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Smooth, frictionless, kinematic constraints on the motion of a grasped
object reduce the motion freedoms at the hand, but add force free-
doms, that is, force directions that do not affect the motion of the
object. We are studying how subjects make use of these force
freedoms in static and dynamic manipulation tasks. In this study,
subjects were asked to use their right hand to hold stationary a
manipulandum being pulled with constant force along a low-friction
linear rail. To accomplish this task, subjects had to apply an equal and
opposite force along the rail, but subjects were free to apply a force
against the constraint, orthogonal to the pulling force. Although
constraint forces increase the magnitude of the total force vector at the
hand and have no effect on the task, we found that subjects applied
significant constraint forces in a consistent manner dependent on the
arm and constraint configurations. We show that these results can be
interpreted in terms of an objective function describing how subjects
choose a particular hand force from an infinite set of hand forces that
accomplish the task. Without assuming any particular form for the
objective function, the data show that its level sets are convex and
scale invariant (i.e., the level set shapes are independent of the
hand-force magnitude). We derive the level sets, or “isocost” con-
tours, of subjects’ objective functions directly from the experimental
data.

I N T R O D U C T I O N

Consider the task of using a single hand to carry a rigid
object from one configuration (position and orientation) to
another. The configuration of a rigid object in space has 6
degrees of freedom: 3 translational freedoms and 3 rotational
freedoms. Now suppose that the object’s motion between the
start and goal configuration is subject to smooth frictionless
configuration constraints. Such constraints arise, for example,
when the object is confined to a linear rail or attached to a
low-degree-of-freedom linkage. These constraints limit the
object to m �6 degrees of freedom, but allow the subject to
apply forces against the constraints in the 6 � m directions
orthogonal to the motion freedoms. To accomplish the con-
strained carrying task, the subject’s motor control system must
simultaneously resolve a number of redundancies, including 1)
determining a trajectory of the arm consistent with the object’s
m-dimensional configuration space (where the arm will gener-
ally have more than m degrees of freedom), 2) determining the
constraint forces applied during the motion, and 3) determining
how joint torques, implied by the trajectory and constraint
forces, are distributed across muscle groups.

Although a great deal of work has studied how motion
freedoms [redundancy 1) above] are resolved in unconstrained

point-to-point arm motions (e.g., Alexander 1997; Flash and
Hogan 1985; Harris and Wolpert 1998; Kuo 1994; Todorov
and Jordan 1998; Uno et al. 1989) and how muscle load-
sharing [redundancy 3) above] is resolved in completely con-
strained single-arm isometric tasks (e.g., Buchanan et al. 1986;
Flanders and Soechting 1990; Gomi 2000; van Bolhuis and
Gielen 1999), there has been less work on understanding how
constraint force freedoms [redundancy 2) above] are resolved
in partially constrained tasks. Because applying forces against
constraints has no effect on the task, the manner in which force
freedoms are resolved provides powerful clues to the organi-
zation of the motor control system. For example, although
many hypotheses have been proposed to explain experimental
unconstrained arm motion data (minimum Cartesian jerk, min-
imum rate of torque change, minimum metabolic cost, etc.),
these hypotheses’ differing predictions of constraint forces can
be used to determine whether they are applicable also to the
case of constrained manipulation. Ideally an organizing prin-
ciple would be able to explain both unconstrained and con-
strained arm motions.

Consider, for example, the following experiment. A subject
consistently chooses a trajectory (and associated path) solving
a particular point-to-point unconstrained reaching task. Now
we place a frictionless guide rail exactly along that chosen path
and ask the subject to again perform the reaching task several
times. Optimization models of the dynamics may predict that
the subject will learn to use the new force freedom by applying
forces against the rail to further decrease the objective func-
tion. In other words, the presence of the rail allows the subject
to “optimize” further (Lynch et al. 2000). This is exactly the
effect we are interested in: how subjects naturally take advan-
tage of force freedoms.

There are reports of previous studies on natural interaction
with smooth constraints. Perhaps most related to the present
paper are studies on how subjects turn a crank (Russell and
Hogan 1989; Svinin et al. 2003). Russell and Hogan showed
that subjects apply significant radial forces (compressing or
extending the crank) even though they are workless. Svinin et
al. argued that experimental forces and motions during crank-
turning can be described by minimization of a weighted com-
bination of changes in hand force and joint torques. Van der
Helm and Veeger (1996) studied the related problem of shoul-
der muscle activation during wheelchair propulsion, and both
their shoulder mechanism model (van der Helm 1994) and
experimental results showed that subjects apply forces normal
to the rim of the wheel. The efficiency of the motion is also
discussed. Gomi (1998) showed that the natural stiffness at the
hand during motion is altered in the presence of a guiding
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constraint. Scheidt et al. (2000) studied persistence of motor
adaptation during constrained multijoint arm movements.
Their decomposition into kinematic and dynamic criteria in-
fluencing disadaptation correspond roughly to our decomposi-
tion into trajectory and force freedoms.

This paper reports the results of the simplest possible exper-
iment studying how subjects resolve a constraint force redun-
dancy. Each subject was asked to use the right hand to hold
stationary a handle being pulled with constant force along a
low-friction linear rail (m � 1 motion freedom). The arm was
supported in a horizontal plane with the wrist cuffed, so that
the arm could be treated as a two-joint shoulder–elbow mech-
anism. To hold the handle stationary, the subject had to apply
an equal and opposite force along the rail, but subjects were
also free to apply a force against the constraint, orthogonal to
the direction of the pulling force (one force freedom in the
horizontal plane because the arm was treated as a two-joint
mechanism). Despite the fact that constraint forces increase the
magnitude of the total force vector at the hand and have no
effect on the task, we found that subjects applied significant
constraint forces in a consistent manner dependent on the arm
and constraint configuration. We show that the constraint
forces can be interpreted in terms of an objective function
describing how subjects choose a particular hand force from a
family of hand forces that accomplish the task. Without as-
suming any particular form for the objective function, the data
show that its level sets are convex and scale invariant (i.e., the
level set shapes are independent of the hand-force magnitude).
We derive the level sets, or “isocost” contours, of subjects’
objective functions directly from the experimental data. In
other words, in contrast to previous work on optimization
models that use experimental data to support or invalidate
candidate objective functions based on a biomechanical model,
we use a new method for directly measuring the level sets of
the objective function without assuming any particular form for
it. These level sets may be thought of as nonparametric objec-
tive functions that act as descriptors and predictors of behavior,
independent of any interpretation in terms of biomechanics and
neural control. Importantly, the objective functions appear to
be independent of the arm configuration when expressed as
objective functions on joint torques. We have compared our
results to the predictions of several biomechanical models of
force generation, and although these results are inconclusive
because of uncertainty in subjects’ physiological parameters,
models based on the sum of muscle tensions and stresses can
be effectively ruled out. An objective function that is a simple
positive-definite quadratic form on the joint torques appears to
fit the data well. If the muscles are springlike (e.g., Mussa-
Ivaldi et al. 1985), one interpretation of this objective function
is that subjects choose a hand force that satisfies the task while
minimizing the potential energy stored in the muscles. Portions
of this work have previously appeared in conference form (Pan
et al. 2004; Tickel et al. 2002).

M E T H O D S

Setup and protocol

Fourteen healthy right-handed male subjects (Table 1) were seated
in a custom-made high-backed chair with an adjustable seat, to raise
or lower the height of the shoulder plane based on the height of the
subject. To fix the shoulder location, subjects were restrained by a

4-point harness. The wrist was immobilized by an over-the-counter
commercially available wrist cuff, and the subject grasped a vertical
handle on a slider on a horizontal low-friction linear rail. The rail is
mounted on a lazy Susan turntable, allowing the rail to be rotated 360°
in the plane. The orientation of the rail can be fixed at any angle by
clamping the turntable. The handle can spin freely about a vertical
axis so that no torques at the hand are involved, and a support plate is
attached to the handle to support the weight of the forearm (Fig. 1A).
This support maintains the arm in a horizontal plane throughout
experiments without fatiguing the shoulder.

A 6-axis force-torque sensor (ATI-AI Gamma 15–50) is positioned
between the handle and the slider and is used to measure forces
against the rail. A cable attached to the slider passes through a pulley
system, allowing weights to be suspended under the slider to create a
tangential force along the rail.

Each trial consisted of the subject holding the handle while a weight
was hung from the cable, causing a tangential pulling force on the
slider. The subject then stabilized the position of the handle at the
center of the rail. Forces normal to the rail were then recorded for 1 s
and averaged. The weight was then removed from the cable.

For 8 subjects (subjects 1 through 8), the slider handle was located
at (0, 45 cm) in a frame fixed to the shoulder, as shown in Fig. 1B.
Sixteen angles of the rail were used, evenly spaced at 22.5° intervals.
At each of the 16 test angles, 2 different weights were hung from the
cable, 0.858 kg (the light weight) and 1.759 kg (the heavy weight).
These resulted in tangential forces of 8.4 and 17.3 N, respectively. For
each angle and weight, the experiment was repeated 3 times. There-
fore, for each handle position, we collected 16 � 2 � 3 � 96 data
points. The ordering of the trials was randomized to minimize any
history effect in the results. Subjects were told to suspend the weight
as naturally and comfortably as possible, and not to excessively
cocontract to stiffen the position of the handle. Fatigue was minimized
by the short durations of each experiment, and subjects were permitted
to take a break at any time. The total testing time for each subject was
about 1 h.

For 6 subjects (subjects 9 through 14), the experimental protocol
was similar, except only a single weight of 1.2 kg was used, giving
11.8 N tangential force. Each of these 6 subjects was tested at 5
different positions of the hand, as shown in Fig. 9A.

The protocol was approved by the Northwestern University Insti-
tutional Review Board.

Objective functions and isocost contours

The organizing principle governing how subjects apply constraint
forces can be expressed as an objective function describing the “cost”

TABLE 1. Physiological data for 14 right-handed male subjects

Subject Age L1 L2 C1 C2

1 20 26 33 28 25
2 23 29 35 34 28
3 24 30 35 33 28
4 30 32 37 36 28
5 20 29 35 26 25
6 21 26 34 27 24
7 23 29 33 34 29
8 29 28 32 28 26
9 24 29 32 27 25

10 30 31 34 33 27
11 20 32 35 33 28
12 23 31 36 36 29
13 24 27 34 32 27
14 21 31 36 33 28

L1 and L2 indicate the lengths of the upper arm and forearm (measured to the
handle), respectively; and C1 and C2 are the maximum circumferences of the
upper arm and forearm. All measurements are in centimeters.
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of generating a particular force vector at the hand. This objective
function may reflect the “effort” involved in applying a particular
force, or it may simply reflect the organization of the motor control
system. In either case, the role of the objective function is simply to
resolve the freedom in the applied constraint force.

An objective function g may be viewed as a mapping from the arm
configuration and the force and torque applied at the hand to a
nonnegative real number representing the “cost.” For ease of discus-
sion, we will assume that the arm configuration is implied and that the
hand force can be written as a 2-vector fh � (fhx, fhy) in a Cartesian
frame aligned with the shoulder frame (Fig. 1B). Then the objective
function g(fh) can be viewed as a function g : �23�. (Any objective
function on joint torques or muscle tensions uniquely defines an
objective function on the hand forces.) Thus the objective function
forms a 2-dimensional surface. A weak assumption on the form of g
is that the cost increases monotonically as we move outward along
any ray from the origin fh � (0, 0). For low to moderate hand forces,
this seems intuitively correct: when a subject can solve a task with any
hand force �fh for � � 1, the subject is likely to choose approximately
the minimum necessary force, � � 1. An objective function satisfying
this condition defines a bowl in the hand-force space, and there are no
local minima except the global minimum at (0, 0). The level sets
(curves) of a bowl-shaped cost function are concentric, closed, and
star-shaped (can be written as a function of the polar angle) about the
origin. We call these level curves isocost contours in the hand-force
space.

Two important subclasses of bowl-shaped objective functions are
those whose isocost contours are all convex, and those whose isocost
contours are scale invariant—each isocost contour is a uniformly
scaled version of every other. These properties are shown graphically
in Fig. 2. An objective function g(fh) is convex if its Hessian matrix
�fhfh

2 g is positive definite at all fh, i.e.

trace ��fhfh

2 g� � 0 (1)

det ��fhfh

2 g� � 0 (2)

An objective function is scale invariant if it satisfies the property

g��fh� � k���g�fh�, �, k(�) 	 0

for some scaling function k(�) satisfying k(1) � 1 and monotonically
increasing with �. A common example of k(�) is a power law �p (p 	
0). If an objective function is both convex and scale invariant, we refer
to it as a CSI objective function. These properties of an objective
function generalize immediately to hand forces and torques in more
than 2 dimensions.

To use an objective function to predict constraint forces, note that
the subject must apply a specific tangential force ft along the rail to
prevent the slider from moving, but is free to apply any normal force
fn in the orthogonal constrained direction1 This means that the space
of hand forces that solves the task is the one-dimensional linear
subspace L (a line) of the 2-dimensional hand-force space defined as

L � 
ft � �fn�� � ��

where fn is a nonzero force vector in the constrained direction. The
objective function predicts that the subject will choose the force in L
that minimizes the cost. At this point, L is tangent to one of the isocost
contours. (If the cost function is nonconvex, a tangent point is not
necessarily a minimum.) This can be seen graphically in Fig. 3. On the
plot of isocost contours, construct the line L passing through the point

1 In generalized force spaces representing both forces and torques, “tangen-
tial” forces do work on the manipulandum, whereas “normal” forces are
workless. Tangential and normal forces are orthogonal by the inertia metric of
the manipulandum rather than the standard Euclidean metric. For our system,
the inertia metric is equivalent to the Euclidean metric.

FIG. 1. A: experimental setup. B: kinematic model of the arm. Two coor-
dinate frames for measuring the force at the hand are indicated: 1) fhx–fhy frame
is aligned with the shoulder frame; 2) fn–ft frame measures the tangent force
that the subject applies along the rail to resist the pulling force and the
orthogonal force fn, where positive forces fn are 90° clockwise of the tangent
force.

FIG. 2. Different classes of bowl-shaped objective functions as represented
by their isocost contours. Top left: a general bowl-shaped objective function.
Top right: a nonconvex scale-invariant objective function. Bottom left: a
convex non-scale-invariant objective function. Bottom right: a convex scale-
invariant (CSI) objective function.
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ft � (ftx, fty) and perpendicular to the direction of the rail. This is the
linear subspace of forces satisfying the task. The optimal total force
fh � ft � fn occurs where the line is tangent to an isocost contour.

As shown in Fig. 3, a strange situation can occur if the isocost
contours are not convex: multiple optimal hand forces fh may be
predicted. Equivalently, as the angle of the tangential force ft passes
smoothly through a critical angle where a nonuniqueness occurs, the
optimal applied constraint force fn changes discontinuously. An ex-
ample of a nonconvex objective function is g(fh) � � fhx�

1/2 � � fhy�
1/2.

Models with exponents �1 lead to nonconvexity and apparently have
little physical basis.

If the objective function is scale invariant, the direction of the
optimal total force fh depends only on the direction of ft, not on its
magnitude. In other words, if the required tangential force ft is scaled
by �, then the optimal normal force is also scaled by �. This does not
hold for more general objective functions.

Reconstructing isocost contours

The measured force fh applied by a subject in a given trial is
decomposed into 2 orthogonal components: a component tangential to
the rail denoted ft with value equal and opposite to the pulling force,
and a component perpendicular to the rail, denoted fn, which is the
object of study. For each rail orientation we define a reference frame
such that fh � (fn, ft), where fn and ft are the scalar values of the force
against and along the rail, respectively. The �ft-axis is oriented along
the rail in the direction the subject must apply a force to prevent
motion of the slider, and the �fn-axis is 90° clockwise, as shown in
Fig. 1B.

The results for a single subject at a single slider position can be
plotted as shown in Fig. 6 in the RESULTS section. There are 2 plots,
one corresponding to the light weight and one to the heavy weight.
Each plot shows the normal force applied by the subject as a function
of the angle of the tangential force ft along the rail.

From each plot we can reconstruct an isocost contour of the
subject’s objective function. That this is possible may not be obvious
because the experiments do not keep the subject on the same isocost
contour. In fact, there is no way to design the experiments to do so
without knowing the objective function in advance. If the objective
functions are CSI, however, then it is possible to extract the isocost
contours from the data, as described below.

Each point on a normal force plot, as in Fig. 6, indicates a point in
the hand force (fhx, fhy) space, at an angle � relative to the �fhx-axis
(Fig. 4). At this point, the direction of the normal force fn is tangent

to the isocost contour, as shown in Fig. 3. Therefore, the p data points
of the normal force plot give us a set of angles �i, i � l . . . p, and a
tangent direction �i associated with each �i. Choosing a point at an
arbitrary radius r1 (say r1 � 1) along a ray at angle �1 from the origin
of the (fhx, fhy) space, follow the tangent angle �1 (i.e., integrate) until
�2 is reached. Then using angle �2, integrate until �3 is reached, and
so on. (More sophisticated interpolating numerical integration could
instead be used.) Continue around angularly until the curve reaches �1

again. If the normal force plot comes from a scale-invariant objective
function, the curve will close at �1. The key point is that for
scale-invariant objective functions, the tangent direction � depends
only on the angle � of the force fh, not the magnitude �fh�, and
therefore the data do not have to be derived from the same isocost
contour to be able to reconstruct an isocost contour.

The procedure outlined above will result in a closed curve only if
the normal force data is zero mean—the integral of the normal force
curve must be zero (see APPENDIX). All scale-invariant bowl-shaped
objective functions imply a normal force plot with zero mean. As we
see in the RESULTS section, the data are approximately zero mean and
support the CSI hypothesis, making the reconstruction possible.

Transforming to joint space

For the two-joint arm of Fig. 1B, isocost contours in the hand-force
space are transformed to isocost contours in the joint-torque space by
the relation

� � JT�	�fh (3)

where fh � (fhx, fhy)
T is a hand-force vector, � � (�1, �2)T is a vector

of shoulder and elbow torques, and the arm Jacobian J(	) is

J �	� � � �L1 sin �	1� 
 L2 sin �	1 � 	2� �L2 sin �	1 � 	2

L1 cos �	1� � L2 cos �	1 � 	2� L2 cos �	1 � 	2�

�
Ellipse fitting of isocost contours

In the RESULTS section we see that isocost contours in joint-torque
space appear rather elliptical, so we can fit ellipses to the data. We use
the general form Ax2 � 2Bxy � Cy2 � 2Dx � 2Ey � 1, where A, B,
and C describe the shape of the ellipse, and D and E describe its offset
from the origin. The coefficients A, B, C, D, and E can be found by a
least-squares fit minimizing ¥ (1 � Ax2 � 2Bxy � Cy2 � 2Dx �
2Ey)2 over the data points. Defining features of the ellipse are its
orientation, given by 1⁄2 tan�1 2B/(A � C), and its eccentricity, given
by �1 
 �lb

2/la
2�, where la and lb are the half-lengths of the long and

short principal axes

FIG. 4. Integration procedure to recover the isocost contour. Current point
on the isocost contour is given in polar coordinates by (r, �), the tangent angle
of the isocost contour is given by �; and the infinitesimal change in the isocost
contour is given by (dr, d�). See the APPENDIX for more details.

FIG. 3. In each figure, the dotted line represents the tangential force ft that
the subject must apply, and the line L is the line of equivalent forces along the
rail. Arrows represent the optimal total force fh � ft � fn. Top left: line L is
tangent to the same isocost contour at 2 distinct points, meaning that it achieves
a cost minimum at 2 different fh. This is possible only with nonconvex isocost
contours.
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 C�2

4
� B2

lb �
1

�A � C
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 C�2

4
� B2

Biomechanical modeling

Joint torques are caused by a complex set of uniarticular and
biarticular muscles crossing both the shoulder and the elbow (An et al.
1981; Meek et al. 1990; Murray et al. 2000; Pigeon et al. 1996; van
der Helm 1994; Wood et al. 1989). The torque generated by each
muscle is a function of the muscle tension stemming from muscle
activation and the joint-angle–dependent moment arms based on the
bone attachment points. The maximum tension available from a
muscle is roughly a function of the physiological cross-sectional area
(PCSA) and muscle stretch (and, in nonisometric settings, the rate of
lengthening or shortening).

To simplify the model, we follow van Bolhuis and Gielen (1999)
and Gomi (2000) and combine the muscles into 6 muscle groups:
shoulder extensor and flexor, elbow extensor and flexor, and biartic-
ular extensor and flexor. We define the muscle tension vector � �
(�se, �sf, �ee, �ef, �be, �bf)

T � �6 to capture the tension of each of
these groups of muscles. All elements of the vector must be nonnega-
tive, indicating that each muscle group is capable of pulling only. This
simplification into muscle groups makes the assumption that all
muscles in each group are activated proportionally (van Bolhuis and
Gielen 1999). With this model, the joint torques � are obtained from
the muscle tensions � by

� � A�	�� (4)

where A(	) � �2�6 is a matrix of joint-angle–dependent moment
arms.

Figure 5 shows a model of the arm with these 6 muscle groups
(adapted from Gomi 2000). By Eq. 3, torque arising from shoulder
monoarticular muscles causes hand forces along the line of the
forearm, torque arising from elbow monoarticular muscles causes
hand forces along the line through the shoulder, and biarticular
muscles with �1 � �2 generate hand forces parallel to the upper arm.

By combining Eq. 3 and 4, we get

fh � �JT�	�
�1A�	�� (5)

Because fh � �2 and � � �6, there is an infinite set of muscle tension
vectors � that generate a specified fh. Thus, in addition to the freedom
to provide any force normal to the rail, the subject has freedom in how
to share the load across muscle groups.

We consider the following minimization models as candidates for
interpreting experimental isocost contours. Some of the muscle load-
sharing models were considered for isometric force generation by
Gomi (2000) and van Bolhuis and Gielen (1999).

● HAND Hand-force magnitude �fh� is minimized. According to
this model, the subject applies only forces tangent to the rail. The
constraint force is zero.

● T2 Torque squared, ¥i �i
2. For a stationary robot arm with

identical DC motors at the shoulder and elbow, this solution
minimizes the electrical power to the motors.

● WT2 A quadratic form of the joint torques of the form �TW�,
where W is a positive-definite 2 � 2 symmetric matrix (only 3
unique elements). Isocost contours are ellipses in the joint-torque
space, a generalization of the T2 model, where W is the identity
matrix and the isocost contour is a circle in joint-torque space.

● MTk Sum of muscle tensions raised to the power of k � 1, 2, or
3, ¥i �i

k, i � {se, sf, ee, ef, be, bf}. The model k � 1 was
proposed by Yeo (1976), and Nelson (1983) and Hogan (1984)
suggest that metabolic power consumed by a muscle is propor-
tional to the square of muscle force k � 2.

● MSk Sum of muscle stresses raised to the power of k � 1, 2, or
3, ¥i (�i/PCSAi)

k where PCSAi is the physiological cross-
sectional area of muscle i (Crowninshield and Brand 1981). This
is a measure of the activation of the muscle. There is some
evidence that muscle endurance time is inversely proportional to
(�/PCSA)3 (Prilutsky et al. 1998).

Calculating the predictions of the MTk and MSk models requires the
physiological cross-sectional area PCSA and moment arms for each
muscle group. Table 2 gives examples of parameters we used, fol-
lowing (Gomi 2000). These values are lumped parameters obtained
from data found in Meek et al. (1990). In these parameters, the
moment-arm matrix A is independent of the joint angles. A definitive
test of optimization models would, of course, require a method for
obtaining the parameters of Table 2 for each subject.

Each of the 9 models defines a CSI objective function in the
hand-force space for a given arm configuration. For the T2 and WT2
models, the isocost contours are ellipses that can be found in closed
form. The isocost contours for the HAND model are simply circles
centered at the origin. Isocost contours for the other models can be
found numerically. The linear models MT1 and MS1 result in convex
polygonal isocost contours; the other models have strictly convex
isocost contours.

The linear models MT1 and MS1 predict activation of only one of
the muscle groups for a given task, whereas higher-order models
predict greater sharing of the load across the muscle groups. Each of
the models predicts a normal force plot that can be compared to
experimental data.

To obtain the prediction for model T2, let �fn represent the force
applied against the constraint, where fn is a unit vector normal to the
tangential force ft applied by the subject to resist motion. Then �
satisfies the equation

d

d�
�JT�	��ft � �fn�


2 � 0

The prediction for WT2 can be obtained similarly.

FIG. 5. Hand force generated by each muscle group (se and sf are shoulder
monoarticular muscles causing hand forces along the line of the forearm, ee
and ef are elbow monoarticular muscles causing hand forces along the line
through the shoulder, and be and bf are biarticular muscles with �1 � �2,
causing hand forces parallel to the upper arm).
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To obtain the predictions of models MTk and MSk, k � 1, 2, 3, we
solve for the tension vector � minimizing the objective function,
subject to � � 0 (all muscles pulling) and


��JT�	�
�1A�	���T�ft/�ft�)��ft�

requiring that the tangential force be equal to ft. This problem is a
linear programming problem for k � 1 and a nonlinear optimization
for k � 2, 3. All optimizations were solved using CFSQP (Lawrence
et al. 1994), C code implementing sequential quadratic programming.

R E S U L T S

The experimental results for subject 1 at the hand position
(0, 45 cm) are shown in Fig. 6 as plots of the applied constraint
force fn as a function of the angle of the �ft-axis. Two curves
are shown: one for the light weight (ft � 8.4 N) and one for the
heavy weight (ft � 17.3 N). The solid line shows the average
applied constraint force over the 3 trials. The actual averaged
data points are shown as dots, whereas the rest of the curve is
a spline interpolation. The shaded region shows the range of
normal forces measured over the 3 trials. The dotted line is
identical to the solid line of average normal forces, except it
has been shifted up or down so that its integral over all test
angles is zero (zero mean). Figure 7 shows experimental results
for subjects 1 through 8. The solid line shows the average
applied constraint force for the light weight and the dotted line
shows the average applied constraint force for the heavy
weight.

Simple observation of the data indicates that subjects often
apply force normal to the constraint, depending on the angle of
the constraint and the direction of the tangent force, even
though normal forces are not necessary for the task. In fact, for
several of the subjects, the peak value of the normal force is
about as large as the required force along the rail. As the
subsequent sections show, the experimental data support the

hypothesis that the data can be explained by a CSI objective
function, allowing us to reconstruct each subject’s isocost
contours.

Intertrial consistency

The intertrial variations in the normal force curves over the
3 trials are small, indicating that resolution of the force free-
dom is systematic rather than random. A glance at Fig. 6
(subject 1) shows that the envelope of normal forces over the
3 trials is narrow relative to the peak normal forces. For subject
1, the average variation in normal forces applied at a particular
constraint angle, as a percentage of the range of average
normal forces over all angles, was 16.6% for the light weight
and 15.3% for the heavy weight. Other subjects displayed
similar behavior. For subjects 1 through 8, the average inter-
trial variation was 22.5 � 7.3% for the light weight and 19.4 �
5.0% for the heavy weight.

Convexity

As described in the METHODS section, a nonconvex objective
function implies discontinuities in the normal force plot as a
function of the tangential force angle. Although it is impossible
to prove the absence of discontinuities in the underlying
normal force curves from sampled data, the data in Fig. 7
appear to be indicative of smooth underlying curves. This
supports convexity of the underlying objective function.

Scale invariance

For our experiment, the scale-invariance hypothesis can be
written

8.4

17.3
fn, heavy 
 fn, light � z � 0

where fn,heavy and fn,light are the normal forces applied by a
given subject at a given angle of the tangential force ft for the
large (17.3 N) and small (8.4 N) tangential forces, respectively.
The mean and SD of the residual z for subjects 1 through 8, in
Newtons, are �0.1 � 2.5, 0.8 � 1.3, 0.6 � 2.0, �0.1 � 1.7,
0.1 � 2.2, 0.6 � 1.6, 0.4 � 1.7, and 0.2 � 1.2. For the 8
subjects pooled the mean and SD of the residual z is 0.3 � 1.8.
Notice that the mean of z is close to zero.

FIG. 6. Plots of subject 1’s normal force data fn
as a function of the angle of the �ft-axis: left for
the light weight (ft � 8.4 N) and right for the
heavy weight (ft � 17.3 N). Solid line shows the
average data over the 3 trials. Actual averaged
data points are shown as dots, whereas the rest of
the curve is a spline interpolation. Shaded region
shows the range of normal forces measured over
the 3 trials. Dotted line is identical to the solid line
of average normal forces, except it has been
shifted up or down so that its integral over all test
angles is zero (zero mean).

TABLE 2. Physiological parameters of the muscle groups used
in the arm model

se sf ee ef be bf

PCSA (cm2) 38.71 19.36 7.75 10.3 3.87 3.23
A1i (cm) �3.52 4.37 0 0 �2.54 2.9
A2i (cm) 0.0 0.0 �2.03 2.75 �3.05 4.32

Data from Gomi (2000).
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To further test this hypothesis, we pooled all 8 subjects data
and performed a 2-way ANOVA with “constraint angle” and
“force magnitude” as experimental factors. The results showed
no main effect for the “force magnitude” factor on the data
(F � 1.143, P � 0.286). There was no evidence of system
deviation from the scaling hypothesis across subjects for
“constraint angle � force magnitude” interaction (F �
0.586, P � 0.884, adjusted R2 � 0.62). We then performed

2-way ANOVAs for each subject individually (n � 8). The
results showed no main effect for the “force magnitude”
factor except for one subject. The results also showed that
there are some idiosyncratic deviations from the scale-
invariance hypothesis within each subject attributed to the
“constraint angle � force magnitude” interaction. However,
the pooled analysis, along with correlation coefficients for a
linear fit to the scaling hypothesis (0.876 � 0.053), show

FIG. 7. Plots of the normal force data for
subjects 1 through 8. Solid line shows the
average normal force for the light weight, and
the dotted line shows the average normal force
for the heavy weight.
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that the data reasonably support scale invariance for the
tangential forces we tested.

Reconstructing isocost contours

The isocost contour reconstruction procedure outlined in the
METHODS section results in a closed curve only if the normal
force data is zero mean. We can see that the experimental
normal force curves are in fact approximately zero mean. In
general, the amount of uniform shift (raising or lowering) of a
normal force curve to achieve zero mean is small relative to the
maximum normal force, and in nearly all cases the shifted
curve remains within the 3-trial variability (see, for example,
Fig. 6). The ratio of the amount of shift ��f � to the range (from
min to max) of the average normal forces for subjects 1
through 8 is 4.3 � 2.7 percent for the light weight and 3.0 �
3.0 percent for the heavy weight. This is significant, because
although all scale-invariant objective functions predict zero
mean normal force curves, this is not true for general non-
scale-invariant objective functions. The fact that the experi-
mental data are approximately zero mean is further evidence of
the CSI objective function model.

To reconstruct a subject’s isocost contour, we first shift the
curve of average normal forces by subtracting the mean value
of the normal force. This shifts the curve uniformly up or down
and produces a zero mean curve. We then apply the numerical
integration scheme described in the METHODS section. The
results for subjects 1 through 8 at the hand position (0, 45 cm)
in the shoulder frame are shown in Fig. 8. Because of the
scale-invariance hypothesis, only the shape of the isocost
contours is of interest; their sizes are arbitrary.

We can make a few general observations about the shapes of
the isocost contours. As predicted, for each subject the shapes
of the isocost contours derived for � ft � � 8.4 N and 17.3 N are
similar. The isocost contours are stretched in the fhy direction
relative to the fhx direction, indicating that a larger force in the
fhy direction has the same “cost” as a smaller force in the fhx
direction. This is not surprising for this configuration of the
arm, and similar stretching has been observed in experimen-
tally derived stiffness ellipses for the arm (Mussa-Ivaldi et al.
1985). The long axis of the isocost contour for most subjects
passes approximately through the shoulder or leans to pass
between the shoulder and the elbow. This is another common
feature of stiffness ellipses.

A local minimum (maximum) of an isocost contour is defined
as a point such that no nearby point on the contour is closer to
(further from) the origin, in a Euclidean sense. If ft lies on a
local maximum or minimum of an isocost contour, then the
predicted normal force is zero. Therefore, every zero crossing
in the normal force data predicts a local extremum in the
isocost contour at the angle of the vector ft. More specifically,
if the slope at the zero crossing is negative (i.e., the normal
force changes from positive to negative as the constraint angle
increases), it is a local minimum, and otherwise it is a local
maximum. Any closed curve containing the origin must attain
an equal number of local minima and maxima, with a minimum
of one each. Every average normal force curve in our experiments
showed 4 zero crossings (Fig. 7), predicting 2 local maxima and
2 local minima in the isocost contours for all subjects.

The key points of the reconstructed isocost contours are that
1) they are independent of any strong biomechanical modeling

assumptions apart from CSI and 2) they represent how the
constraint force freedoms are used by subjects in solving static
manipulation tasks.

Configuration dependency of isocost contours

To investigate the dependency of the isocost contours on
arm configuration, we performed similar experiments with
subjects 9 through 14 at 5 different hand positions shown in
Fig. 9A: (0, 45 cm) as before (labeled CENTER), (0, 55 cm)
(labeled FAR), (0, 35 cm) (labeled NEAR), (31.8 cm, 31.8 cm)
(labeled RIGHT), and (�31.8 cm, 31.8 cm) (labeled LEFT) in
the shoulder frame. LEFT and RIGHT are obtained from
CENTER by rotating �45° about the shoulder. The procedure

FIG. 8. Reconstructed isocost contours for subjects 1 through 8 at the hand
position (0, 45 cm) in the shoulder frame. Scale of the contours is immaterial
because of the scale-invariance property; only the shape matters.
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is the same as with the previous experiments, but only one
weight (1.2 kg, tangential force of 11.8 N) is used.

The isocost contours for a typical subject are shown in Fig.
9B. We can see that the isocost contour at RIGHT and LEFT
have shapes similar to the isocost contour at CENTER, rotated
approximately �45°. In contrast, changing both the elbow and
shoulder angle (FAR and NEAR positions) causes the isocost
contour to both change shape and rotate. For example, the
isocost contour at FAR becomes more anisotropic because of
the greater extension of the elbow. These results suggest that
the objective function may be better expressed in the joint-
torque space rather than the hand-force space, as discussed
next.

Invariance in joint space

To investigate the dependency of the isocost contours on
arm configuration, we transform isocost contours in the hand-
force space to isocost contours in the joint-torque space (Eq. 3).
Figure 10 shows the isocost contours of Fig. 9 expressed in the
joint-torque space. We see that the joint-torque isocost con-
tours are nearly constant over the different arm configurations.
These results are typical for all subjects.

Because these joint-torque isocost contours appear rather
elliptical, we fit the data to ellipses as described in the METHODS

section. The centers of the fitted ellipses are close to the origin,

indicating that flexion and extension torques have similar costs.
For each subject (subjects 9 through 14), the mean value and
SD of the eccentricities of the fitted ellipses at the 5 hand
positions are 0.879 � 0.061, 0.841 � 0.071, 0.849 � 0.052,
0.835 � 0.064, 0.833 � 0.128, and 0.818 � 0.067. The small
SDs indicate that the eccentricity is essentially constant as the
arm configuration changes. Subjects’ ellipse orientations are
39.4 � 8.0, 40.3 � 8.6, 35.3 � 5.1, 50.8 � 9.8, 47.3 � 6.6, and
34.5 � 8.7°, indicating that the orientation of the ellipse
changes little with large changes in joint angles. Finally, the
similarity of eccentricity and orientation of the fitted ellipses
show that the joint-torque isocost contours are approximately
the same for all subjects, with eccentricity of 0.843 � 0.073
and orientation of 41.3° � 9.4°. Keep in mind that identical
joint-torque isocost contours can lead to different hand-force
isocost contours, depending on the length of subjects’ upper
arms and forearms.

Assuming zero offset from the origin, a torque ellipse can be
expressed in the form �TW� � c, where c 	 0 is a constant (i.e.,
the WT2 model of the METHODS section). A typical W matrix
obtained by a least-squares fit to a joint-torque isocost con-
tour is

W � � 1 
 0.605

 0.605 1.16 �

The diagonal terms of the symmetric 2 � 2 positive-definite
matrix W indicate that elbow torques have a somewhat greater
cost associated with them than shoulder torques. The negative
constants in the off-diagonal entries mean that the total cost is
increased if the elbow and shoulder torques have an opposite
sign, and decreased if they have the same sign. We believe that
the decreased cost associated with having both torques be the
same sign can be reasonably attributed to the presence of
biarticular muscles, which create torque of the same sign about
both joints. Presumably the off-diagonal entries would be zero
in the absence of biarticular muscles—the cost would have no
dependency on the relative values of shoulder and elbow
torques.

In Mussa-Ivaldi et al. (1985), stiffness at the hand is also
interpreted in terms of a positive-definite stiffness matrix K,
invariant to the arm configuration when expressed as a stiffness
matrix R in joint space. If �	 is the vector of joint angle

FIG. 10. Isocost contours transformed from the hand-force space (Fig. 9B)
to the joint-torque space for subject 10 at 5 hand positions: CENTER, RIGHT,
LEFT, NEAR, and FAR.

FIG. 9. A: other test hand positions included the previous (0, 45 cm) hand
position (CENTER) rotated 45° clockwise (RIGHT) and counterclockwise
(LEFT) about the shoulder, as well as the points NEAR (0, 35 cm) and FAR
(0, 55 cm). B: reconstructed isocost contours for subject 10 at 5 hand positions:
CENTER, RIGHT, LEFT, NEAR, and FAR.
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displacements from the equilibrium point, the potential energy
stored in the springlike muscles can be written 1⁄2�	TR�	. By
the relation � � R�	, this potential energy can be rewritten as
1⁄2�TR�1�. Thus the inverse of the stiffness matrix R�1 can be
used as the W matrix in the WT2 model with the following
interpretation: iso-cost contours are contours of constant po-
tential energy, and subjects choose a hand force that minimizes
the stored potential energy in the spring-like muscles. The
inverse of the stiffness matrix found in Mussa-Ivaldi et al.
(1985), normalized so that the top left element is identical to
the W matrix given above, is

R�1 � W � � 1 
 0.305

 0.305 0.781 �

One difference from our result is that this matrix implies
greater cost for shoulder torques than for elbow torques.
Nonetheless, as we see in the next section, this R�1 matrix

reasonably predicts subjects’ behavior, somewhat better than
the identity matrix implicit in the T2 model, as a result of the
off-diagonal terms.

Biomechanical modeling

The 9 force-generation models described in the METHODS

section predict hand-force isocost contours as shown in Fig. 11
using the physiological parameters of Table 2. Note the strong
anisotropy of the MSk isocost contours, attributed to the large
PCSA of the uniarticular shoulder muscles. For the WT2
isocost contour shown, the positive-definite W matrix is the
inverse of the stiffness matrix R�1 of Mussa-Ivaldi et al.
(1985), as described above.

For 8 of the force-generation models, we calculated the
correlation coefficients between the experimental data of sub-
jects 1 through 8 at the (0, 45 cm) hand position (CENTER)
and the predicted data for each subject, using the physiological
parameters in Table 2 (Gomi 2000) and the measured upper
and forearm lengths for each individual subject. The results are
shown in Fig. 12. The HAND model is not included because it
predicts zero normal forces for all experiments, and thus can be
discarded as a candidate.

The results show that the MT2 (0.81 � 0.12) and MT3
(0.81 � 0.11) models fit the experimental data best, followed
by the WT2 (0.75 � 0.15) and T2 (0.66 � 0.16) models. The
MT1, MS1, MS2, and MS3 have low (or even negative)
correlation coefficients for most subjects. The MT1 and MS1
models predict polygonal isocost contours, predicting discon-
tinuities in the normal force plots, which are not evident in the
data. They can apparently be discarded relative to models with
exponents of �2.

A weakness of the approach for the MTk and MSk models is
that we are forced to assume physiological parameters, and

FIG. 11. Nine biomechanical models of force generation imply isocost
contours at the (0, 45 cm) hand position (CENTER) in the shoulder frame with
L1 � 30 cm, L2 � 35 cm, and the physiological parameters in Table 2. Each
model defines a CSI objective function in the hand-force space for a given arm
configuration.

FIG. 12. Correlation coefficients between experimental data for subjects 1
through 8 and biomechanical models for the (0, 45 cm) hand position
(CENTER).
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published parameters demonstrate significant variations. For
instance, the parameters used by van Bolhuis and Gielen
(1999) are significantly different. Using their parameters, the
correlation coefficients are as shown in Fig. 13. With these
parameters, the MS3 and MS2 models outperform the MT3
and MT2 models, although the correlation is somewhat less
than obtained with the MT2 and MT3 models under Gomi’s
parameters. One reason the MSk models become more com-
petitive is that the PCSA values of the shoulder uniarticular
muscles given by van Bolhuis and Gielen are closer to those of
the other muscles, meaning that the isocost contours of the
MSk models are more isotropic than those under the Gomi
parameters.

For a visual interpretation of the effect of different physio-
logical parameters (muscle PCSA and moment arms), Fig. 14
plots the MTk and MSk (k � 2, 3) joint-torque isocost contours
using the parameters from Gomi (2000) and van Bolhuis and
Gielen (1999). For the MT2 and MT3 models, Gomi’s param-
eters yield isocost contours more closely resembling the ex-
perimental data. For the MS2 and MS3 models, the isocost
contours obtained using van Bolhuis and Gielen’s parameters
are superior. This is consistent with the correlation coefficients
results.

To measure the sensitivity of the model predictions to the
physiological parameters, we randomly generated 16,000 sets
(1,000 sets for each of subjects 1 through 8 with both light and
heavy weights) of physiological parameters using means and
SDs derived from published data (Garner and Pandy 2003;
Gomi 2000; Gribble et al. 1998; Lemay and Crago 1996; van
Bolhuis and Gielen 1999), as shown in Table 3. For simplicity,
in the Monte Carlo tests we assume all physiological parame-
ters are uniformly distributed within 1SD of the mean. The
resulting correlation coefficients are 0.28 � 0.24 for MT1,

0.43 � 0.25 for MT2, 0.48 � 0.24 for MT3, 0.07 � 0.21 for
MS1, 0.24 � 0.21 for MS2, 0.31 � 0.21 for MS3, 0.66 � 0.16
for T2, and 0.75 � 0.15 for WT2. (Note that the T2 and WT2
models do not use the physiological parameters, so their SDs
show only the variation between subjects.) The SDs in the MT
and MS models are relatively large, meaning that the model
predictions change dramatically according to changes in the
physiological parameters.

To better understand the large SDs in the Monte Carlo tests,
we also calculated a sensitivity index for each parameter,
defined as (Pj/Ci)(
Ci/
Pj), where Ci is the correlation coeffi-
cient and Pj is the physiological parameter. This sensitivity is
a linear estimate of the percentage change in the variable Ci

caused by a 1% change in the parameter Pj. The sensitivity
index is relatively small for all parameters (the mean value is
�1 for most models, and the SD is very small except in the
MT1 and MS1 models), which shows that the model predic-
tions are not particularly sensitive to small changes in any
particular parameter. The large percentage variations in the
PCSA parameters reported in the literature, however, when
taken together, lead to significant variations in the model
predictions.

We also did Monte Carlo tests to compare the predictions
with the experimental data for subjects 9 through 14 at 5
different hand positions. The results are similar to the previous
results for subjects 1 through 8. Although there is little con-
clusive that we can say to validate or invalidate particular
optimization models (other than the MT1 and MS1 models,
which are inferior to their higher-exponent counterparts), the
simple WT2 model is competitive for any set of physiological
parameters. We return to this in the discussion.

FIG. 14. Joint-torque isocost contours predicted by MTk and MSk models
using the physiological parameters of Gomi (solid lines) and van Bolhuis and
Gielen (dashed lines). A: MT2 model. B: MT3 model. C: MS2 model. D: MS3
model.

FIG. 13. Correlation coefficients between experimental data for subjects 1
through 8 and biomechanical models for the (0, 45 cm) hand position
(CENTER) using physiological parameters taken from van Bolhuis and Gielen
(1999).
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D I S C U S S I O N

The primary findings of this paper can be summarized by 3
points. 1) The experimental results show that subjects apply
significant constraint forces, even though they are unnecessary
for the task. Each subject’s applied normal forces follow a
consistent pattern, indicating that the constraint force freedom
is resolved in a systematic manner. 2) The data can be inter-
preted in terms of a convex scale-invariant (CSI) objective
function on forces applied at the hand. The level sets of a
subject’s objective function represent the sets of hand forces
with equal “cost” to the subject. These level sets, or isocost
contours, can be reconstructed directly from the experimental
data without any biomechanical modeling. 3) The isocost
contours, when expressed in the joint-torque space, are approx-
imately invariant to the configuration of the arm. They are also
similar across subjects.

Our use of a CSI objective function is as a descriptor and
predictor of behavior in constrained tasks. It does not require
that we commit to a particular interpretation of it. For instance,
it may describe that subjects’ natural behavior minimizes some
notion of “effort.” Although we find this interpretation appeal-
ing, the objective function could also describe properties of the
motor control system that resist simple interpretation of behav-
ior as minimization of effort. For example, Krylow and Rymer
(1997) argue that smooth motions in motor control may arise
largely from intrinsic muscle mechanics.

Our observation that objective functions in the hand-force
space are CSI is consistent with most existing models for static
muscle load-sharing (sum of muscle group stresses or tensions
raised to the power of �1). Each of these models defines a CSI
objective function in the muscle stress or tension space, and
linear mappings (from muscle stress to muscle tension, from
muscle tension to joint torques, and from joint torques to hand
forces) preserve convexity and scale invariance. Previous re-
search has also found that as the direction of an applied force
remains fixed but the magnitude is scaled, the muscle activa-
tion and force patterns also scale, further evidence of scale
invariance (Buchanan et al. 1986; Flanders and Soechting
1990; Valero-Cuevas et al. 2000). We note that there is recent
evidence for an objective function that is the sum of linear and
squared terms of the muscle tension (FCT van der Helm,
personal communication), which is not scale invariant, but
such scaling effects would become more noticeable at larger
percentages of maximum force, which were not explored in
this study.

Relationship to stiffness ellipses

The approximately elliptical shape of the joint-torque isocost
contours, and their approximate invariance to arm configura-
tion, brings to mind the stiffness ellipse description of natural
stiffness at the hand (Gomi and Osu 1998; McIntyre et al.

1996; Milner 2002; Mussa-Ivaldi et al. 1985; Perreault et al.
2001). The joint-torque isocost contours of Figure 10 and the
correlation coefficients of Figures 12 and 13 also indicate that
the 3 unique entries of the symmetric positive-definite weight-
ing matrix W in the WT2 model provide a reasonable low-
complexity description of subject behavior. This model better
captures the shape of the joint-torque isocost contours (approx-
imately elliptical, not aligned with the �1–�2 axes) than the
joint-torque circle of the T2 model. The W matrix used in our
analysis is the inverse of the joint stiffness matrix from Mussa-
Ivaldi et al. (1985), which leads to the interpretation that
subjects minimize the potential energy stored in springlike
muscles while stabilizing the manipulandum.

It is important to keep in mind, however, that stiffness
ellipses and isocost contours are not the same thing; the former
express the behavior of the arm in response to brief perturba-
tions, whereas the latter express how subjects actively resolve
force freedoms.

Generalizations and assistive guides

The work described in this paper can be extended in at least
2 ways: by extending to partially constrained reaching tasks,
similar to the crank-turning work of Russell and Hogan (1989)
and Svinin et al. (2003), where the arm dynamics become
significant; and by increasing the number of degrees of free-
dom of the arm and the number of force freedoms to be
resolved. We have begun work toward the former extension by
designing and building a planar manipulandum that can imple-
ment arbitrary constraint curves in the plane (Worsnopp et al.
2004). This manipulandum is superior to traditional robotic
manipulanda at enforcing smooth constraints because the con-
straint is generated by a steerable wheel rolling on a table. For
the latter extension, the notions of orthogonal “tangential” and
“normal” (workless) force and torque subspaces must be gen-
eralized properly, according to the kinetic energy metric of the
manipulandum.

One reason we are interested in these generalizations is that
an eventual goal of this work is to design constraint surfaces to
assist a human in manipulating a load from one configuration
to another. Constraint surfaces are passive and inherently safe
to interact with, and a properly designed constraint surface or
guide rail can improve the ergonomics of a repetitive material
handling task. Before tackling this problem, however, we must
understand how humans naturally take advantage of the pres-
ence of kinematic constraints. The work described in this paper
is a step toward that understanding.

A P P E N D I X

To see that the normal force curve must be zero mean to obtain a
closed isocost contour by the integration procedure outlined in the
RESULTS section, consider one step of the integration process in Fig. 4.

TABLE 3. Mean value and SD of physiological parameters used in Monte Carlo statistics

se sf ee ef be bf

PCSA (cm2) 20.37 � .5.38 14.85 � .3.55 9.27 � .2.40 8.62 � .2.35 5.56 � .1.30 5.34 � .3.13
A1i (cm) 5.14 � .2.40 4.56 � .0.39 0 0 3.01 � .0.85 3.6 � .1.21
A2i (cm) 0 0 2.08 � .0.11 2.68 � .0.16 2.42 � .0.55 3.24 � .0.96

Derived from existing data in the literature (Garner and Pandy 2003; Gomi 2000; Gribble et al. 1998; Lemay and Crago 1996; van Bolhuis and Gielen 1999).
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The angle � and the associated tangent direction � are derived from
the normal force plot, � is the constraint angle, r is the current radius
of the isocost contour, d� is the increment of �, and dr is the
increment of r. We have

dr �
r

tan �� 
 ��
d� (A1)

fn �
ft

tan�� 
 ��
(A2)

where fn is the normal force and ft is the tangential force. Integrating,
we can write r as a function of �

r��� � r�0� exp��
0

� 1

tan �� 
 ��
d��� r�0� exp�1

ft
�

0

�

fnd�� (A3)

For the isocost contour to close, we must have r(2�) � r(0)

r�2�� � r�0� exp�1

ft
�

0

2�

fnd��� r�0�

implying

�
0

2�

fnd� � 0 (A4)

From Eq. A2 we have

� � � 
 tan�1 � ft

fn
�

and taking the derivative we get

d� � d� �
ft

f n
2 � f t

2 dfn

So Eq. A4 can be written

�
��0

��2�

fnd� ��
��0

��2� ft fn

f n
2 � f t

2 dfn � 0

Because

�
��0

��2� ft fn

f n
2 � f t

2 dfn �
ft

2
ln �f n

2 � f t
2����0

��2� � 0

we have

�
0

2�

fnd� � 0

We know that � � (�/2) � � (for fn � 0) or � � (3�/2) � � (for fn 	
0), so finally we get

�
0

2�

fnd� � 0

as the condition for a closed curve, which means the normal force plot
must have zero mean.
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