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A Complete Algorithm for Designing
Passive Fences to Orient Parts*

Jeff WiegleyTand Ken Goldbergtand Mike Peshkin®and Mike Brokowski

Peshkin and Sanderson[18] showed that parts can be
aligned as they move on a conveyor belt against a pass-
we sequence of fences. In this paper we describe the
first complete algorithm to design such sequences for
a given convex polygonal part. The algorithm s com-
plete in the sense that it is quaranteed to find a design if
one exists and to terminate with a negative report oth-
erwise. Based on an eract breadth-first search of the
design space, the algorithm is also guaranteed to find
the design requiring the fewest fences. We describe the
algorithm and compare results with those previously re-
ported. We conjecture that a fence design exists to ori-
ent any conver polygonal part.

In automated assembly 1t is often necessary to bring
randomly oriented parts into uniform alignment. Often
this is done mechanically, with passive devices such as
the vibratory bowl feeder. The design of such feeders
is currently an artform based on trial and error. Thus
it is often time-consuming and error-prone. We seek to
develop algorithms for the systematic design of feeders.
Such algorithms would rapidly analyze part geometry
based on friction and kinematics to assist in designing
appropriate mechanisms for feeding a stream of such
parts

We consider a class of feeders similar to that of
vibratory bowls. These feeders, first described by
Peshkin and Sanderson[18], translate parts past a se-
quence of passive fences using a standard conveyor belt.
See Figure 1 for a pictorial example of one implement-
ation. We consider the class of parts that can be effect-
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Figure 1: Example of a conveyor based system for ori-
enting and feeding polygonal parts.

ively modelled as polygonal extrusions. Parts are sin-
gulated and arrive at random orientations. They move
along a series of fences, each attached at some angle to
the side walls of the conveyor. Adding curved tails to
each fence aligns part edges with the fence prior to con-
tact with the next fence [3]. After passing through the
gauntlet, the part’s final orientation should be uniquely
determined. Such feeders differ from vibratory bowls in
that parts are not rejected by filters; in the parlance of
feeder design, all parts are passively “converted” to a
unique desired orientation upon emerging from contact
with a fence.

A feeder design is specified by a sequence of m fence
angles. The design space, S, is uncountable. An ini-
tial algorithm [18] sampled the design space at uniform
(10°) angles and thus was not complete in that it may
fail to find a design that required fence angles other
than those sampled. Moreover, even when it finds a
design, there 1s no guarantee that it will find the design
with fewest fences.

In this paper we describe an exact algorithm that
partitions the design space into equivalence classes
based on part geometry. This algorithm is guaranteed
to find the shortest possible design if one exists. For
the parts tested in [18], the new algorithm finds shorter
designs and finds a fence design for one part that caused
the previous method to fail.
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1. Goldberg [9] reported a complete part feeding al-
gorithm based on push-grasps with a parallel-jaw
gripper. Based on an exact partition of the space of
push-grasp angles into equivalence classes initially
described in [11], the algorithm is guaranteed to
find a sequence of active push-grasp operations to
orient any polygonal part. The algorithm requires
that the output of each operation can be modelled
with a piece-wise constant monotone step function.
As a result the algorithm can also be used to find
a sequence of pure pushing motions to orient the
part. The fences and algorithm described in [18]
do not have this property: due to frictional uncer-
tainty as the part rolls off the belt, the output is
a one-to-many mapping that contains “bands” of
possible part orientations.

2. Browkowski, Peshkin, and Goldberg [3] introduced
curved fence tips to eliminate the above problem.
Specialized curves can be generated by solving an
equation that depends on part geometry; the paper
also describes a more conservative class of “univer-
sal” curves that scale with part diameter. After
sliding along this curve, part edges passively align
with the fence. This eliminates the “band” of un-
certainty in part orientation. As a result the effect
of each fence angle can be modelled with a piece-
wise constant monotone function. Curved fences
are similar to push grasps with one important dif-
ference: due to the unique direction of movement
of the conveyor belt, adjacent fence angles are re-
stricted to pushing the part from a restricted set
of angles. Thus not every push plan can be trans-
formed into a fence design and we cannot directly
apply the algorithm from [9].

The first result gave a complete algorithm for mo-
tion planning, the second result introduced a relevant
class of fences but did not give an algorithm for gen-
erating a sequence of fences. In this paper we combine
these results to develop a complete algorithm that finds
the shortest sequence of curved fences to align a given
polygonal part.

1 Problem Definition

The input to the algorithm is a list of n rational coordin-
ates describing a convex polygonal part, translated so
that the origin coincides with the part’s center of mass.

The output is a list of m rational angles describing
the shortest sequence of fence angles that is guaranteed
to orient a stream of such parts or report that no fence
design exists.

We assume:

e The stream of identical parts is singulated prior to
entering the first fence. This can be accomplished
via a series of conveyor belts at increasing speeds,

e Part motion is planar,
e Parts are rigid and inertial forces are negligible,
e contact between fences and parts is frictionless,

e contact between parts and conveyor surface has
some finite Culomb friction.

2 Related Work

Other methods for reducing uncertainty in part posi-
tion and orientation have been studied. Erdmann and
Mason[7] describe a system for orienting parts without
sensors using tray tilting actions. The sides of their tray
act somewhat similar to our fences. Brost [4] showed
how to eliminate bounded uncertainty in part orienta-
tion using a parallel-jaw gripper. Balorda[2] outlined a
method for reducing the position and uncertainty of a
part using a single push with 2 point contacts. Mottaez
and Goldberg[17] gave a method for removing bounded
uncertainty in the position of a polygonal part using a
sequence of pushes in the plane.

For cases where the initial pose of the part is known,
Akella and Mason[1] present a planner for moving the
part to a new position and orientation by pushing.
They proved that if there are no obstacles, any part can
be pushed between any two poses. Lynch[12] presents
a method for determining pushes that maintain contact
between a flat pusher and one edge of the part under
frictional constraints. Lynch and Mason[13] gave an
algorithm to plan paths for pushing a part from some
intial pose to a goal pose in the presence of obstacles
using such pushes.

Although the current paper assumes quasi-static in-
teractions of parts, other authors have presented meth-
ods to treat part dynamics. Gilmore and Streit[8]
present a rule-based system for predicting the dynamic
behavior of parts as they move across fences. Mirtich
and Canny[16] introduce an efficient method for mod-
elling dynamic part behavior based on impulse sim-
ulation, which might be used to predict the dynamic
behavior of a given fence design.

Brost[5] presents geometric analytical methods for
representing the three dimensional configuration space
obstacles formed by two contacting polygons. This per-
mits analysis of interactions between non-convex parts.
Building on this approach, Caine[6] studied the prob-
lem of designing vibratory bowl tracks and used con-
figuration space obstacles to illustrate what part con-
figurations can emerge from a given track design.



3 An Example

As an example Figure 2 shows one part from [18].

Figure 2: A part from the paper by Peshkin and
Sanderson. Used by permission.

Vertices (ordered counterclockwise): [(0,0), (1950, 0),
(1250, 3250), (575, 3250), (0, 2625)],COM: (650,1300)

Figure 3 shows the fence design found by our al-
gorithm. Computing this required 0.75 seconds on an
Intel 486DX4-100 platform.

4 Fence Mechanics

As pointed out by [14], the mechanics of a polygonal
part pushed under quasi-static conditions can be de-
scribed using a function called the radius function. The
radius of the part at angle # 1s the distance along a line
at angle 6 passing through the part’s center of mass
measured from the COM to a line which just touches
the boundary of the part and is perpendicular to 6. For
a polygonal part, the radius function is piecewise si-
nusoidal with minima at stable orientations. See figure
4. When a part is pushed under quasi-static conditions
it will rotate toward the nearest local minima as first
proposed by Mason[14].

The push function for a part can be derived from the
radius function. The push function maps initial ori-
entations of the part to final orientations. See figure 5.
The push function for a polygonal part is piecewise con-
stant. The range of the function corresponds to local
minima in the radius function, and discontinuities cor-
respond to local maxima. Using the radius and push
function it 1s possible to orient a part without sensors
up to symmetry of the part’s push function [9].

Let F' be the push function for any part P. Then
F(0) is the final orientation achieved for a part be-
ing pushed at an angle #. The push function F has
the effect of partitioning the possible values for # into
equivalence classes. Visually we can recognize some of
these equivalence classes as steps of the push function.
Where for any step which begins at point a and ends at

Figure 3: The fence design found by the complete al-
gorithm. Fence Angles from top to bottom: [f4s = 30.0,
fa=—41.9, fo =279, f1 = —b57.2]
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Figure 4: Radius function for the 4-gon shown at right.

B3, F(0) = ¢ for all 6 € [«, 8). Thus all pushes in such a
range can be seen as achieving identical results. Addi-
tional equivalence classes arise from the concatenation
of contiguous steps.
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Figure 5: Push function for the part in the previous
figure.

We represent such equivalence classes as push inter-
vals or p-intervals. Where each p-interval is represen-
ted as a semi-closed interval of the form [a, 3) such that
a, 3 are points of discontinuity in the domain of push
function F. For notation let a;, 3; be the start and end
points, respectively, for any p-interval p;. Also let |p;|
denote the Lebesgue measure of the p-interval p;.

Let N be the number of stable edges for a part P
then there are N such points of discontinuity in the
domain of F'. Let o be the set of such points, then the
set of equivalence classes, ¥, is {[o, 8)|a, 8 € o}. Thus
X = N?

Now we can extend the definition of the function F'
to handle equivalence class inputs in an appropriate
manner. Let § = [«, ) be some p-interval. Then define
F(6) = [, v) where p = F(«), v = F(8). Note that the
output F'(J) for any p-interval § can itself be considered
as a p-interval since its start and end points are also
in the same domain as those of the p-intervals defined
above (though not necessarily points of discontinuity).

5 The Algorithm

After the push function is used to partition the space
of push directions into equivalence classes, we perform
a breadth-first search of push combinations to find a
fence design. To guide the search, we work backward

from a unique final orientation toward a range of ori-
entations of size 27, which corresponds to the full range
of uncertainty in initial part orientation. We then find
fence angles in reverse order. In effect we find the last
fence first and work upstream, like a salmon.

The search starts from a state which i1s a p-interval
p1 such that F(p1) = [a, ) for some a. Thus we start
from a state for which we know of a single push angle 6,
that results in a unique orientation for a known, limited
range of starting orientations for the part. The search
then proceeds from the current state, p; to examine
the next largest p-interval p;+1 such that |F(p;41)| <=
|pi|. This implies then that any relative push angle
such that o;y1 — oy < 0 < Fiy1 — B; will convert all
orientations in p;y1 into some orientation in p;. That
is the desired relative push angle, 8;, is equivalent to
at least the differences of the starting points of the p-
intervals p; 41 and p; but no more than the difference of
the end points of these p-intervals. We then continue
searching with p; 11 as our current state. The goal of the
breadth first search then is to arrive at a current state
Pg such that [p,| = 27. Once a goal state is reached we
have a sequence of desired relative push angles which
we know will uniquely reorient a part regardless of its
initial orientation because that initial orientation must
be in the range of [0, 27) = p,.

This algorithm cannot be directly applied to the
design of fences. Every fence must have a compon-
ent of its push directed against the motion of the belt.
This restricts combinations of relative push angles that
can be realized with fences. The valid range for a fence
depends on the angle of the previous fence (in particu-
lar whether it is attached to the left or right side of the
conveyor). These constraints can be transformed into
two contraints on relative push angles as illustrated in
Figure 6.

0 € Q1 U Q2
0 € Q3 U Qq

= 011 EQ1UQs
= 011 €EQ2UQ,

The value for any fence angle f; depends on the re-
lative push angle 8;, which is the difference of the p-
intervals p; and p;y1, where the difference is defined
as any angle in the range (a1 — o5, Big1 — Fi). Any
angle from this range is suitable for §; since all angles
from this range achieves the same result. However,
subranges of this range may not be suitable for a con-
veyor belt due to the constraints mentioned above. It
is neccessary for the algorithm to examine each valid
subrange. We initially pick the largest valid subrange,
(o, 8"), and search the other subranges breadth-first.

Given a valid range in a sequence it is neccessary to
select a single value for 6; for the push direction. For
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Figure 6: Conditions for 8; € Q3 — ;41 € Q2 U
Q2. Similar figures justify the conditions for 6; €
QlaQZaQ4~

our implementation we select 6; = (8 — o/)/2. The
effect of this i1s that any part which has a rotational un-
certainty less then (8’ — «’)/2 (due to frictional effects
or failure of certain assumptions for our model) will still
be correctly oriented since the relative push actually oc-
curing will be in the range (o/, ). In this manner the
algorithm exhaustively searches all sequences of equi-
valence classes. If a plan is found it is guaranteed to
be the shortest because of the nature of breadth first
search and if the search fails to find any solution then
no solution exists for the part. The search is guaran-
teed to halt since there are a finite number of equival-
ence classes and our search does not consider sequences
with cycles.

Once the algorithm finds a sequence of relative push
angles that obey the fence constraints, we must trans-

form these to a sequence of fence angles, f1, ..., fi, that
accomplishes the same push motions when implemented
on a conveyor belt. The angles f; can be determined
by the function

0; € (0,7),
fi:f(gi):{ 0; EE?T,QET)a

5.1 Rational Angle Arithmetic

92'—71'/2
92'—|—7T/2

Floating-point arithmetic may alias two close but non-
identical fence angles, thereby violating the complete-
ness of the algorithm. We can avoid this problem using
a method first suggested by Mason [15]. Since we as-
sume that input part coordinates are rational, all trans-
itions in the push function will occur at angles that
can be represented exactly using coordinate pairs of
arbitrary length integers that corresponde to the co-
ordinates of part vertices. Every angle, 8, is intern-
ally represented by a pair of integers (24, ys) such that
0 = atan2(yg, xg). We refer to such angles as rational.

If we view the X-axis as representing the real com-
ponent and the Y-axis as representing the imaginary
component then every rational angle # 1s described as a
complex value (6,,0;) = (g, yp). Addition, subtraction
and comparison of angles can then be done by simple
multiplication and division of these complex values. For
instance, consider two rational angles 8, ¢, the addition
# + ¢ 1s analogous to the multiplication.

0 = 6,40
¢ = ¢+ ot

0,0y + 0idi + (0r 05 + 0:¢, )1
= (9r¢r + 0;¢;,0,6; + 92¢r)

Similarly, subtraction is analogous to division:

6, +06;1
ér + 04t
(& + ¢:1)(0, 4 0;1)
Gr + st

¢r0, — ¢i0; + (Pr0; + ¢40,)i

(¢r + ¢4i)?
<¢r9r — ¢t ¢r0; + ¢i97‘)

(¢r + 0i1)? 7 (¢ + 047)?

(0ror —

0—¢

0;¢i,0i0; + 6;0,)

The last step in the above derivation can be used
without loss of generality or accuracy since the mag-
nitude of the real and imaginary portions does not af-
fect the slope of the angle represented.



This allows us to entirely constrain the computation
to the addition, subtraction and multiplication of ar-
bitrary length integers. The result is that all additions
and subtractions of rational angles are guaranteed to
yield a rational angle. Comparison is done by simply
comparing the slopes of the two rational angles.

We note that the set of angles in S* has cardinality
Ny. The cardinality of the set of representable rational
angles is [{(z, y)|integer(z), integer(y)}| = Np. Thus
there exist some angles which cannot be represented as
rational angles. For instance the angle 7 /3.

5.2 Results

We implemented the algorithm based on a rational
angle package in C++ that we based upon an earlier
LISP implementation by Matt Mason. To test the
design algorithm, we used a set of 31 random part
shapes ranging from 2 to 7 stable sides. Finding an
optimum fence design for these parts required an aver-
age of 1.2bsec with only one part requiring more than
5 seconds (13.86sec) on an Intel 486DX4-100 platform.

Part
Algorithm [17]

3 2

=i {pr@QD}:

Figure 7: Results for a sample of parts.

# Fences Using # Fences Using
New Algorithm

Results for eight parts used as examples in the paper
by Peshkin and Sanderson [18] are tabulated in Table 7.
Note that for the fifth part in the table, the previous
algorithm was unable to find a fence plan.

6 Discussion and Future Work

This paper describes the first complete algorithm for
designing passive part feeders. This algorithm is com-
plete in the sense that if a design exists the algorithm
will find it else 1t will return with a negative report. In-
terestingly, even though fences must always push from
a restricted set of directions, we have not been able
to generate a single part for which a fence design does
not exist. This leads us to conjecture that fences are
solution-complete [10]: a design exists for all parts.

The next step 1s to extend these results to parts with
curved edges and to relax the assumption of zero fric-
tion between parts and fences building on the results

in [19].
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