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Abstract      
    
A general framework is presented for the design
and analysis of cobot controllers.  Cobots are
inherently passive robots intended for direct
collaborative work with a human operator. While a
human applies forces and moments, the controller
guides motion by tuning the cobot’s set of
continuously variable transmissions. In this paper, a
nonlinear feedback controller is developed to steer
the cobot so as to asymptotically approach and
follow a pre-planned path.  Generality across all
cobot architectures is assured by basing the
controller in end-effector configuration space and
developing transformations between each of four
spaces: end effector space, joint space, a set of
coupling spaces and steering space.

1.  Introduction

Unlike robots, cobots are intended for direct
collaborative work with a human operator [1],[2].
The human and cobot both grasp a workpiece and
cooperate to complete a manipulation task. To team
up with a cobot in this manner presents minimal
physical danger to the human since a cobot, by
design, cannot move on its own.  It is up to the
human operator to produce all motions of the cobot
and workpiece. The cobot contributes to the
manipulation process by guiding the motion. For
example, a cobot can restrict the set of reachable
configurations or create virtual guideways along
which the workpiece must follow.  In effect, the
cobot creates virtual fixtures to constrain workpiece
configuration or motion. As demonstrated in the
fields of haptic display and teleoperation, virtual
fixtures are useful aids to a human operator
performing manual tasks [3],[4].

Furthermore, a cobot can be designed to carry the
weight of a workpiece, as do various
counterbalance devices currently in use on

automobile assembly lines.  Indeed, the first
applications envisioned for cobots are certain
automobile assembly operations that have not been
automated because they require the manual
dexterity and adaptability of a human operator.
These operations can be made safer, faster, and
easier with virtual fixtures.  For example, while an
operator is hanging a car door, a cobot can support
its weight and prevent collisions between the door
and car body except at the hinge.

Like a physical fixture or barrier placed in the
workspace, a viable virtual fixture must be able to
produce reaction forces when contact between
workpiece and fixture is detected.  In cobots,
continuously variable transmissions (CVTs)
support these reaction forces.  In contrast to the
direct actuation (realized with motors) used in
robots and haptic interfaces, the CVT is a passive
mechanism: it can be used to resist applied forces
but not to produce motive forces or output forces.
Alternatively, a CVT may be considered a tunable
nonholonomic constraint, setting a ratio between
two joint speeds.

There are in fact two distinct types of CVT that
have been used in cobots.  The first is quite simple:
a single steered wheel rolling on a planar surface.
A steered wheel constrains a pair of translational
speeds (i.e., &x  and &y  where x and y are Cartesian
coordinates of the planar surface).  The ratio of
these speeds, and equivalently, the allowed
direction of motion, are defined by the heading of
the wheel.  The second type of CVT relates two
angular speeds [5],[6]. This CVT is composed of a
sphere caged between two drive rollers and two
steering rollers.   The CVT constrains the drive
roller speeds (w w1 2, ).  The ratio of these speeds
(equivalently, the allowed direction of motion in
w w1 2-  space) is defined by the heading of the
steering rollers.
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1.1 Apparent Degrees of Freedom

Each CVT furnishes one nonholonomic constraint
and may be used to eliminate one instantaneous
degree of freedom from the workpiece.  If a
minimal description of a non-redundant cobot's
configuration uses n generalized coordinates, the
number of CVTs extant in that cobot is n-1.  Thus a
non-redundant cobot inherently constrains the
workpiece down to a single degree of freedom1.  In
other words, the available motions at each instant
are restricted to a single direction.

By active tuning, the allowed direction of motion
may be varied.  By tuning in response to user
applied forces, sensed configuration, and sensed
motion, the cobot can be made to appear subject to
arbitrary constraints. The number of apparent
degrees of freedom (DOF) of a cobot, then, is a
function of the control algorithm in effect at a given
time, and is thus variable.  At maximum, the cobot
can allow motion in all directions, with effectively
no relationships imposed among the joint speeds.
This is called caster mode, since the cobot behaves
as if each steering wheel (CVT) was a ball caster.
Caster mode requires sensing of user-applied
forces. Essentially, the controller steers so as to
allow motion in whatever direction the cobot is
being pushed.

By successive change of control algorithm, the
number of degrees of freedom may be reduced
incrementally down to one.   The case of one
degree of freedom is called path following mode.
In path following mode, the operator may influence
only the speed along a pre-defined path. Rather
than force sensing, the path-following controller
uses full state feedback and input-to-state
linearization.  Path following controllers will be
developed and analyzed in detail in Section 3 of
this paper.   Controllers which realize caster mode
and intermediate numbers of degrees of freedom
will be treated in future papers.

In order to treat cobot controller design in a general
framework, generic to all cobot architectures, we
introduce in Section 2 four abstract spaces.
Controller design takes place in what we call end-
effector configuration (CEE ) space.  Actual steering
of the CVTs, however, takes place in steering (Φ)
space.  Transformations are introduced between

                                               
1 The exception to this is that singularities may
occur.  This important topic will be addressed in a
future paper.

CEE  space, joint (CJ) space, a set of coupling (S i )
spaces, and Φ space.  These transformations
become part of the actual implementation of a
cobot controller, as demonstrated by way of
example in Section 4.

2. Cobot Kinematics

2.1  Four Spaces

Associated with cobots are four classes of
kinematic space: end effector configuration space,
joint configuration space, a set of coupling spaces,
and steering space.  These are depicted in Fig. 1.

End effector configuration space (CEE space, or
“end effector space” for short) is of importance in
planning cobot motions, because it does not rely on
the details of the cobot structure.  Each point in end
effector space corresponds to a pose of the cobot
end effector.  Key variables associated with end
effector space are end effector configuration (R ),
path tangent (T), path normal (N), path curvature
(κ), path length (s), and speed (u s= &).

Joint configuration space (CJ space, or “joint
space” for short) has the same meaning as in
robotics, but it does not take on the same level of
importance because there are no actuators at the
joints.  The joints, however, are coupled by CVTs,
and there may well be sensors at the joints.  The
key variable in joint space is cobot configuration
(q).

A two dimensional coupling space (S i space) is

associated with each pair of joints that are coupled
by a CVT.  There is, therefore, a set comprising one
coupling space for each CVT.  Coupling spaces
prove to be quite useful in describing the steering
behavior of a cobot, because they offer a geometric
interpretation analogous to that associated with
endpoint space. Moreover, coupling spaces are
independent of CVT details (e.g., the coupling
space behavior is the same whether a steered wheel,
a cubic CVT, a tetrahedral CVT, or some other
device is used).  Key variables associated with
coupling space S i are configuration (ri), path

tangent (t i ), path normal (n i ), path curvature (k i ),

and path length (si ).

Steering space (Φ space) comprises the set of all
CVT steering angles, f i i n, ,2,= -1 1K .  In



addition to the steering angles, the steering angular
speeds, &f i , are important, and are generally taken

to be the controller input variables.

2.2  Kinematics Overview

The distinguishing feature of a cobot is the network
of CVTs that couple its joints.  Each CVT
establishes, under computer control, a transmission
ratio relating the speeds of two joints.  The types of
CVTs used in cobots have the special character that
they may establish any such ratio, including
negative ratios.  A non-redundant cobot is one that
couples the n joints through a network of n-1
CVTs.

The following points may be made about a non-
redundant cobot:

• For a given non-singular setting of the n-1
transmission ratios, the direction of δq is fixed.
In other words, the cobot has one instantaneous
degree-of-freedom.

• By adjusting the transmission ratios, any
direction of δq may be obtained.  This follows
from the CVTs’ infinite adjustability.  When in
nonsingular mechanism configurations, the
same conclusion may be drawn for δR.

• Controlling the transmission ratios has no
direct effect on the cobot’s speed (which,
measured in joint space, is d dtq / ).  Speed is
under the control of the human operator.

Because of this last point, it is often useful to think
of cobots in terms of spatial derivatives rather than
temporal derivatives.  In this paper, spatial
derivatives will be taken with respect to the cobot’s
CEE space path length variable, s:

ds d dT= R Rb g1/2
(2.1)

Key derivatives of interest are:

T R
R

= ¢ =
d

ds
(2.2)

kN T
T

= ¢ =
d

ds
(2.3)

As the notation suggests, it is useful to think of the
cobot’s trajectory through CEE space as a curve C
with a configuration vector R, a tangent (first
derivative with respect to path length) T and
curvature vector κN.  The former is a unit vector
(which follows from the definition of s) and the
latter is denoted as the product of a scalar curvature,
κ, and a unit vector, N, normal to T.

The behavior of a cobot is most appropriately
understood in terms of T and κN.  The instan-
taneously allowed direction of motion, viewed in
CEE space, is T.  Thus, in a nonsingular configur-
ation, a given setting of the n-1 transmission ratios
is equivalent to a particular tangent direction.

Even more important from the standpoint of control
is the role of the curvature vector.  Analogous to the
relationship between the tangent vector and
transmission ratio, there is a relationship between
the curvature vector and rate-of-change of the
transmission ratio.  The latter is the primary control
input to a cobot.  Thus, in developing CEE space
controllers, the curvature vector is naturally treated
as the primary control input.  Section 3 develops
these ideas more fully and applies them to the
design of a path following controller.

CEE SpaceCJ SpaceΦ Space

Σ1

Space

Σ2

Space

Σn-1

Space

M

J

S1

S2

Sn-1

Figure 1.  Four classes of kinematic space



2.3  Transformations

In order to develop useful controllers, a number of
important transformations between the four spaces
must first be understood.  In this section, we present
these transformations, with reference to Fig. 1.  We
begin with inverse transformations.

2.3.1  Inverse  Transformations

C CJ EE¨   The standard Jacobian plays a key role
in transformations between end effector and joint
space.  In this paper, the Jacobian will be taken to
relate small displacements in the end effector space
(dR ) to small displacements in the joint space (dq )
according to:

d dq J R R= ( ) (2.4)

Where J(R) is a jacobian matrix.  Note that,
implicit in this definition of J is the notion that
inverse kinematics is the “easy” direction.  This
stems from the fact that most cobots to date have
exhibited parallel rather than serial architectures.

Two more important relations between end effector
space and joint space are the tangent and curvature
transformations.  As the name implies, the tangent
transformation relates a unit tangent in CEE space to
a unit tangent in CJ space.  The relation follows
easily from equations 2.2 and 2.4:

T
q JT

JT
J

J

d

ds
= = (2.5)

The curvature transformation is similar in nature.
To derive it, we make use of the following relation:

if A
X

X
=

then ¢ = -
¢

A I AA
X

X

T (2.6)

where A and X are vectors and the prime denotes
differentiation.  Equations 2.5 and 2.6 lead to:
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where T
J

R
TT ∂

∂
 is shorthand for a column vector

whose ith element is defined as:
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and where R(k) denotes the kth component of R, J(ij)

denotes the ijth component of J, and so on.  The

matrix whose kjth element is 
∂

∂

J

R

( )

( )

ij

k

 may also be

recognized as a Hessian.  It is often convenient to
express Eq. 2.7 in terms of Hessians, as will be
demonstrated in Section 4.

S i JC¨   Recall that the ith coupling space (Σi

space) comprises two coordinates corresponding to
the two joints coupled by the ith CVT.  Because
these same coordinates appear in the joint space,
the basic kinematic relationship is extremely
simple:

d dr S qi i= (2.9)

where Si is a matrix which serves both to select the
relevant two joints and incorporate any fixed
transmission ratios relating the joint displacements
to the CVT displacements.  As an example,
consider an RRPR cobot in which CVT 2 couples
to joint 1 directly and to joint 3 via a transmission
ratio of 1/r.  Then:

S
2

1 0 0 0

0 0 1 0
=
L
NM

O
QP/ r

It is again possible to define tangent and curvature
transformations analogous to equations 2.5 and 2.7:

t
S T

S T
i

i J

i J

= (2.10)

k ki i

i i
T

i J

i J Jn
I t t

S T
S N=

-
2

(2.11)

S i EEC¨   It is not strictly necessary to define any
new transformations relating end effector space to
the coupling spaces, since these may be obtained by
concatenating the two sets introduced above.  It is
often the case, however, that joint space holds little
geometric interest.  This is especially true in the



case of wheeled cobots such as the Unicycle and
Scooter [1], for which the concept of a joint is
somewhat abstract, and arguably, counterpro-
ductive.

Fortunately, the transformations from end effector
space to joint space are entirely analogous to those
already derived.  It is necessary to define a 2 ¥ n
jacobian, J i , relating incremental end effector

displacements to incremental S i  space
displacements.  When a well-defined joint space
exists, this jacobian is simply:

J S Ji i= (2.12)

For wheeled cobots, J i  can be directly computed.

The essential kinematic transformations are then:

t
J T

J T
i

i

i

= (2.13)

k ki i

i i
T

i

T i
in

I t t

J T
T

J

R
T J N=

- ∂

∂
+L

NM
O
QP2

(2.14)

F S¨ i   To implement a desired curvature in CEE

space, it is necessary, ultimately, to compute the
steering speeds, &f i .  The final set of trans-

formations necessary to compute &f i  are CVT-

specific.  In other words, these transformations
depend on the kinematics of the CVTs.  We will
illustrate two cases: the wheel and the tetrahedral
CVT.

Wheel — The steering speed of a wheel is found
almost trivially:

&f ki i iu= (2.15)

where ui is the wheel speed, a signed scalar  taking
on positive values when the inner product of wheel
velocity and ti is positive.  Typically, ui is a sensed
quantity.

Tetrahedral CVT — In [1], it is shown that the
transmission ratio of the tetrahedral CVT is:

M f
f f

f f

w

w
( ) = =

-

+
1

2

2

2

sin( ) cos( )

sin( ) cos( )
(2.16)

From Eq. 2.16, the following forward kinematic
relation is easily derived:
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differentiation and straightforward algebraic
manipulation lead to:

& cos ( )
f k

f
i i

T
i J i

i=
+

t S V
1

2

2

(2.18)

where VJ  is a measured vector of joint speeds.

2.3.2  Forward  Transformations

F SÆ i   The key transformation from steering
space to a particular coupling space has already
been presented in Eq. 2.17.   This relation specifies
the available direction in S i  space given a steering
angle f i .

i JCÆ  It is generally necessary to compute the
cobot’s instantaneously available motion in CJ (or
CEE) space based on the measured steering angles.
This involves, as a first step, the forward kinematic
computation of each ti

In this section, we show how to compute T  from
the set of coupling space tangents i.  A key to this

S Ti J  is a 2 1¥ vector

parallel to ti.  If we introduce the following 90o

rotation matrix:

W =
-L

NM
O
QP

0 1

1 0
(2.19)

then we can write:

Wt S Ti

T

i J = 0 (2.20)

and, by concatenation:

Wt S
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1 1
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0
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= (2.21)



By adding a row of zeros to the matrix on the left,
Eq. 2.21 takes on the appearance of an
eigenvalue/eigenvector problem in which the
eigenvalue is known to be zero, and TJ is the
eigenvector.  The solution to this problem is well
known.  If we define Λ as:

L D D D= - -+
-1

1

11 1L L( ) ( )k
k

n
n

T

(2.22)

where ∆k is the determinant of the matrix formed by
removing the kth column of the matrix in Eq. 2.21,
then:

TJ =
L

L
(2.23)

C CJ EEÆ  The tangent vector in end effector space
can be found via the inverse Jacobian:

T
J T

J T
=

-

-

1

1

J

J

(2.24)

It is also important to compute the cobot
configuration R in end effector space.  R is, in
general, a nonlinear function of the joint space
coordinates:

R L q= -1 ( ) (2.25)

3.  Path Following Control for Cobots

Our path following cobot controller is developed
using the input-to-state feedback linearization
approach [7], [8]. Similar to computed torque
controllers often used in robotics, feedback
linearizing controllers use model inversion to
transform a nonlinear control problem into a linear
control problem. An outer loop linear controller
then completes the design procedure.  The
important advantage to these methods in our view
is that they provide stability guarantees. Although
this model-based approach may be sensitive to
modeling errors, it has worked well in practice.
Future papers will introduce alternative nonlinear
controllers designed for robustness to modeling
errors.

The path-following controller is developed below
in four steps.  First, n-dimensional kinematic error
equations and error equation derivatives are
developed in CEE space.  The error equations
express the actual cobot configuration relative to a
reference configuration on the desired path.
Second, two terms appearing in the error equation
are recognized as projections of an n-dimensional
control input.  Third, an input transformation
renders the nonlinear cobot kinematic error
equations in an equivalent linear form.   Finally, a
stabilizing outer loop controller is designed using
linear control techniques.

3.1 Kinematic error equations in CEE space

The appropriate space in which to address the
design of cobot controllers is CEE space since it is
general, covering all cobot architectures.  Once a
controller is developed in CEE space, it is
implemented for a particular cobot by applying the
transformations relevant to that cobot’s
architecture.

Figure 2 shows a cobot’s current configuration R
lying at pathlength s on a path C (indicating the
configuration history) in CEE space. Also shown in
Figure 2 is a pre-planned desired path Cp through
CEE space with a special current reference

configuration R p psb g located on Cp by sp. An

effective path-following controller will cause path
C to converge to and follow the pre-planned desired
path Cp. This is done by driving the configuration
error DR R R= - p  to zero. Note that the controller

is also responsible for maintaining the choice of Rp

by controlling the evolution of sp as discussed in
further detail below.

Figure 2.  Configuration error in CEE space

∆∆R
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R

Rp

Cp

C

T

Tp



The next step is to take derivatives of the
configuration error expression until terms appear
which are related to the actuated variables, the
steering angular speeds.  We take derivatives with
respect to the pathlength s rather than time in order
to realize a very important distinction between the
influence available to the controller and the
influence available to the human operator.  As
discussed in section 2.2 above, the controller
influences the rate of change of heading while the
human operator may influence only the speed along
the heading.

In nonsingular configurations, the steering angles
determine the current configuration heading (the
allowed motion direction) and the steering angular
speeds control the rate of change of the
configuration heading. The heading is the
derivative of R with respect to s and is the unit
tangent vector T in Figure 2.  Likewise, the rate of
change of heading can be interpreted as the spatial
derivative of T, or κN where κ is the curvature and
N is the normal to the curve C at R.

We take two derivatives of the configuration error
to arrive at an expression which contains κN as
follows.

DR R R= - p (3.1)

D ¢ = ¢ - ¢ = - ¢R R R T Tp p ps (3.2)

D ¢¢ = ¢ - ¢¢ - ¢ ¢

= - ¢¢ - ¢

R T T T

N T N

s s

s s

p p p p

p p p p pk kb g2
(3.3)

3.2 Recognizing the control input

We now recognize the term κN as the portion of the
control input available as steering angular speeds.
It is not, however, the only control input. The

remaining terms contain sp
′  and sp

′′ which are not

part of the pre-planned path and must therefore be
maintained by the controller.  Note that κN is a
vector in n-dimensional CEE space, yet its direction
is not arbitrary.  It must remain perpendicular to the
tangent T.  That is, there exists a scalar constraint
equation on κN.  The n-dimensional control input
vector must be projected onto the plane
perpendicular to T to produce the steering control

κN .  The projection parallel to T shall be given the
responsibility of maintaining sp.

Let us designate an n-dimensional vector U as the
control input. Note that the projection of U in the T
direction can have no effect on the cobot’s heading
or rate of change of heading.  Also, since U shall
eventually be expressed as steering, it has nothing
to do with the speed &s  of the cobot along its path
C.  Instead, the magnitude of the projection of U in

the T direction, T UT , shall govern the motion of
the reference cobot along Cp through

sp
T¢¢ = T U .  (3.4)

The state or error equations are augmented with

another state sp
¢ .  As expected, the term κN is the

projection of U onto a plane perpendicular to T:

k N I TT U= -
T (3.5)

where I TT-
T  is a projection matrix of rank n-1

which removes the component of U in the T
direction.

3.3 Feedback Linearization

Substituting these two laws into equation (3.3), we
arrive at

∆ ′′ = −R MU b (3.6)

where M I TT T T= - -[ ]T
p

T  and

b N= ¢( )sp p p

2
k .

We are now ready to design a feedback linearizing
controller by model inversion.  Let n  be the control
input derived from the outer-loop full-state
feedback controller.  We then produce U using

U M b= +
- 1( )n . (3.7)

3.4 The outer loop linear controller



The linearizing controller in cascade with the
second order kinematic error equations appears to
the outer loop controller as a linear system with the
dynamics ¢¢ =x n .  We implement a full-state linear
controller of the form

n = =
¢

L
NM

O
QPk x k

R

R
T T

D

D
, (3.8)

where k is a vector of feedback gains.  The design
of the outer loop controller is then quite simple.  It
may be accomplished using, for example, pole
placement methods.

3.5 The whole picture

Figure 3 shows a block diagram that includes the
outer loop linear controller, the inner linearizing
loop, and the transformations into coupling space
and steering space. The Cobot model is shown here
as a composition of CVT models and the error
vector is formed by differencing the monitored
cobot position and heading with the position and
heading chosen by the controller from the path
plan.  Equation numbers below each block indicate
the pertinent equation in the text.

4. Example: The r-theta cobot

Figure 4 shows a revolute-prismatic cobot that we
call the “r-theta cobot”. Joint coordinate q
measures the angular displacement of a boom B
around the fixed pivot P while joint coordinate r
measures the linear displacement of a cart C from
P.  The r-theta cobot is cousin to the jib, a load-
carrying device often used in automobile assembly.
The boom swings overhead such that a load may be
cable-suspended from the cart.  The jib typically
lacks motors or joint-coupling of any kind.   The r-
theta cobot, on the other hand, features a CVT to
couple the speed of translation to the speed of
rotation. One drive roller of a tetrahedral CVT is
coupled to θ  while the other is coupled to r
through a cable drive with transmission ratio 1 ro .
By CVT steering, the r-theta cobot may define
programmable constraints in the horizontal plane.
For example, pre-defined paths can be laid out for
parts handling.
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Figure 3.  Block diagram of a path following controller implementation
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Figure 4.  Schematic of the r-theta cobot

The jointspace vector q is r
T

q .  The end-
effector configuration space position vector R is

x y
T

.  The Jacobian relating jointspace velocity
to CEE space motion is as follows.

J
r

rx ry

y x
( )R =

-

L
NM

O
QP

1
2

(4.1)

The transmission ratio 1 ro  appears in the matrix
relating directions in jointspace to the single
coupling space:

S
ro

1

1 0

0 1
=
L
NM

O
QP (4.2)

The elements in Eq. 2.8 can be arranged into a
Hessian style matrix if desired where

H
r

y xy

xy x
11 3

2

2
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=

-

-

L
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O
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and  H
r

xy y x

y x xy
12 4

2 2

2 2

1 2

2
=

-

- -

L
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O
QP

( )

( )
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and  T
J
R

T
T H T

T H T
T

T

T

∂

∂
=
L
NM

O
QP

11

12

. (4.5)

Since there is only one coupling space for the r-
theta cobot, these formulas are all that is needed to
implement the above path following controller.

Figure 5 shows simulation results for the r-theta
cobot under path following control starting at
position (1.2, 0) and headed in the y-direction.  The
pre-planned path is a unit circle centered at the
origin.  The cart approaches then stays on the
circular path.  The locations of the reference cobot
on the planned path chosen by the controller as
simulation proceeded are indicated with circles

while the corresponding positions of the cobot are
asterisks.

5. Conclusion

An asymptotically stable path following controller
has been developed for cobots.  From a starting
configuration away from the pre-planned path, the
cobot will choose a heading that converges to and
then follows the path as the human operator
chooses the speed of motion.  The transformations
between the end-effector and joint configuration
space and the coupling spaces and steering space
are essential for the development and
implementation of general and extensible
controllers.
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