the manipulandum, with task space

coordinates x. For the six-degree-of-freedom Cobotic Hand

Controller, coordinates x are the R
6 coordinate representation

of the SE(3) workspace of the manipulandum. The virtual

tool in the virtual environment has n generalized coordinates

q. The virtual environment coordinates, q, are related to

the coordinates of the reference manipulandum, xr, by the

kinematics

xr = ϕ(q). (1)

Due to control errors, the actual (i.e., measured) manipu-

landum coordinates, x, may not precisely coincide with the

reference (i.e., desired) manipulandum coordinates, xr.

The dim(q) may be less than the dim(x ) (e.g., dim(q)= 2
if we render a 2R mechanism with an independent set of

coordinates, even though a haptic display with dim(x )= 6
may be used). The use of an independent set of coordinates,

q, allows the inertia matrix of the linkage to be more easily

described. Thus we may embed the holonomic constraints,

that define a linkage from a multi-body system, into the

( )rx qϕ=

( ),

T

q xM q f f
q

ϕ ∂
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Fig. 1. A. Physical interface or task space coordinate frame. B. Virtual
environment coordinate frame. The task space version of the simulated inertia
M(q), is M ′(q) = (∂ϕ/∂q)−TM(q)(∂ϕ/∂q)−1 , the operational space
inertia [34]. The unmasked inertia matrix of the physical manipulandum is
Mm(x)

kinematic mapping, xr = ϕ(q), between independent virtual

and dependent manipulandum task space coordinates.

The reference manipulandum moves according to a physics

simulation propagated in the virtual environment coordinates,

and always exactly satisfies the virtual holonomic and non-

holonomic constraints. We say that the holonomic constraints

are “exactly satisfied” since the bilateral constraints to be

rendered here are infinitely rigid algebraic constraints in the

virtual environment, and are not described via springs or

dampers.

The control scheme described in this paper can be summa-

rized as follows: The user applies a generalized force, fx,

to the manipulandum, which is sensed by a six-degree-of-

freedom load cell. This force is transformed by the kinematics

ϕ to a force acting on the virtual tool, fq.

fq =

(

∂ϕ

∂q

)T

fx (2)

This mapping is single valued provided dim(q) ≤ dim(x )
and that the row rank of ∂ϕ

∂q
≥ dim(q). We do not address

the extension of this work to handle simulation of redundant

virtual mechanisms.

Assuming that x is approximately xr (one of the pur-

poses of the feedback portion of the controller is to keep

the manipulandum close to the reference manipulandum),

the generalized force fq is directly applied to the virtual

tool at q.2 The acceleration of the virtual tool, q̈, is then

calculated via the constrained Euler-Lagrange equations and

integrated forward. The acceleration is transformed by the

kinematics ϕ to an acceleration of the manipulandum, ẍ. This

acceleration is a feedforward term applied to the reference

manipulandum. In addition to this feedforward acceleration,

a feedback acceleration is applied to compensate for small

position and velocity errors between the manipulandum and

the reference manipulandum. The result is a realistic display of

the constrained dynamics of the virtual tool. A block diagram

2Thus the perception of inertia for an operator located at ϕ−1(x) will not
significantly deviate from the desired configuration dependent inertial force
computed at position q = ϕ−1(xr).
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Fig. 2. The admittance-controlled haptic display renders motions in response
to operator applied forces. Measured forces are the input to a dynamics
simulation of a virtual environment. The output of the dynamics simulation
yields a feedforward acceleration, and state for comparison with the measured
state of the haptic display via a feedback controller.

of the admittance-type haptic control scheme described here

is shown in Figure 2.

B. Euler-Lagrange formulation

The Euler-Lagrange dynamic equations

M(q)q̈ + C(q, q̇)q̇ = τ +A(q)Tλ, (3)

written in terms of n generalized coordinates q, and including

m holonomic and/or nonholonomic constraints,

A(q)q̇ = 0, (4)

describe the motion of the virtual tool. Note that the usual

inner product of R
3 cannot be used to relate applied force

and desired motion when the coordinates, q, and inertial de-

scription, M(q), represent topologies and inertial descriptions

other than R
3 and point masses [35]. The Euler-Lagrange

equations must be used to relate force and motion via the

desired inertial properties and constraints. The inertial forces

are M(q)q̈ and C(q, q̇)q̇. The constraint force magnitudes are

represented by the m × 1 vector λ. The forces not due to

constraints or inertial properties (i.e., those due to an operator,

virtual springs, dampers or gravity) are encompassed in τ .

C. Inertial properties

M(q) is an n×n symmetric positive definite inertia matrix,

preferably written in independent coordinates (prior to the

inclusion of the constraints A(q)) for the simulated mechanical

device (e.g., a rigid body or linkage). The inertia matrix,

Mij(q) =
∂2T (q, q̇)

∂q̇i∂q̇j
i, j = 1 . . . n, (5)

is obtained from the system kinetic energy, T (q, q̇). The

Coriolis forces of the virtual rigid body or linkage are

C(q, q̇)ij =

n
∑

k=1

Γk
ij(q)q̇k, (6)

written in terms of the Christoffel symbols

Γk
ij(q) =

1

2

(

∂Mij(q)

∂qk
+
∂Mik(q)

∂qj
−
∂Mkj(q)

∂qi

)

. (7)

i, j, k = 1 . . . n

D. Nonholonomic and holonomic constraints

The virtual holonomic constraints,

H ′(x) = 0, (8)

and virtual nonholonomic constraints,

A′(x)ẋ = 0, (9)

are natively defined in task space coordinates x. These

constraints are written much more intuitively for rigid-body

motion in task space coordinates, x, rather than in terms of

a reduced set of virtual environment coordinates, q (e.g., a

designer would use translational task space coordinates to

constrain the end-point of a virtual linkage to move in a

circle, and not the native joint angles of the linkage). The

holonomic constraints can be differentiated and included in

the A′(x) matrix and we do so for the remainder of this

work. The holonomic constraints reduce both the number of

available motion freedoms and the dimension of the config-

uration space. The nonholonomic constraints also reduce the

number of motion freedoms but do not reduce the dimension

of the configuration space. The combined set of constraints

are known as the Pfaffian constraints.

The dynamic equations will be written and solved in the

coordinates q, so the Pfaffian constraints are projected to this

subspace via

A(q) = A′(ϕ(q))

(

∂ϕ

∂q

)

. (10)

Any rows of A(q) that have all zeros after the projection can

be removed.

Given n generalized coordinates, q, and m constraints, the

tangent space at a given configuration has n − m motion

freedoms. A(q) is an m × n matrix of Pfaffian constraints,

either holonomic and/or nonholonomic, and λ is the vector of

Lagrange multipliers representing the m constraint force mag-

nitudes. The rows of A(q) are the constraint force directions.

If the rows of A(q), ai(q), i = 1...m, can be represented by

∂hi/∂q = ai(q), for some real-valued functions hi(q), the

constraint is said to be holonomic or integrable and can be

written as hi(q) = ci.

E. External forces

External forces τ = fq−τd−τs−g(q) are composed of user

interaction forces, fq , forces of virtual springs, τs, forces of

virtual dampers, τd, and gravity forces or potential fields g(q).
Generalized user interaction forces are measured via a force

torque sensor in an admittance-type haptic display. The springs

and dampers may be defined in task space and the resulting

forces mapped to the virtual environment via (∂ϕ/∂q)T , or

can be defined natively in virtual environment coordinates

(e.g., damping applied to the end-point of a simulated linkage

would likely be applied in task space, while damping at the

joints of a linkage would be defined in the virtual environment

coordinates of that linkage).
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F. Solving for accelerations

Several steps are required for propagating the physics simu-

lation of a virtual tool that is subject to constraints. The input

to the simulation is the current state of the virtual tool, q and

q̇, as well as forces, fq , applied by an operator. The output

is the resulting acceleration, q̈, based on the simulated inertia,

damping, springs, gravity and constraints. This acceleration is

then integrated in a manner consistent with the configuration

submanifold specified by holonomic constraints (Section II-

G), and becomes the new state of the physics simulation.

In order to solve for the accelerations q̈, we first evaluate the

Lagrange multipliers, λ, which are isolated by differentiating

A(q)q̇ = 0 and inserting the result into the dynamic equations

for q̈. This yields

λ = (AM−1AT )−1

(

−Ȧq̇ +AM−1 (C(q, q̇)q̇ − τ)
)

. (11)

The Lagrange multipliers, λ, represent the constraint force

magnitudes due to the applied operator forces and the virtual

environment dynamics. Subsequently we solve for the com-

plete acceleration of the virtual tool,

q̈ = M(q)−1
(

τ +A(q)Tλ− C(q, q̇)q̇
)

. (12)

Plugging Equation 11 into Equation 12 provides the complete

acceleration with the Lagrange multipliers removed,

q̈ = −ÃȦq̇ +M−1Pu(τ − Cq̇), (13)

where Ã = M−1AT (AM−1AT )−1 and Pu = In×n −
AT (AM−1AT )−1AM−1. The accelerations due to constraint

forces are −ÃȦq̇. The projection matrix Pu, as defined by

Choset et al. [36], projects generalized forces to those that do

work on the system (forces in the unconstrained directions).3

Thus the expressions −ÃȦq̇ and M−1Pu(τ − Cq̇) yield the

accelerations in the constrained and unconstrained directions,

respectively.

G. Parametric formulation for integration

The reference acceleration, q̈, can now be integrated to

yield q̇ and q. The integration method must keep the virtual

tool on the constraint submanifold. We use a parametric

approach in order to effectively integrate the equations of

motion and to keep the reference position on the constraint

submanifold. If b of the m constraints in A(q) correspond

to holonomic constraints, there exists an (n− b)-dimensional

submanifold Z of reachable configurations. The coordinates

zj , j = 1...(n − b) parameterize the configuration space of

the constrained system, a submanifold of the ambient space

X . A set of n functions x = ψ(z) define the parametric

description. As we define the Pfaffian constraints intuitively

in task space as A′(x), followed by a mapping to virtual

environment space as A(q), we also define the parametric

description for the holonomic constraint surface in terms of

task space coordinates x. These various spaces are illustrated

in Figure 3. Generalized accelerations, q̈, are related to device

3Khatib [34] and Liu and Li [31] are also excellent sources for more on
these projection operations.

1Z S∈

6(3) or X SE∈

, ,z q x

2 2or Q T∈

( )M q

Fig. 3. The embedding of Q and Z in X illustrated through an example.
A two-dimensional virtual environment frame Q is embedded in the SE(3)
or R

6 task space, X, of our haptic display. Frame Q is that of a Cartesian
(R2) or two-rotational (T 2) mechanism. The end-point is limited to travel on
a circular path, the one-dimensional (S1) submanifold Z , due to a holonomic
constraint defined in task space. The virtual mechanism has native inertia
M(q) and is located at coordinates z, q and x in the various spaces.

accelerations ẍr, via the kinematics

ẍr =
∂ϕ

∂q
q̈ + q̇T ∂

2ϕ

∂q2
q̇. (14)

These in turn are related to parametric accelerations, z̈, via

the kinematics

ẍr =
∂ψ

∂z
z̈ + żT ∂

2ψ

∂z2
ż. (15)

In order to integrate the parameters z from desired accelera-

tions q̈, Equations 15 and 14 can be combined to yield

z̈ =

(

∂ψ

∂z

)† ((

∂ϕ

∂q
q̈ + q̇T ∂

2ϕ

∂q2
q̇

)

− żT

(

∂2ψ

∂z2

)

ż

)

. (16)

Here (∂ψ/∂z)† =
(

(∂ψ/∂z)T (∂ψ/∂z)
)−1

(∂ψ/∂z)T is the

Moore-Penrose pseudo-inverse. The pseudo-inverse is merely

effecting a change of coordinates, or a kinematic projection

in this case. Numerical integration of z̈ will yield a reference

point on the configuration submanifold that is necessary in

the next section for the computation of feedback terms. The

method of integration should be chosen carefully to avoid nu-

merical problems over time, but our key concern in this paper

is the instantaneous constrained dynamics. This projection to

a parametric space and subsequent integration is essentially

the reference-cobot method of Gillespie et al. [3].

H. Feedforward and feedback components

As shown in Figure 1, the actual manipulandum position,

x, likely does not correspond exactly with the reference ma-

nipulandum position, xr. Thus a controller is needed to make

the actual manipulandum track the reference manipulandum,

which is exactly tracking the dynamics simulation in the

virtual environment.

The feedforward acceleration of the manipulandum, ẍff , is

equal to the complete acceleration of the reference manipu-

landum, ẍr. A proportional-integral-derivative (PID) feedback

controller for ẍfb will take the form

ẍfb = Kpe+Ki

∫

edt+Kdė. (17)

The tracking error, e = (xr − x), is the actual manipulandum

state relative to the reference manipulandum state of the
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physics simulation. The reference manipulandum state, xr =
ψ(z) and ẋr = (∂ψ/∂z)ż, can be utilized to generate feedback

accelerations both in the constrained directions and in the

free directions. Kp, Ki and Kd are feedback gain matrices.4

Summing the feedforward and feedback accelerations of the

manipulandum yields the total acceleration command for the

actual manipulandum,

ẍ = ẍff + ẍfb. (18)

Device-specific kinematics convert task space commands ẍ
into joint level commands (and these into steering commands

for cobots).

Algorithm 1 provides a summary of the virtual-environment

simulation method. It includes the application of the Euler-

Lagrange equations, the Pfaffian description of motion con-

straints, the parametric description of holonomic constraints

and the integration and feedback control of motion. Since

the haptic display is executing motion, it is imposing forces

on itself through any end-effector distal to the load cell. Not

shown, but required in Algorithm 1 and Figure 2 for proper

dynamic display, is the fact that the weight and inertial effects

of the mass of the end-effector should be counteracted, such

that the forces between the object and environment or operator

are properly conveyed.

Algorithm 1 Virtual environment algorithm

Require: Timestep T
Require: Initial parametric coordinates zo
Require: Kinematics from virtual environment to task xr = ϕ(q)
Require: Desired virtual inertial properties M(q)
Require: Pfaffian constraint description A(q) = A′(ϕ(q)) ∂ϕ(q)

∂q

Require: Parametric description xr = ψ(z)
Require: Damping and stiffness descriptions τd, τs

1: Initialize z → zo, q → ϕ−1(ψ(zo)), ż → 0 and q̇ → 0
2: repeat
3: Measure x and ẋ
4: Measure fx, Evaluate fq = ∂ϕ(q)

∂q

T
fx

5: Evaluate τs, τd and g(q)
6: Evaluate τ = fq − τd − τs − g(q)
7: Evaluate M(q), C(q, q̇), A(q), Ȧ(q, q̇), Ã(q) and Pu(q)
8: Evaluate q̈ = −ÃȦq̇ +M−1Pu(τ −Cq̇)

9: Evaluate ẍff = ẍr = ∂ϕ
∂q
q̈ + q̇T ∂

2ϕ

∂q2
q̇

10: Evaluate z̈ = (∂ψ/∂z)†
�
ẍr − żT (∂2ψ/∂z2)ż�

11: Integrate znew = z + żT + 1
2
z̈T 2 and żnew = ż + z̈T

12: Evaluate xr = ψ(znew), ẋr = ∂ψ

∂z
żnew

13: Evaluate e = xr − x and ė = ẋr − ẋ
14: Evaluate q = ϕ−1(xr), q̇ = (∂ϕ/∂q)†ẋr
15: Evaluate ẍfb = Kpe+Ki � edt+Kdė
16: Evaluate ẍ = ẍff + ẍfb
17: Output Send motion commands to display
18: Delay for haptic timestep T
19: until haptic simulation ends

4In Faulring [37] we performed the feedback in joint space on a joint by
joint basis rather than in task space coordinates. Reference motions in task
space were mapped to desired joint motions and these were compared with
actual joint motion. The PID gains consisted of a set of 3 scalars for each
joint. This made the tuning of gains easier for the specific application, but we
present the algorithm here in terms of task space coordinates for generality.

sx

sy

sz

bx

by

bz
1 2 3( , , )q q q

dr

Fig. 4. Definition of translational coordinates. Subscripts s and b indicate
the spatial and body frame axes. Since the virtual tool is a rigid body, frame
Q and task space frame X are equivalent for this example.

sx

sy

sz

4q

5q

6q

bx

by

bz

Fig. 5. Definition of rotational coordinates.

III. EXAMPLE CONSTRAINT SCENARIOS

A. Upright rolling disk

In order to demonstrate a physics simulation consisting of

both holonomic and nonholonomic constraints, we consider a

disk with inertia M(q) as a rigid body in SE(3), confined to

rolling upright on a plane without slipping. Figures 4 and 5

define the translational coordinates (q1, q2, q3) and rotational

coordinates (q4, q5, q6) we have chosen to represent the disk.

The notation s indicates the generalized coordinate inertial

(spatial) frame, and b the body frame of the disk. Although

dynamics are to be implemented for a rigid body in this

example, we have chosen an R
6 coordinate representation

and not the special Euclidean group SE(3). Our choice of

coordinates leads to integration problems near Euler angle

singularities. However, we have avoided much more complex

integration issues for the implicit SO(3) representation of

orientation [38], [39], [40]. Euler angle coordinate represen-

tation singularities are not an issue here since they can be

placed outside of the workspace of our device. We focus on

our algorithm, not the shortcomings of a particular choice of

coordinates. The rotation matrix R(q4, q5, q6), composed of a

rotation of q4 about zb, followed by a rotation of q6 about

the new xb and followed by a rotation of q5 about the new zb

allows transformations from the body to the inertial frame. The

mapping x = ϕ(q) will be identity for this example if we also

describe the task space of our display by three translational

coordinates (x1, x2, x3) and three Euler angles (x4, x5, x6) of

the same parameterization.

The kinetic energy of a rigid body in terms of coordinates

q is defined

T (q, q̇) =
m

2
(q̇2

1
+ q̇2

2
+ q̇2

3
) +

1

2
ω(q, q̇)TJω(q, q̇). (19)
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Here m is the desired mass of the virtual tool and J the

constant body fixed inertia. The body fixed angular veloci-

ties, ω(q, q̇), are extracted from the skew symmetric matrix

ω̂(q, q̇) = R(q)T Ṙ(q, q̇) (see Appendix I). Evaluating Equa-

tion 5 for our choice of Euler angles yields

M(q) =

















m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 M(q)44 M(q)45 M(q)46
0 0 0 M(q)54 M(q)55 0
0 0 0 M(q)64 0 M(q)66

















.(20)

M(q)44 = (Jxxs
2q5 + Jyyc

2q5)s
2q6 + Jzzc

2q6

M(q)45 = M(q)54 = cq6Jzz

M(q)46 = M(q)64 = cq5(Jxx − Jyy)sq5sq6

M(q)55 = Jzz

M(q)66 = c2q5Jxx + s2q5Jyy

The rotational inertia principle mass moments of the body

frame inertia J are Jxx, Jyy and Jzz . The abbreviations sq
and cq are short for sin(q) and cos(q). Equations 6 and 7

allow computation of the Coriolis matrix but we leave out

this complex expression for brevity.

Restricting a disk of radius rd to roll on the plane q3 = 0
and stand upright yields the holonomic constraints

q3 = rd → q̇3 = 0 (21)

and

q6 =
π

2
→ q̇6 = 0. (22)

Assuming the holonomic constraints are satisfied, imposing the

no-slip rolling constraint yields the nonholonomic constraints

rdq̇5 cos(q4) + q̇1 = 0 (23)

and

rdq̇5 sin(q4) + q̇2 = 0. (24)

The constraint matrix is given by

A(q) =









0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 rd cos(q4) 0
0 1 0 0 rd sin(q4) 0









. (25)

Since the virtual environment inertia for this example is that

of a rigid body, our mapping from virtual environment space

to task space, xr = ϕ(q), is the identity map. Thus the

constraint descriptions A′(x) and A(q) are identical, and

we have written them directly in terms of q. The reachable

configuration submanifold is now four-dimensional and can

be parameterized

xr = ψ(z) =

















z1
z2
rd
z3
z4
π
2

















. (26)

sx

sy

sz

bx

by
bz

1 2 3( , , )q q q

sr

1 2 3( , , )s s s

Fig. 6. This virtual environment consists of a disk required to stay tangent
to a sphere, but allowed to spin about the contact normal. Subscripts s and b
indicate the spatial and body frame axes.

If the designer would like to incorporate forces due to damping

or stiffness, Appendices I and II can be utilized to generate

τd and τs, translational and rotational damping and stiffness

natively defined in SE(3). These forces will have an impact

on motion only if they have components tangential to the

constraints.

B. Disk sliding on sphere

As a second example of the algorithm presented here,

consider a disk as shown in Figure 6, whose center must stay

in contact with a sphere of radius rs located at (s1, s2, s3). The

reference disk can move in two degrees of freedom about the

sphere that it is constrained to, and can rotate about the contact

normal axis. The reference disk, nominally residing in six-

dimensional SE(3), is given a set of generalized coordinates,

q, in the same fashion as in Figures 4 and 5. In order to

establish the constraint equations for this scenario, consider

the rotation matrix R(q4, q5, q6) multiplied by the vector

(0, 0, rs)
T in the body fixed frame,





. . . . . . sin(q5) sin(q6)

. . . . . . cos(q5) sin(q6)

. . . . . . cos(q6)









0
0
rs



 =





q1 − s1
q2 − s2
q3 − s3



 . (27)

This yields the current inertial frame generalized coordinates

(q1, q2, q3) of the virtual tool less the location of the sphere

(s1, s2, s3). The entries of the rotation matrix irrelevant to this

example are not shown. We can then pull out three holonomic

constraint equations (Equations 28 through 30).

q1 − rs sin(q5) sin(q6) − s1 = 0 (28)

q2 − rs cos(q5) sin(q6) − s2 = 0 (29)

q3 − rs cos(q6) − s3 = 0 (30)

Note the lack of dependence on q4, the allowed spin of the disk

about the contact normal. These three holonomic constraint

equations can be differentiated to yield

A(q) = (31)




1 0 0 0 −rs cos(q5) sin(q6) −rs sin(q5) cos(q6)
0 1 0 0 rs sin(q5) sin(q6) −rs cos(q5) cos(q6)
0 0 1 0 0 rs sin(q6)



 .
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m
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Fig. 7. This virtual environment consists of a 2R manipulator, with base
affixed in the X frame at (s1, s2), whose endpoint is constrained to move
along a circle of radius rc in task space.

Again, since the transformation ϕ between Q and X is identity

for this example, we have written A(q) directly rather than

A′(x). The reachable configuration submanifold is now three-

dimensional and can be parameterized

xr = ψ(z) =

















s1 + rs sin(z2) sin(z3)
s2 + rs cos(z2) sin(z3)

s3 + rs cos(z3)
z1
z2
z3

















. (32)

Again, if the designer would like to incorporate forces due to

damping or stiffness, Appendices I and II can be utilized to

generate wrenches τd and τs on a rigid body.

C. 2R manipulator constrained to a circle

As a third example of the algorithm presented here, consider

a 2R manipulator, with two links of length, l, each with

uniformly distributed mass, m, as shown in Figure 7. The

kinetic energy of the manipulator,

T (q) =
ml2

6

(

(5 + 3 cos(q2))q̇
2

1 + (2 + 3 cos(q2))q̇1q̇2 + q̇22
)

,

(33)

is written as the sum of the translational and rotational energy

in both links. The virtual environment space inertia matrix,

M(q) =

[

ml2

3
(5 + 3 cos(q2))

ml2

6
(2 + 3 cos(q2))

ml2

6
(2 + 3 cos(q2))

ml2

3

]

, (34)

is computed using Equation 5. The virtual environment space

Coriolis matrix,

C(q, q̇) =

[

−ml2

2
sin(q2)q̇2 −ml2

2
sin(q2)(q̇1 + q̇2)

ml2

2
sin(q2)q̇1 0

]

,

(35)

is similarly computed from the kinetic energy via Equations

6 and 7. For this example, the Jacobian (∂ϕ/∂q) between

virtual environment coordinates and task space coordinates, is

no longer identity. Rather, the functions ϕ are given by

x = ϕ(q) =

















s1 + l cos(q1) + l cos(q1 + q2)
s2 + l sin(q1) + l sin(q1 + q2)

0
0
0
0

















. (36)

The projection (∂ϕ/∂q)T will now be non-square, and will

map the six-dimensional force and torques of the user in

task space to the two torques on the virtual manipulator.

As stated earlier, this mapping is single valued provided

dim(q) ≤ dim(x ) and that the row rank of ∂ϕ
∂q

≥ dim(q).
Conversely, once the dynamics have been performed in the

reduced set of coordinates, Equation 14 will project the

manipulator motion up from virtual environment coordinates

to task space coordinates.

In Figure 7, the end-point of the 2R manipulator is con-

strained to a circle of radius rc. This holonomic constraint

expressed in task space coordinates is

x2

1 + x2

2 = r2c . (37)

This may be written as a Pfaffian constraint,

A′(x) =
[

2x1 2x2 0 0 0 0
]

, (38)

and mapped to virtual environment coordinates,

A(q)T = (39)
[

2l ((c(q1 + q2) + cq1)) s2 − (s(q1 + q2) + sq1) s1)
2l (c(q1 + q2)s2 − s(q1 + q2)s1 − lsq2)

]

,

via A(q) = A′(ϕ(q))(∂ϕ/∂q). The reachable configuration

submanifold is one-dimensional and is parameterized

xr = ψ(z) =

















rc cos(z1)
rc sin(z1)

0
0
0
0

















. (40)

Again, if the designer would like to incorporate forces due to

damping or stiffness applied to a rigid-body end-effector of

the simulated linkage, Appendices I and II could be utilized

to generate wrenches τd and τs, and these then projected via

(∂ϕ/∂q)T to the virtual environment coordinates. Alternately,

the designer may add either damping or stiffness directly in the

virtual environment coordinates (e.g., friction or compliance

at the joints of the simulated linkage).

IV. EXPERIMENTATION WITH THE COBOTIC HAND

CONTROLLER

The three examples from Sections III-A, III-B and III-

C were implemented on the Cobotic Hand Controller. The

implementations used slightly different notation than described

above, since a different Euler angle parameterization was

used [37].
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Fig. 8. A disk shown at 0.1 second intervals in rolling contact with a planar
surface. The shadow shows the line contact of the disk with the plane, or “tire
tracks,” as the disk makes “parallel parking” motions.

A. Upright rolling disk, continued

The six-centimeter-diameter disk in Figure 8 is in rolling

contact with the plane. It is allowed to spin and roll, but

is unable to slide sideways. It is able to move sideways by

“parallel parking” motions, or by simply turning and driving in

the desired direction. The simulated disk has mass 0.25 kg, all

principal-axis inertias are 0.0025 kgm2, translational damping

is 1.0 Nsm−1, and rotational damping is 0.1 Nmsrad−1.5 In

Figure 9, several metrics of the implementation are reported.

The error in the height of the disk and orientation of the

disk are shown to be negligible and are on the order of the

position resolution of the Cobotic Hand Controller. Thus these

infinitely rigid constraints are rendered correctly. This perfor-

mance is in significant contrast to impedance displays that can

only render constraints of a few kN/m. Also reported is the

percent error in the rolling constraint, 0.01|v− rdω|/(|v|+ ε),
where ε = 0.001 m/s, rdω = −(0.03)ẋ5 and v = ẋ1 cos(x4)+
ẋ2 sin(x4) is in m/s.

B. Disk sliding on a sphere, continued

Figure 10 portrays a two-centimeter-diameter disk con-

strained to remain tangent to a ten-centimeter-diameter sphere,

but permitted to rotate about its contact normal with the

sphere. The disk has the same inertial properties as in the

upright rolling disk example, although we have changed

its dimensions. In Figure 11, several metrics indicating the

feedback motion controller’s performance are reported. Again,

the infinitely rigid constraints are accurately displayed by the

5To put these simulated values in perspective, in [37] we show that with
the transmissions all set to a 1:1 ratio, or a 45 degree steering angle of the
wheels, the cobot has an apparent inertia of 11 kg (this extends from 6 kg
to infinity if the steering angle is varied from 90 degrees to 0 degrees), and
backdrive friction forces on the order of 7.2 N.
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Fig. 9. Experimental data recorded during the implementation of the upright
rolling disk example with the Cobotic Hand Controller. All data are computed
from the measured state of the display (x and ẋ). A) Error in the height of
disk center. B) Error in the disk’s upright orientation. The noise present in
A and B is partially due to analog sensor noise and are nearly equivalent to
what would be obtained when the device is not moving. C) Rolling velocity
v = ẋ1 cos(x4) + ẋ2 sin(x4) of the disk. D) The percent of error in the
rolling constraint is 0.01|v − rdω|/(|v| + ε) where rdω = −(0.03)ẋ5 , v is
in m/s and ε = 0.001 m/s. ε prevents this metric from reporting infinite error
at near zero speed.

algorithm in conjunction with the Cobotic Hand Controller

as is shown by the small radial errors (Subplot A of Figure

11) during the application of large radial forces (Subplot C of

Figure 11).

C. 2R manipulator constrained to a circle, continued

Figure 12 depicts experimental results of the implemen-

tation of the virtual 2R manipulator constrained to a 5 cm

radius circle. The links each have length 15 cm, mass 2.0

kg, and damping at the joints of 0.01 Nmsrad−1. The base

of the manipulator is 21 cm from the center of the circular

constraint. The operator manipulates the virtual linkage for a

few seconds and then releases it. The operator was attempting

to maintain a constant velocity tangential to the constraint.

This is difficult as it requires that the kinetic energy in the

virtual manipulator rise and fall, and thus the user must

alternately push and hold back the manipulator to maintain the

constant tangential velocity. Once released, the kinetic energy

stored in the linkage decreases monotonically due to damping

at the joints, but the kinetic energy in each individual joint rises

and falls. While Figure 9 parts A and B and Figure 11 parts A

and B demonstrate small errors in the constrained directions,

and Figure 9 part D demonstrates effective maintenance of a

nonholonomic constraint, Figure 12 part C demonstrates small

errors in the free motion direction, the direction in which
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Fig. 10. A simulated disk, shown at one second intervals, is constrained to
track a virtual sphere while remaining tangent to it, but is permitted to rotate
about the contact normal. The arrows indicate the orientation of the disk on
the sphere.
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Fig. 11. Experimental data recorded from an implementation of the disk
sliding on sphere example with the Cobotic Hand Controller. All data are
computed from the measured state of the display (x and ẋ). A) Translational
deviation of the disk from the surface of the sphere. B) Error in the disk
orientation as computed from the angle between the surface normal of the
sphere and the surface normal of the disk at the point of contact. C) Force
applied along the contact normal between the disk and sphere. Note the
small radial error even during the application of a large radial force. This
demonstrates the ability of the display to render very rigid constraints.
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Fig. 12. The operator grabs hold of the end-effector and manipulates the
virtual linkage. A) The total kinetic energy in the manipulator and the kinetic
energy in the individual links. B) The speed of the end-point tangential to the
circular task space constraint. C) The error between the desired and actual
position of the end-effector along the circular path. Once the operator releases
the linkage, the kinetic energy stored in the linkage decays monotonically due
to virtual damping at the manipulator joints. Note that the kinetic energy of
the base link (link 1) goes to zero each time it reverses direction. The kinetic
energy of the distal link (link 2) never approaches zero as it has translational
kinetic energy even when it has no rotational velocity. Note the increase in
endpoint speed at times 4.7 s and 6.2 s even while the total manipulator kinetic
energy is decaying.

desired dynamic behaviors are imposed.

V. CONCLUSIONS

We have outlined a virtual environment simulation and inte-

gration algorithm for the haptic display of rigidly constrained

dynamic systems. Assuming the current active constraints are

known, we form the constrained Euler-Lagrange equations.

These allow us to solve for the dynamically correct motion

in response to the measured operator applied forces with

respect to the simulated inertia and active constraints. We

derived a combined feedforward and feedback controller for

the motion of the actual manipulandum relative to a reference

manipulandum. In addition to point masses, the framework

presented here can also be used to simulate the configuration-

dependent inertia of rigid bodies and of linkages. Example

constraint scenarios have been provided, including the first

display of nonholonomic constraints with a cobot, and data

derived from their implementation on the Cobotic Hand Con-

troller are reported. The user feels both inertial and viscous

forces that vary over a wide dynamic range. The proper

coupling of translational and rotational dynamics in response

to a generalized force, which is composed of both forces

and torques, is conveyed, even in the presence of constraints

on motion. While this algorithm is general to all admittance

displays, it was motivated by the Cobotic Hand Controller

haptic display. Data presented here demonstrate the ability

of the Cobotic Hand Controller to simultaneously render

extremely stiff constraints and dynamically correct motion

tangent to those constraints.
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APPENDIX I

REPRESENTATION OF DAMPING IN SE(3)

A generalized damping wrench, τd, may be computed in the

rigid body frame by

τd =

[

btI3×3 0
0 brI3×3

] [

v
ω

]

, (41)

where bt and br are the translational and rotational damping

coefficients respectively. The body frame angular velocities

can be pulled out of the skew symmetric matrix of body frame

velocities,

ω̂ = RT Ṙ =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 . (42)

The vector of the body frame translational velocities is given

by

v = RT





q̇1
q̇2
q̇3



 . (43)

APPENDIX II

REPRESENTATION OF STIFFNESS IN SE(3)

The generalized spring wrench on a rigid body, τs, may be

computed in the body frame by

τs = −

[

ktI3×3 0
0 krθI3×3

] [

RT
(

po − [q1, q2, q3]
T
)

K

]

.

(44)

kt and kr are the translational and rotational spring con-

stants, respectively. The body frame translational spring origin,

R(q)T
(

po − [q1, q2, q3]
T
)

, is computed from the world frame

spring origin, po. K and θ are the axis-angle representation of

the current orientation, where the axis and angle are computed

from the net rotation from body frame to the spring origin,

∆R = RTRo, where Ro is the spring origin [21].

θ = arccos

(

trace(∆R) − 1

2

)

(45)

K =
1

2 sin(θ)





∆R32 − ∆R23

∆R13 − ∆R31

∆R21 − ∆R12



 (46)
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