Intelligent Assist Devices

- IADs use computer control of motion to create functionality greater than that of conventional ergonomic assist devices, such as hoists, overhead rail systems, and manual manipulators.

Two forms of intelligent assist

- **Power Assist**
 - to augment operator-applied forces
 - necessary to counteract gravity
 - improves ergonomics by reducing stress on operator

- **Guidance (Virtual Surfaces)**
 - virtual surfaces guide the motion of payload/worker
 - allows physical interface to computer: co-manipulation
 - analogy: straightedge vs. freehand

Co-Manipulation with Virtual Surfaces

- In co-manipulation tasks, a human and robot *share* control

Example of Virtual Surfaces: the “virtual funnel”

Advantages of Virtual Surfaces

- **Ergonomics**
 - pushing straight is easier than redirecting; virtual surface takes care of redirecting

- **Quality/Productivity**
 - virtual paths or virtual funnels ensure that collisions do not occur
 - motion along a virtual surface is swift and sure

- **Flexibility**
 - virtual surfaces are programmable, allowing for worker preferences, product mix, inexpensive retooling…

- **Software Driven Material Handling**
 - due to programmability, virtual surfaces can be interfaced to larger-scale (e.g., plant-wide) information systems
Technologies for implementing virtual surfaces

- Powered manipulators
 - servo-actuated joints
 - excellent for power assist
 - poor for virtual surfaces
- Cobotic manipulators
 - servo-steered joints
 - completely passive (no power assist)
 - excellent for virtual surfaces
- Powered cobotic manipulators
 - a single servo-actuated joint, multiple servo-steered joints
 - excellent for both power assist and virtual surfaces

Cobots

- Cobots implement virtual surfaces via "servo-steered" joints
- Cobotic surfaces are programmable, passive, smooth and hard

Two basic control modes of cobots

- Free mode
 - cobot is responsive to the operator, steering to allow whatever direction of motion the operator intends
- Path mode
 - cobot is unresponsive to the operator, but instead steers to remain on a virtual surface defined in software

Cobots have more generalized coordinates than degrees of freedom

- Wheel is a continuously variable transmission (CVT). The ratio of x velocity to y velocity is set by steering angle θ
- Unicycle Cobot has one degree-of-freedom, but two generalized coordinates

The “virtual caster” -- adding degrees of freedom

- Feedback control can be used to make the unicycle cobot behave as though it had two degrees-of-freedom
- Lateral force and velocity are measured, and wheel is steered to minimize lateral force

Free mode or “virtual caster”

- ω_s is angular velocity of steering: this is under our control
- Use coordinate system aligned with instantaneous rolling direction: $F_\perp v_\perp a_\perp F_\parallel v_\parallel a_\parallel$
- In the rolling direction $F_\parallel = m a_\parallel$ is natural and not under our control
- Match it in the perp direction via active control:
 - have $a_\perp = \omega_s v_\parallel$; want $F_\perp = m a_\perp$
 - so use control law $\omega_s = F_\perp / m v_\parallel$
Path mode

• \(\omega_s \) is angular velocity of steering: this is under our control
• \(v_l \) is rolling velocity, not under our control
• \(\rho \) is local curvature of path to be followed
• Use control law \(\omega_s = \frac{v_l}{\rho} \)
 (open loop control; feedback terms are more complicated)

Inherently passive

• Although a servo motor is used to steer the wheel of the Unicycle Cobot, none of the power introduced by this motor may be coupled into the plane of motion.
 ● Thus, the cobot is completely passive from the operator’s perspective.

Beyond unicycles

• Regardless of configuration space dimension \(n \), all cobots have one degree-of-freedom
 – under feedback control, the apparent dof can vary from 0 to \(n \)
• Cobot singularities are configurations in which a degree-of-freedom is \textit{gained}
• All cobots rely upon steerable nonholonomic devices
 – steerable wheels are best suited to low dimensional, parallel cobots
 – a “rotational CVT” has been developed which is well-suited to higher dimensional, serial cobots

Cobot characteristics

• Steering motors cannot initiate cobot motion; operator pushing cannot affect steering
• No kinetic energy source except human muscle >> safety
• Smooth, hard, frictionless constraint surfaces — so you can slide along them \textit{without loss of energy}
 – important if you want to interact with the constraints (use them for your benefit) rather than just avoid them
 – optimally, a collision with a surface should redirect kinetic energy, not absorb it.
• Small actuators control large forces

Scooter: a tricycle cobot

• Floor-based
• Three independently steered wheels
• Three dimensional workspace \((x, y, \theta)\)

How to Build a Serial, Revolute Cobot

• Remove the actuators from a serial robot
• Couple the \(n \) revolute joints using \(n-1 \) steerable nonholonomic devices, reducing the degrees-of-freedom to 1
 – e.g. 3 revolute joints coupled by 2 nonholonomic devices:
Beyond wheels: the spherical CVT

- Suppose we wanted to build a serial link cobot... what would be the appropriate servo-steered device to couple the joints?
- Key point: the joints are rotary

A servo-steered device to couple rotary motions is...

\[
\frac{\omega_1}{\omega_2} = \tan(\alpha)
\]

A unicycle wheel relates two translational velocities

\[
\frac{v_x}{v_y} = \tan(\alpha)
\]

The needed device relates two angular velocities

...is a continuously variable transmission

\[
\omega_1 = V_x, \omega_2 = V_y
\]

Allow the plane under the unicycle wheel to move, and convert translational velocities to rotational

\[
\frac{\omega_2}{\omega_1} = \tan(\alpha)
\]

Wrap the plane into a sphere

CVT - “the revolute analog of a rolling wheel”

A serial link cobot

- This mechanism looks quite different than Scooter... ...but has essentially the same capabilities.

Powered cobots

- All power derives from a single actuator, regardless of number of degrees of freedom
- Virtual surfaces are implemented by servo-steered joints, just as with passive cobots
- Power assist and virtual surface functions are completely decoupled
Applications

- Software guided materials handling, e.g. in automotive assembly
- Haptic display of CAD models, e.g. in product design
- Rehabilitation and exercise machines
- Guidance in computer assisted surgery
- Others :)

Research areas

- Path planning: a traditional area, now with a human operator and with guiding surfaces rather than trajectories
- Haptic effects: attractive surfaces, breakthrough strengths, etc.
- Higher dimensions: path tracking becomes quite non-trivial beyond the single wheel
- Control: new control issues arise from the central role played by the human; neither a “disturbance” nor an “input”
- Mechanics of CVTs

Summary

- Materials handling industry moving towards “software driven materials handling”
- Virtual surfaces can form the interface between computers and people, in the control of motion
- Cobots implement smooth hard virtual surfaces, safely

Thanks to...

- General Motors Foundation
- General Motors
- Ford Motor Company
- National Science Foundation

For more information, phone numbers, etc: http://cobot.com