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Abstract

Robot force control implemented by means of passive mechani-
cal devices has inherent advantages over active implementations
with regard to stability, response rapidity, and physical robustness.
The class of devices considered in this paper consists of a Stew-
art platform-type mechanism interconnected with a network of ad-
justable mechanical elements such as springs and dampers. The
control law repertoire of such a device, imagined as a robot wrist, is
given by the range of admittance matrices that it may be programmed
to possess. This paper focuses on wrists incorporating damper net-
works for which the admittance matrices reduce to accommodation
or inverse-damping matrices.

We show that a hydraulic network of fully adjustable damper el-
ements may attain any diagonally dominant accommodation matrix.
We describe the technique of selecting the individual damping coef-
ficients to design a desired matrix. We identify the set of dominant
matrices as a polyhedral convex cone in the space of matrix entries,
and show that each dominant matrix can be composed of a positive
linear combination of a fixed set of basis matrices.

The overall wrist-accommodation matrix is obtained by project-
ing the accommodation matrix of the damper network through the
wrist kinematics. The linear combination of the dominant basis ma-
trices projected through the wrist kinematics generates the entire
space of mechanically implementable force-control laws. We quan-
tify the versatility of mechanically implementable force-control laws
by comparing this space to the space of all matrices.
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1. Motivation and Background

In precision tasks such as robotic assembly, force control
seems to be the natural choice and is widely believed to be su-
perior to pure position control (Ang and Andeen 1995; Trong,
Betemps, and Jutard 1995; Hogan 1985; Whitney 1987). In a
typical force-control scheme, the motion of a robot is guided,
according to a predefined control law, by the forces the robot
encounters while interacting with the environment. The per-
formance of such a scheme depends on the particular force-
control law and the nature of its implementation.

Force-control laws may be broadly classified into two
types: passive laws and active laws. A passive law describes
a force-motion behavior that may, in principle, be exhibited
by some passive physical system. Active laws, on the other
hand, require the presence of a power source in the system.
Since a passive system is guaranteed stable (Desoer and Kuh
1969), a passive control law, mimicking a passive system, is
also stable. While an actively controlled system may certainly
be stable, it isonly a passive system that remains stable at all
frequencies while interacting with arbitrary passive environ-
ments (Colgate and Hogan 1988) that are typical in robotic
assembly.

A passive force-control law may be implemented either by
a software algorithm or by an unpowered mechanical system.
In a software-controlled system, active components (such as
motors) are controlled in such a way that the overall sys-
tem emulates a passive behavior (Anderson 1990; Chapel and
Su 1992; Newman and Dohring 1991; Wang and Vidyasagar
1990). Unfortunately, the speed and performance of such
a system is limited by the control-system bandwidth (Whit-
ney 1987), force-feedback gain (Hogan and Colgate 1989),
response time of the actuators, and noncollocation of the sen-
sors and actuators (Eppinger 1988).
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Unpowered devices with fixed mechanical properties lack
the versatility offered by software controllers. An attractive
alternative for implementing force-control laws is the use of
passive mechanical devices with user-programmable proper-
ties. Such a device is able to regain some of the versatility
of its active counterpart. Rather than involving the whole
robot arm for the fine positionings necessary for the comple-
tion of most assembly tasks, using a low-inertia robotic wrist
mounted at the end of the robot arm will have the advan-
tage of higher mechanical bandwidth (Sharon, Hogan, and
Hardt 1989). This was demonstrated by the success of the
remote center of compliance (RCC) wrist in peg-in-hole as-
sembly (Drake 1977; Whitney 1982). Biological evolution
also seems to have taken notice of this fact, as is apparent in
human manipulation. High-power tasks that do not a require
high bandwidth or a high dexterity (e.g., pushing a heavy ta-
ble, swinging a baseball bat) generally directly involve the
powerful muscles of the upper arm. Low-power tasks requir-
ing a high bandwidth (such as typing) and/or a high dexter-
ity (such as writing) tend to decouple the heavier upper arm
and, instead, use the low-inertia fingers (Cutkosky and Wright
1986).

Recently we have noted a renewed interest in passivity
(Charles 1994; Davis and Book 1997) in such diverse areas
as haptic displays (Peshkin, Colgate, and Moore 1996), med-
ical robotics (Troccaz and Lavalle 1993), and exercise ma-
chines (Li and Horowitz 1995), in addition to applications in
automated assembly (Gershon 1994; Ang and Andeen 1995).
This work falls in the general category of research that seeks
to quantitatively characterize passive devices in terms of their
limitations and utilities. In this paper we focus on the use
of the programmable passive mechanical robot wrist, which
by virtue of its inherent mechanical properties, allows a sim-
ple and robust implementation of stable and fast force-control
laws.

1.1. Conceptual Design of a Programmable Passive Wrist

The passive wrist considered in this paper consists of a set of
unpowered hydraulic cylinders with their ports interconnected
via a hydraulic network of programmable damping constric-
tions. A simple sketch of such a wrist possessing only 2 DOF
is shown in Figure 1. The wrist consists of two hydraulic
cylinders in a parallel configuration. The adjustable constric-
tions of the interconnecting hydraulic network allow one to
“program” a desired accommodation (inverse-damping) ma-
trix. Although robotic arms have some structural accommo-
dation properties, the accommodation of the end-point device
is assumed to be higher and to dominate the overall accom-
modation.

Figure 2 shows a more realistic example—a six-cylinder
hydraulic wrist with a parallel manipulator geometry, often
generically called a Stewart platform. The base of the wrist
is attached to the main robot body and the platform extends

Fig. 1. A simple parallel 2-DOF passive mechanism. The
ports of the hydraulic cylinders are interconnected through
a network of tunable dampers. The accommodation of the
mechanism, i.e., the physical relationship betweenV andF ,
depends on the damper values.

to the gripper. The interconnection topology of the damper
element network presented in Figure 1 is called thefully con-
nected latticepattern, and is considered to be the most gen-
eral network for realizing accommodation matrices (Ceder-
baum 1958). This interconnection topology is repeated for
every pair of cylinders for the wrist in Figure 2. The 6-DOF
wrist therefore requires a total of 66 damper elements. Al-
though robot arms have some inherent structural accommo-
dation properties, the accommodation of the end-point de-
vice will be much higher, and will dominate the overall ac-
commodation, especially for nonbackdrivable robots (Trong,
Betemps, and Jutard 1995).

The accommodation matrix that a wrist imparts to a rigidly
held workpart is called itstask-space accommodation matrix.
This matrix depends on the hydraulic conductance matrix of
the network (thejoint-space accommodation matrix), as well
as the spatial layout of the cylinders. Two factors in turn con-
tribute to the joint-space accommodation matrix: the values
of the individual damper elements, and the topology of their
interconnection.

Since we have a fixed choice of the damper-network topol-
ogy, the only other means to program an accommodation ma-
trix is either through the cylinder layout (i.e., the kinematics
of the wrist), or by modifying the damper-element values.
Also, since for a given assembly task the wrist executes small
motions which do not significantly influence its spatial geom-
etry during the task, this paper assumes, in addition, a fixed
nominal configuration of the wrist. Thus to program an ac-
commodation matrix we only explore the possibility of vary-
ing the damper elements. In contrast, in the approach taken
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Fig. 2. A 6-DOF Stewart platform-type robot wrist. Every
pair of cylinders is connected through a fully connected net-
work of tunable dampers. The overall accommodation of the
wrist may be “programmed” by carefully selecting the damper
values.

by Charles (1994) and Davis and Book (1997), the values of
the damper elements were held fixed, whereas the coupling
between the degrees of freedom were controlled. Control of
coupling may be obtained in our context, either by chang-
ing the network topology or by extreme cases of the damper
values.

A brief description of the accommodation control law, the
class of control laws which we intend to implement through
passive hydraulic mechanical devices, follows next.

1.2. Accommodation Control Law

Imagine that a workpiece is held by a wrist such as shown
in Figure 2, and is moving with a nominal velocityv0 in the
absence of any assembly force;v0 is therefore the velocity of
the robot/workpiece under pure position control. When the
workpiece comes in contact with its mating part, its resultant
velocityv may be expressed as

v = v0 + Af , (1)

wheref is the force resulting from unavoidable positional
errors between the mating parts, andA is the accommodation

matrix that maps forces imparted on the workpart to output
velocities. Each ofv, v0, andf is a six-vector (translational
and rotational velocities, or forces and torques), andA is a
6 × 6 matrix.

Equation (1) represents the force-control law that we in-
tend to implement with programmable passive wrists. The
control law is essentially an additive modification to the nom-
inal velocityv0 of the wrist. The deviation of the wrist motion
from the nominal velocity (given byAf ) is a function of the
task-space accommodation matrixA of the wrist. The suc-
cess of the control strategy lies in the proper choice ofA such
that the resultant velocityv reduces relative positional errors
between the mating parts. The passive wrist under discussion
is programmed to possess the chosenA.

The force-velocity model adopted in eq. (1) is also known
as thegeneralized damper modelof a system. This is to be
contrasted with the force-displacement model called the gen-
eralized spring model that was adopted in the research behind
the RCC wrist (Loncaric 1987). We have demonstrated the
utility of programming a manipulator’s linear damping char-
acteristics so that for some classes of assembly tasks the forces
that arise from positional errors of the mating parts in as-
sembly naturally result in the motions that correct the errors.
These types of tasks, which we callforce-guided assembly
(Peshkin, Goswami, and Schimmels 1993), can be performed
under force control alone, with no other sensory information
(Peshkin 1990; Schimmels and Peshkin 1990).

1.3. Problem Statement and Summary of Approach

As a demonstration of the utility of programmable passive de-
vices, we showed (Goswami, Peshkin, and Colgate 1990) that
an unpowered hydraulic wrist can be programmed to possess
a center of accommodation(analogous to acenter of com-
pliance) anywhere in a substantial volume of space around
it.

An accommodation matrix does not necessarily need to
have a center to be useful in assembly operations, and often
they do not (Schimmels and Peshkin 1992; Ang and Andeen
1995). In the current work, we characterize the complete
range of task-space accommodation matrices, diagonalizable
(i.e., with a center) and otherwise, that may be mechanically
implemented by a programmable passive wrist.

Accommodation matrices which arein principleattainable
with a network of passive dampers are calledrealizablematri-
ces, according to network theory (Weinberg 1962). However,
realizable accommodation matrices exist for which no rou-
tine way of computing the necessary network parameters is
available. Bysynthesizablematrices, we refer to those ma-
trices that the wrist can be systematically (algorithmically)
programmed to possess.

In the present context, the set of matrices obtained by pro-
jecting the synthesizable matrices to the task space are the
mechanically implementable accommodation matrices.
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The approach presented in this paper can be summarized
as follows:

1. In view of the physical analogy between the electri-
cal and mechanical domains, we identify a network
of tunable passive dampers as an electrical network of
positive resistors. We adapt results from the electrical
network theory, and determine that a certain class of
matrices called the dominant matrices constitutes the
class of synthesizable joint-space accommodation ma-
trices of the passive wrist mechanism.

2. We project the dominant matrices through the wrist
kinematics by means of congruence transformation to
obtain the class of synthesizable task-space accommo-
dation matrices. This represents the control-law reper-
toire that we may achieve with programmable passive
dampers.

3. We show the technique of selecting the individual
damping coefficients to achieve a desired control law.

4. The synthesizable matrices are shown to form a poly-
hedral convex cone in the space of matrix entries and
each matrix can be composed of a positive linear com-
bination of a fixed set of basis matrices.

5. To estimate the range of the passive control laws against
the active laws, we compare the space of synthesiz-
able matrices to a standard class of matrices (positive
semidefinite matrices). This comparison tool can be
graphically visualized for low-dimensional cases.

6. Finally, we detail the accommodation-matrix design
procedure with step-by-step examples.

2. Synthesis of Joint-Space Matrices: Visualiza-
tion and Comparison

Analogues exist among passive devices in different physical
domains—electrical, mechanical, hydraulic, etc.—and may
be exploited to model physical systems (Karnopp and Rosen-
berg 1975). Understanding these physical analogies makes it
possible to apply results obtained in one physical domain to
another.

2.1. Results from Electric Network Theory

A general representation of a linear dynamic system may be
in terms of its admittance or impedance matrix. Dynamic
behavior ofsingle-element-kindmechanical systems may be
expressed by special forms of admittance matrices. The be-
havior of a network of linear springs is expressed in terms of
its compliance matrix. Similarly, the dynamic behaviors of
a generalized damper and a generalized mass are described
by accommodation matrices and inverse-inertia (or mobility)
matrices, respectively.

Passive networks satisfy the so-calledpassivity condition,
which implies that matrices adopted by passive devices must

be positive real (Weinberg 1962). If we remove gyrators1

from a general passive device, the admittance matrix must be
symmetric (Anderson and Vongpanitlerd 1973; Desoer and
Kuh 1969). If, in addition, we remove capacitors and induc-
tors (or their mechanical analogues) from the possible range
of available components, we are left with a positive semidef-
inite (PSD) matrix, which is a matrix with real entries.

The exclusion of transformers leaves us with a purely re-
sistive circuit that possesses the so-calledno-amplification
property. Cederbaum (1958) generalized the idea of the
no-amplification property, and showed that the accommoda-
tion matrix of a purely resistive circuit must be aparamount
matrix.

DEFINITION 1. Paramount matrix.A real symmetric matrix
is said to beparamountif any of its principal minors is not
less than the absolute value of any other minor built on the
same rows (or columns) by replacing any number of columns
(or rows).

It has been shown that being paramount is a necessary
but unfortunately not a sufficient condition for realizability.2

There are presumably other restrictions on realizability that
have not yet been identified. A sufficient, but overly restric-
tive, condition for an accommodation matrix to be attainable
is that it bedominant(Weinberg 1962; Kim and Chen 1962).

DEFINITION 2. Dominant matrix.A real symmetric matrix
is said to bedominantif each of its main diagonal entries is
not less than the sum of the absolute values of all other entries
in the same row (or column).

There are, in fact, examples of networks whose accom-
modation matrices are not dominant (Goswami 1993). There
are also examples of paramount matrices for which it can be
proved that there is no realization. Dominant matrices repre-
sent an important class of matrices in the synthesis of passive
resistive networks, because there is a methodical procedure
for synthesizinganydominant matrix. Therefore for our pur-
pose, dominant matrices are classified as the synthesizable
matrices.

2.1.1. Synthesis of a General Dominant Matrix (Weinberg
1962; Kim and Chen 1962)

It is known that a network of 2n nodes or junction points is the
most general network for realizing ann × n accommodation
matrix, wheren is the number of hydraulic cylinders (Ceder-
baum 1958). Figure 3 shows the arrangement of dampers
in the hydraulic network connecting theith cylinder and the
kth cylinder;Fi andFk are the forces applied on the respec-

1. Gyrators are one of the five fundamental passive elements; the other four are
resistors, capacitors, inductors, and transformers (Karnopp and Rosenberg
1975).
2. An exact necessary and sufficient condition exists for realizability, but
testing a matrix for realizability using this condition is intractable (Civalleri
1968).
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Fig. 3. The hydraulic network of dampers connecting theith
cylinder and thekth cylinder of a Stewart platform-type as-
sembly wrist. This network pattern, repeated for every pair
of cylinders, lets one synthesize any dominant matrix in the
joint space.

tive cylinders. The coefficients of accommodation (inverse of
damping coefficient) of the damper elements in the figure are
given by

ai = Aii −
n∑

m=1
m6=i

|Aim|, ak = Akk −
n∑

m=1
m6=k

|Akm|, (2)

aik1 = |Aik| − Aik, aik2 = |Aik| + Aik, (3)

whereAik is the entry of theith row andkth column of the
desired accommodation matrixA.

The pattern of interconnection between theith and thekth
cylinders, sometimes called thefully connected lattice pat-
tern, is repeated for every pair of cylinders. It can be shown
that depending on the sign of the off-diagonal terms of the ac-
commodation matrix, the circuit reduces to two parallel arms
of equal accommodation,aik1, or the two cross-arms of equal
conductance,aik2. A zero off-diagonal term implies a decou-
pling of the respective cylinders, and from eq. (3), by setting
Aik = 0, one observes that the coefficients of accommodation
of both the parallel and the cross-arms become zero. This is
equivalent to disconnecting those branches from the network.
For realizing ann × n accommodation matrix, therefore we
needn(2n− 1) dampers, although a maximum ofn2 of those
are used to synthesize a particular accommodation matrix.

2.2. Dominant Basis Matrices

We have discovered a particularly useful property of dominant
matrices which proves to be very useful in characterizing the
range of mechanically implementable control laws. We first
state the property, as follows.

PROPERTY1. Any n × n dominant matrix can be expressed
as a non-negative linear combination of a basis set ofn2 dom-
inant matrices. These we call thedominant basis matrices.

The basis matrices can be compared with the basis vectors
spanning a linear vector space where any arbitrary vector can
be expressed as a linear combination (positive and negative)
of the basis vectors. According to the above property, any
n × n dominant accommodation matrixA may be expressed
as

A =
n2∑
i=1

αiAi , (4)

where theαi are non-negative scalar coefficients, and theAi

are the dominant basis matrices.
As an example, let us take a general 3×3 dominant matrix

A of the form


 a b d

b c e

d e f


.

Dominance requires the following:

a ≥ |b| + |d|, (5)

c ≥ |b| + |e|, (6)

[3pt]f ≥ |d| + |e|. (7)

Following eq. (4), matrixA may be expressed as a non-
negative linear combination of the dominant basis matrices
A1...9,

A1 =

 1 0 0

0 0 0
0 0 0


 , A2 =


 0 0 0

0 1 0
0 0 0


 ,

A3 =

 0 0 0

0 0 0
0 0 1


 , (8)

A4 =

 1 1 0

1 1 0
0 0 0


 , A5 =


 1 −1 0

−1 1 0
0 0 0


 ,

A6 =

 1 0 1

0 0 0
1 0 1


 , (9)

A7 =

 1 0 −1

0 0 0
−1 0 1


 , A8 =


 0 0 0

0 1 1
0 1 1


 ,

[3pt]A9 =

 0 0 0

0 1 −1
0 −1 1


 , (10)

along with the non-negative coefficients
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α1 = a − (|b| + |d|), α2 = c − (|b| + |e|),
α3 = f − (|d| + |e|), (11)

α4 = |b| + b

2
, α5 = |b| − b

2
,

α6 = |d| + d

2
, (12)

α7 = |d| − d

2
, α8 = |e| + e

2
,

α9 = |e| − e

2
. (13)

We note that each dominant basis matrix is PSD of rank 1;
i.e., each has only one positive eigenvalue. Also we observe
that althoughn2 dominant basis matrices are necessary to
represent the full range ofn × n dominant matrices, for any
givenn×n matrix, we need only a set ofn(n+1)

2 basis matrices.
This is because, depending on the sign of the off-diagonal
entries, some of theαi become zero.

2.3. Space of Dominant Matrices

The entire space of dominant matrices is indicative of the
range of control laws implementable by the passive network
of dampers. The characterization of the volume of dominant
matrices in a matrix space, which we do in this section, is
facilitated by the use of dominant basis matrices. First we
explain the idea behind the characterization of matrix spaces
as adopted in this paper.

Let us associate eachn×n dominant matrix with a point in
Rn(n+1)/2, wheren(n + 1)/2 is the number of distinct entries
in ann × n symmetric matrix. The definition of dominance
translates to a set of inequality constraints that must be sat-
isfied by the entries of the matrix. The portion ofRn(n+1)/2

delimited by these constraints represents the space of domi-
nant matrices.

Since any non-negative multiple of a dominant matrix is a
dominant matrix itself, it is clear that the space of dominant
matrices must be a cone. Indeed, the space of alln × n dom-
inant matrices represents a polyhedral convex cone (PCC) in
Rn(n+1)/2. The cone hasn2 edges, each corresponding to
one of the dominant basis matrices. The edges of the PCC
coincide with the boundary of the cone representing PSD ma-
trices. The representation of certain classes of matrices as
cones is well known in linear algebra (Hill and Waters 1987).

For example, for 2× 2 dominant matrices, we have

the following four dominant basis matrices:

[
1 1
1 1

]
,[

1 −1
−1 1

]
,

[
1 0
0 0

]
, and

[
0 0
0 1

]
. Each of these

basis matrices corresponds to a point along one of the rays
defining the edge of the PCC, namely, the points (1, 1, 1),
(1, -1, 1), (1, 0, 0), and (0, 0, 1). See Figure 4 for a sketch

Fig. 4. The polyhedral convex cone (PCC) representing the
entire range of 2× 2 dominant matrices is shown. The PCC
is truncated by a 45◦ inclined plane.

of the PCC representing the characteristic volume of 2× 2
dominant matrices and the four rays generating the dominant
PCC. For higher-order matrices, our analysis remains valid,
although the graphic visualization becomes impossible.

2.4. Comparison between the Spaces of Dominant and PSD
Matrices

To obtain a measure of the space of dominant matrices, we
compare it with the space of PSD matrices. PSD matrices
represent the largest class of matrices that we might hope to
synthesize with a gyratorless passive system. This implies,
as we verify later, that the set of dominant matrices forms a
proper subset of PSD matrices. In addition, PSD matrices are
well studied, and a feel for their character and range already
exists. By comparing dominant matrices with them would
place the class of dominant matrices in a known perspective.

The set ofn×n PSD matrices is known to represent an in-
finite cone inRn(n+1)/2 (Hill and Waters 1987). To compare
its volume with that of the dominant PCC, we first analyze
a low-dimensional example with the help of graphical repre-
sentation, and generalize the results to the higher dimension.

A sufficient condition for a symmetric matrix to be PSD
is that the determinant of each of its principal submatrices is
non-negative. Applying this condition to a general symmetric
matrix leads to a set of inequalities that must be satisfied by

the matrix entries. For the 2× 2 PSD matrix

[
a b

b c

]
, the

inequalities are

a ≥ 0 and ac − b2 ≥ 0. (14)

The complete set of(a, b, c) that satisfies the above condi-
tions lies within a cone with an elliptical cross-section touch-
ing thea-axis and thec-axis; see Figure 5. The vertex of
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Fig. 5. The elliptical cone representing the entire class of
2 × 2 PSD matrices is shown. The cone is truncated by a
45◦ inclined plane to reveal its elliptical cross-section.

this cone is at the origin(0, 0, 0). Any point inside the cone
represents a positive-definite matrix (which is also positive
semidefinite by definition), whereas the boundary points of
the cone represent thestrictly PSD matrices, one of whose
eigenvalues must be zero. Generalizing, the space of alln×n

symmetric PSD matrices is a hypercone inRn(n+1)/2.
Since each dominant basis matrix as well as its non-

negative multiples are strictly PSD, the edges of the domi-
nant PCC must coincide with the boundary of the PSD cone.
The entire dominant PCC must therefore lie within the PSD
cone as we confirm by superposing the cones; see Figure 6.
We compare the overall sizes of the cones by comparing their
footprints on the same intersecting plane. This is reasonable,
since volumes of cones of the same height are proportional
to their footprints. In Figure 6, the intersecting plane is at
unit-normal distance from the origin.

The set of all 6×6 PSD matrices therefore represents a cone
in R21, and its intersection with a 20-dimensional hyperplane
perpendicular to its axis gives rise to a hyperellipsoid inR20.
The set of all 6× 6 dominant matrices, on the other hand,
represents a PCC in aR21. This PCC has 36 edges, and
its intersection with a 20-dimensional hyperplane generates a
polytope inR20 with 36 vertices. Since each dominant basis
matrix is strictly PSD, the vertices of this polytope lie on the
boundary of the PSD hyperellipsoid.

3. Synthesizable Task-Space Matrices

The procedure for realizing an accommodation or a compli-
ance matrix for a particular task is most naturally undertaken
in the joint space, as we saw in the last section. However,
the most convenient way of describing a matrix suitable for a
given task is in terms of the task-space variables (Schimmels

Fig. 6. The superposition of Figures 4 and 5. This shows
that the dominant PCC is completely inside the PSD cone,
implying that dominant matrices are a proper subset of the
PSD matrices.

and Peshkin 1992; Ang and Andeen 1995). The task-space
and joint-space accommodation matrices,At andAj , respec-
tively, are related by

At = (tjJ )Aj (
t
jJ

T ), (15)

wheret
jJ is the wrist Jacobian.

The above equation is an example ofcongruence transfor-
mationbetweenAj andAt . A congruence transformation,
according toSylvester’s law of inertia(Horn and Johnson
1985), preserves the “inertia” of a matrix. Inertia in this con-
text is an ordered triple representing the numbers of positive,
negative, and zero eigenvalues of a matrix. This law of inertia
implies that the cone representing the PSD matrices is invari-
ant under congruence transformation; i.e., no matter what
Jacobian is used, the joint-space PSD cone and the task-space
PSD cone are identical. The interior and boundary points of
the joint-space cone map respectively to interior and bound-
ary points of the task-space cone. Intuitively, since positive
semidefiniteness is associated with the basic requirements of
passivity of a network, a device that is passive in the joint
space is expected to remain passive in the task space as well.

The property of dominance is not preserved under the
above congruence transformation. From a physical stand-
point, this can be understood by the fact that the manipulator
links are mechanical equivalents of electrical transformers.
Therefore, when the hydraulic network is viewed from the
task space, it is a network of resistancesand transformers,
having the capability of possessing any PSD matrix, given
the full flexibility of transformer parameters (which for a ma-
nipulator are functions of the link lengths and the joint angles).
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To take full advantage of this, the design of the assembly wrist
should be carefully planned.

How does theentirerange of joint-space dominant matri-
ces transform to the task space? The answer may be logically
presented as in the following. Since each dominant basis ma-
trix is strictly PSD in the joint space, they remain so after
they are projected to the task space. These projected matrices
constitute the edges of the synthesizable task-space PCC. The
boundary of the task-space PSD cone therefore contains the
edges of the synthesizable task-space PCC. Consequently, the
vertices of the polytope obtained by truncating the synthesiz-
able task-space PCC with a hyperplane are on the boundary of
the intersection of the task-space PSD cone with the same hy-
perplane. However, the synthesizable PCC in the joint space
and in the task space do not, in general, have the same shape;
this depends on the manipulator Jacobian.

4. Examples

In the rest of the paper, the range of mechanically imple-
mentable accommodation matrices are computed for several
manipulators. We first identify the set of passive accommo-
dation control laws for simple 2-DOF manipulators for which
the results may be graphically visualized. Next we take up the
example of a planar 3-DOF assembly wrist, for which some
results may be graphically presented. Finally, we provide
guidelines for accommodation matrix design for full 6-DOF
wrists.

4.1. Range of Control Laws for 2-DOF Mechanisms

Let us consider a 2-DOF passive parallel mechanism, the
cylinders of which are interconnected by the fully connected
network discussed in Section 2.1, Figure 3. In Figure 7, we
show the PSD ellipse and the joint-space dominant quadrilat-
eral (in dashed lines) for two different configurations of such a
mechanism. The joint-space quadrilateral is mapped through
the mechanism’s Jacobian, according to eq. (15), to obtain the
task-space quadrilaterals shown (in solid lines) superposed in
the figures.

We might want to determine the posture of the manipulator
that gives us the maximum ranges of synthesizable matrices in
the task space. For this example, the area of the PSD ellipse is
π√
2
, whereas the joint-space quadrilateral with an area of

√
2

is, curiously, the largest quadrilateral that may be inscribed
into the ellipse. The joint-space and task-space quadrilaterals
are identical when the Jacobian is an identity matrix. This
happens when the joint angles are 0◦ and 90◦.

Depending on the configuration of the mechanism, the
dominant PCC for this example and in general may degen-
erately map into a much smaller task-space PCC. In the cur-
rent example, the joint-space quadrilateral may reduce to a
triangle, a line, or even a point in the task space. The reduc-

tion in the task-space PCC as the manipulator approaches a
singularity is shown in Figure 9b.

Although this paper discusses robot wrists of parallel kine-
matics, passive devices of serial kinematics may also be use-
ful as macro-manipulators (Charles 1994) or micromanipu-
lators for assembly (Schimmels and Huang 1995). Without
going into the details of how to physically interconnect the
joints of a serial manipulator with a damper network, we may
simply consider the effect of its Jacobian on the joint-space
dominant matrices. We show this for two different config-
urations of a 2-DOF serial manipulator of unity link lengths
(Fig. 8). In Figure 9a, we show the reduction in the area of the
task-space quadrilateral as the serial manipulator approaches a
singularity.

4.2. Center of Accommodation for Planar Wrists

Recall that the RCC wrist possesses a center of compliance
near the tip of the rigidly held peg which is to be inserted into
a chamfered hole. Over what range of space can we move the
center of accommodation of our damper-based wrist, simply
by selecting the damper-element values? To determine this,
we need to choose a diagonal accommodation matrix at a point
in the task space, transform it to the joint space, and test for the
dominance of the resulting matrix. We assume that the fixed-
topology fully connected network interconnects each pair of
cylinders, and that the configuration of the wrist is kept fixed
during an assembly task.

By analogy to the term “forward kinematics,” the compu-
tation of the task-space accommodation matrix from the given
joint-space matrix may be called theforward-accommodation
transformationproblem. This is relevant when we need to
characterize the range of mechanically implementable ac-
commodation matrices, as is done in this paper. The re-
verse problem, that of determining the joint-space accom-
modation matrix from a desired task-space matrix, may be
called theinverse-accommodation transformationproblem.
The inverse-accommodation transformation problem is rel-
evant when a desired control law, expressed by means of a
task-space accommodation matrix, needs to be implemented.
We have already seen the forward-accommodation transfor-
mation relationship in eq. (15). The inverse-accommodation
transformation relationship is given by inverting that equation
as

Aj = (
j
t J )At (

j
t J

T ), (16)

wherej
t J

T = (tjJ
T )

−1
, which always exists for nonredun-

dant manipulators in nonsingular configurations. The above
procedure is conducted for a mesh of points around the planar
wrist, considering different diagonal task-space accommoda-
tion matrices at each selected point. Although it is difficult
to present in a compact form an exhaustive analysis for this
mechanism, one representative example may easily demon-
strate the basic procedure.
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Fig. 7. Two different configurations (bottom) and the corresponding synthesizable accommodation matrices (top) of a 2-DOF
planar parallel manipulator. The ranges of synthesizable matrices are represented by the quadrilaterals inscribed in the PSD
ellipse. The dominant quadrilateral (dashed line) is also shown for comparison.
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Fig. 8. An example analogous to that of Figure 7, for a 2-DOF serial manipulator.
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Fig. 9. When a manipulator approaches a singularity, the range of synthesizable matrices reduces. This is depicted for 2-DOF
serial and parallel manipulators. In each figure, the three task-space quadrilaterals in dashed, dash-dot, and dotted lines
represent the progressively diminishing range of synthesizable matrices.
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Figure 10 presents a Stewart platform-type planar wrist
comprising three cylinders. Both the top (the platform) and
the bottom (the base) plates are of unit lengths—the length
of a plate being the distance between the cylinder attachment
points. In the nominal configuration, each cylinder is of unit
length, and they make 60◦ angles with each other at the attach-
ment points. At this configuration, the wrist may project its
center of accommodation at any point in the region indicated
as shaded in the figure.

The substantial expanse of the shaded region is demon-
strative of the utility of programmable passive wrists. This
is to be compared with the performance of the wrist reported

Fig. 10. The planar wrist may be programmed to place its cen-
ter of accommodation at any point in the shaded region. In the
depicted configuration, the platform, the base, and the three
cylinders are all of unit length. The cylinders are oriented at
60◦ with each other as indicated. The shaded parallelogram
is constructed out of four straight lines: EC, CF, FB, and BE.
Lines EC and FB are coincident with the axes of the left and
right cylinders, respectively; lines EB and CF are parallel to
the axis of the middle cylinder (AD).

by Cutkosky and Wright (1986), which may project its center
of compliance on a line within a restricted region. It is not
our objective to explore in detail the center of accommodation
properties of the passive wrist, but to include matrices without
“centers” as well. We do, however, mention one interesting
fact: the shaded region in Figure 6 strongly depends on the
nominal geometry of the wrist. In particular, we have veri-
fied with a few other configurations that this region appears to
be completely determined by the cylinder orientations. Even
for a 6-DOF wrist of spatial kinematics, this property remains
valid. For the nominal configuration of such a wrist (shown in
Fig. 2), the volume of the programmable center of accommo-
dation is determined by the planes generated by the axes of the
adjacent cylinders. Similar to the parallelogram-shaped area
of the planar wrist, the spatial wrist exhibits a volume in the
shape of a rhombic parallelepiped. Given the nature of the
nonlinear inequalities involved, it is difficult to analytically
describe the region of synthesizable accommodation centers.
As an alternative, we adopted a computational search scheme.

4.3. Accommodation-Matrix Design Technique

To carry out the detailed computation, three coordinate frames
are set up for the transformation of the matrices: (1) the task-
space frame {t}, with axesXt, Yt ; (2) the platform frame {p},
with axesXp, Yp; and (3) the joint-space frame {j }. The ori-
gin of {t} is located at(tx, ty), with respect to {p}. The
placement of {p} does not depend on the current task, and
is generally kept fixed at a convenient position, making the
transformation between {j } and {p} a constant. The place-
ment of {t}, however, depends on the current task. Following
eq. (16), we may write

Aj =
(

(
j
pJ )(

p
t J )

)
At

(
(
j
pJ )(

p
t J )

)T

, (17)

wherej
pJ andp

t J are the Jacobian matrices from {j } to { p}
and {p} to { t}, respectively.

For the nominal configuration of the planar wrist, we have

j
pJ =


 0.5 0.867 −0.433

−0.5 0.867 −0.433
0.5 0.867 0.433


 ,

p
t J =


 1 0 ty

0 1 −tx
0 0 1


 ,

(18)

and the shaded region corresponds to anyAt of the form

At =

 atx 0 0

0 aty 0
0 0 atθ


 = β


 3 0 0

0 1 0
0 0 γ


 , (19)

whereβ ≥ 0 and 0≤ γ ≤ 8.
As a concrete example, we consider a diagonalAt with

atx = 3, aty = 1, andatθ = 6, which is considered at a



Goswami and Peshkin / Mechanically Implementable Accommodation Matrices 13

task-space point,tx = 0.1, ty = 0.6. The correspondingAj

according to eq. (17) is

Aj =

 1.79 1.08 0.65

1.08 5.53 −3.18
0.65 −3.18 4.01


 . (20)

In order for the joint space of the wrist to possess thisAj ,
we need three fully connected networks, each interconnect-
ing a pair of cylinders. The accommodation values of the
damper elements are computed using eqs. (2) and (3). We il-
lustrate the network interconnection in Figure 11. The values
of accommodation (m/N-sec, in the SI system) of the damper
elements are shown on the figure.

Significant insight into eq. (17) may be obtained by noting
that theith row of j

pJ is
[

lix liy r i × li
]
, whereli =

lix î+liy ĵ is the direction vector of theith cylinder axis, andr i

is the vector from the origin of {p} to the attachment point of
theith cylinder with the top plate. For the specified nominal
configuration,l1x = l3x = cos(60◦), l2x = cos(120◦), l1y =
l2y = l3y = sin(60◦), r1 × l1 = r2 × l2 = −0.5sin(60◦),
andr3 × l3 = 0.5sin(60◦).

By denotings = cos(60◦), q = sin(60◦), and w =
0.5sin(60◦), we may show that the joint-space accommoda-
tion matrixAj may be written in the form

Aj = atxMx + atyMy + atθMθ , (21)

where

Mx =

 s2 −s2 s2

−s2 s2 −s2

s2 −s2 s2


 ,

My =

 q2 q2 q2

q2 q2 q2

q2 q2 q2


 , (22)

Mθ =

 k k k

m m m

n n n





 k 0 0

0 m 0
0 0 n


 ,

where

k = (txq − tys + w), m = (txq + tys + w),

n = (txq − tys − w). (23)

4.4. Guidelines for General Spatial Mechanisms

The procedure detailed in Section 4.3 may be used for a gen-
eral class of matrices (diagonalizable and those that cannot
be diagonalized) as well as for wrists with more degrees of
freedom, although the involved equations will be more com-
plicated.

The two basic questions regarding the synthesis of accom-
modation matrices are related to the forward- and inverse-
accommodation transformations of matrices. The firstFig. 11. The interconnecting network and the damper element

values needed to attain theAj given in eq. (20).
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question, readily answered by the inverse-accommodation
transformation equation seeks to compute the joint-space ac-
commodation matrix for a desired task-space matrix. If the
joint-space matrix is dominant, it is synthesizable; otherwise,
it is not. It may be possible to attain a nondominant matrix,
but a systematic synthesis procedure does not exist.

The second question addresses the opposite issue, in-
volving the forward-accommodation transformation equa-
tion. The objective is to characterize the range of task-space
accommodation matrices obtained from dominant joint-space
matrices. For this, each dominant-basis matrix is mapped to
the task space through eq. (15). Non-negative linear combina-
tions of these task-space matrices give rise to a PCC. At each
task-space point, there exists an associated PCC representing
the synthesizable matrices. An accommodation matrix, to be
mechanically implementable, must reside within this PCC.

5. Summary and Open Issues

The thesis of this paper is that a passive robotic wrist, of
fixed mechanical design, can be programmed to execute a
wide range of force-control laws useful in automated assem-
bly. In this paper, we conducted a systematic study to char-
acterize the range of control laws (given by accommodation
matrices) implementable by a passive hydraulic network of
user-programmable damper constrictions. We used electrical
network theory results to identify the accommodation matri-
ces that are attainable in the joint space of the wrist. We then
projected these matrices to the task space and compared the
range of task-space matrices to the class of PSD matrices in
an attempt to quantify the usefulness of passive devices.

Practical implementations of accommodation-control laws
by means of passive dampers must consider a finite range of
damper-element values. The synthesizable matrices corre-
sponding to range-limited dampers occupy a subpart of the
dominant PCC.

Serious consideration should also be given to the sensitivity
of the task-space accommodation matrices with respect to the
errors in the individual damper-element values. Sensitivity
analysis may also be performed with respect to the parameters
in the manipulator kinematics, such as the cylinder lengths and
the joint angles.

An interesting theoretical question is the relationship be-
tween the region of the implementable center of accommoda-
tion and the wrist kinematics. Although an in-depth study of
this phenomenon was beyond the scope of this work, the re-
sults indicated that it was possible to express this relationship
in simple terms.
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