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ABSTRACT

The relative operating characteristic (ROC) method is applied to performance
evaluation of neural networks. The study was motivated by the need to objectively evaluate
neural networks for flaw waveform identification in NDE equipment, and to compare neural
network performance with other methods. NDE applications are characterized by noisy real-
world data, less-than-perfect detection and a serious problem of false alarm indications. The
ROC method is explained by modeling neural network output as exponential probability
distributions with two peaks, one near 1 (flaw) and one near 0 (no flaw). 100% POD
(probability of detection) can only be achieved when the POFA (probability of false alarm) is
also 100%, and if a POFA of 0% is required, the POD also falls to 0%. The ROC curve
presents all intermediate performance information in an objective form and depicts the
inevitable trade-off in every interpreter, human, neural, or otherwise. The ROC method is
applied to the comparison of the performance of a neural network and a threshold-based
scheme in classifying real-world eddy current data collected from an aircraft wheel NDE
system.

KEY WORDS: performance evaluation, ROC method, probability of detection, neural
networks, fundamentals of QNDE methods.

INTRODUCTION

This paper arose from the need to quantitatively evaluate performance of a neural
network example used to distinguish corrosion from noise. Although this is a simple
GO/NO-GO situation, many NDE systems can be reduced to this level; for example,
corrosion/no corrosion, crack/no crack, dangerous crack/ineffective crack. Even when the
size of a crack is to be determined, the instrument or operator must first be able to detect it.
Many NDE managers would probably prefer this GO/NO-GO decision since it can easily be
verified, is likely to be more accurate, predictable and fast.

In comparing simple signal amplitude thresholding to neural networks, one quickly
finds that POD measurement alone does not give enough information. For example, whereas
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a probability of detection (POD) of 90% for an NDE system may be good, it’s not enough on
its own unless the false alarm rate is given too.

We use the ROC method adopted from signal detection theory, [1] [2] [3]. We also
show how to transform NDE system output, such as signal measurement or derived
computations, into appropriate conditional probability distributions, that is,  probability of
detection and probability of false alarm. These are the building blocks of the ROC curve.
Similar analyses have recently been reported by Swets[4], Sturges [5] and Nockemann [6].
A hypothetical distribution is used to explain the derivation of the ROC curve and show how
quantifying the ROC curve leads to a single measure. We present results of applying the
method to neural network interpretation of eddy current NDE signal segments and
comparison with a threshold-based scheme. The data used is taken from a database of signals
collected from  a commercial machine used to inspect aircraft wheels during periodic
maintenance .

ROC MODELING USING THEORETICAL PDFS

Explanation of the principles of POD, POFA and the ROC curve given below uses a
simple mathematical model of imperfect discrimination between noise and signal-plus-noise
by a neural network-based or any classifier. Specifically, noise and signal-plus-noise inputs
to a neural network produce values of a decision variable, such as the neural network output,
that varies from one occasion to another, with overlapping distributions of values associated
with the two classes of events. These distributions, with respect to a decision variable x, may
be modeled as class conditional probability density functions pnoise x  and pcorrosion x , for noise
alone and for corrosion signal, respectively.

Let the probability density functions be modeled as

pnoise x = Ae−αx (1)
and

pcorrosion x = Be−β 1− x( ) (2)

 where  0 ≤ x ≤ 1.

Figure 1 shows such a distribution with exponential factors selected arbitrarily. A and
B are introduced to satisfy the axioms of probability and determined following [7].

The corresponding POD and POFA are

POD = pcorrosion xdx
x0

1

∫  (3)

and

POFA = pnoise xdx
x0

1

∫ , (4)

where x0  is the alarm threshold.

This gives

POD = 1 − e−β 1− x0( )

1 − e−β (5)

and

POFA = e−αx0 − e−α

1 − e−α . (6)
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Figure 2 shows the two plots of POD and POFA versus alarm threshold.

In Figure 3, a scatter plot of (POD, POFA) pairs at corresponding x0 is made on a
POD versus POFA graph. This shows the spectrum of the possible operating points of the
system.
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Figure 1 Hypothetical probability density distributions for noise and corrosion as a function
of neural network output. Exponential factor for noise is 3.5 while that for corrosion is 6.9. Their
shapes are selected to reflect the fact that the network is trained to output 0 for noise and 1 for
corrosion.
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Figure 2 POD and POFA distributions as a function of alarm threshold. At an alarm
threshold of 0, POD and POFA are at their maximum. The values then decrease together as the alarm
threshold increases. At the lowest value of the alarm threshold both POD and POFA are 0.
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Figure 3 ROC curve for Hypothetical Distribution. The ROC curve is a plot of
(POD, POFA) pairs on a POD versus POFA graph parameterized by alarm threshold, X0, the
decision variable.

It is evident from Figure 3 that the alarm threshold, X0, is an important parameter. It is
observed that at low values of X0, both a high POD and a high POFA are obtained whereas at
high values, both the POD and the POFA are low. POD and POFA thus increase and
decrease together, and by varying the alarm threshold, different levels of POD and POFA are
obtained.

CONVERSION OF THE ROC CURVE TO A SINGLE MEASURE

A single-measure may be useful for expressing the performance of a classifier
following the derivation of the ROC curve. The purpose of such a measure is to allow the
location of different ROC curves on a common spectrum and facilitate comparison among
systems.

The two extremes of such a measure should correspond to the worst and the best or
ideal classifier. The worst classifier, on one hand, may be defined as that which has no
discrimination between positives and negatives. A positive  will have equal chance of being
interpreted as a positive or a negative , and vice-versa. This means true-positive and false-
positive frequencies are equal, that is, POD = POFA. This is a straight-line between points
(0.0, 0.0) and (1.0, 1.0). The best classifier, on the other hand, represents perfect
interpretation which follows a POD = 1.0 for all values of POFA. This corresponds to an
ideal performance of POD = 1.0 and POFA = 0.0, that is, the top-left corner.

Figure 4 illustrates examples of ROC curves for an ideal, good, poor and worst
classifier.
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Figure 4: Illustrating an ideal, good, poor and worst classifier. The worst classier has no
discriminating ability between a flaw and noise. Any input has equal probability of being called a
flaw or noise. Improving performance shifts the ROC curve towards (0, 1), the ideal point.

Area Under the ROC Curve

This is the area of the entire graph that lies beneath the curve, and is designated
A(P). It is bounded by the axes POD = 0.0 and POFA = 1.0, and the (POD, POFA) pairs
that are generated during testing of the classifier and is often computed by the trapezoidal
rule.

A(P) values vary from 0.5 to 1.0 where a value of A(P) = 0.5 corresponds to the
case of no discrimination while A(P) = 1.0 represents a perfect classifier.

The advantage of A(P) is that it is objective, that is, it does not depend on the relative
importance attached to POD and POFA values. One disadvantage of A(P) is that it
underestimates the area beneath a complete ROC, especially when the points are not well
spread across the ROC space. Further more, it depends a lot on the uninteresting part of the
ROC curve, that is, where both POD and POFA tend to 1.0.

Distance from (0.5, 0.5) to the Point of Intersection of the ROC Curve with the Minor
Diagonal

This is designated dc and measures the distance from the center (0.5, 0.5) to the point
of intersection of the ROC curve and the minor diagonal, POD + POFA = 1. This may also
be interpreted as that point where probability of detecting positives (POD) equals the
probability of correctly classifying negatives (1 - POFA), the complement of probability of
false alarm. This is illustrated in Figure 5.
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Figure 5 Using  Distance from (0.5,0.5) along the Minor Diagonal to the ROC Curve to Measure
Efficacy

Values of dc vary from 0.0 to 0.707 (1 2 ) with dc = 0.0 corresponding to the case

of no discrimination and dc  = 0.707 a perfect classifier.

Although commonly used, dc  does not strictly meet the objectivity criteria because it
assumes a value system that attaches equal utility to correct classification of positives and
negatives. It is thus inappropriate for applications in which a higher cost may be attached to
misclassification of negatives, especially when the negatives-to-positives ratio is high. By
using a different slope, however, it is possible to take into account different criteria.

Transformation of Neural Network Output To ROC

The derivation of the ROC curve for a given classifier depends on the nature of the
classifier, the test data and the test method. For a neural network, defining the output as 1.0
for the positive class and 0.0 for the negative class simplifies the problem. It also allows the
use of the model described earlier.

Points on the ROC curve are obtained by counting the true-positives and false-
positives at different levels of the alarm threshold. The number of true positives is the
number of positives with output values exceeding the alarm threshold. Similarly, the number
of false-positives equals the number of negatives whose output exceeds the alarm threshold.
By dividing the number of true-positives and false-positives by the corresponding number of
positives and negatives, respectively, POD and POFA values are obtained. A plot of such
corresponding values of POD and POFA provides the ROC curve of the neural network.

It is instructive to note that an alarm threshold of 0.0 leads to all positives classified as
positives (POD = 1.0) and all negatives misclassified as positives (POFA = 1.0).
Conversely, an alarm threshold at the maximum value of 1.0 leads to all positives
misclassified as negatives (POD = 0.0) and all negatives correctly classified as negatives
(POFA = 0.0). Different values of alarm threshold, from 0.0 to 1.0, give different POD and
POFA values in a monotonic way, thus generating the ROC curve for the neural network.
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Different neural networks will in turn generate different ROC curves which can easily be
compared on the same platform.

APPLICATION TO AIRCRAFT WHEEL NDE

ROC evaluation has been applied to two methods for interpretation of data collected
from an NDE machine for inspecting aircraft wheels. The first uses a threshold applied on the
signal amplitude, as is done now in practice. The second uses a neural network to analyze the
data after preprocessing and then applying an alarm threshold on the neural network output.

The ROC curves are generated using corrosion signal segments, as positives, and
noise signal segments, as negatives. A total of 1010 signal segments were used for the test;
263 were corrosion signal segments and 747 were noise signal segments. The data is part of
a database of NDE signal segments from a real-world inspection environment [8].

Figure 6 shows a comparison of the thresholder and neural network 56-23-1. The
neural network performs much better than a thresholder; especially at low POFA levels.

Using a single measure, the ROC curves can be compared as shown in Table 1.

CONCLUSION

The wide range of methods for NDE, from the mundane to the esoteric, and the
process itself do not lend themselves to easy performance measurement. The major problem
seems to be documentation of the signal indications and the decision taken. This paper has
taken advantage of a database of such indications to present a procedure for quantitatively
measuring such performance. Various advantages are foreseen such as objective equipment
comparison, monitoring and standardization.
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Figure 6 ROC of neural network (NN) 56-23-1, thresholder (THD), and chance signature
classifiers. The neural network achieves a significant improvement on performance. At low POFA
for example the THD loses classification ability while the NN still performs well.



8

Table 1 Comparison of various ROC Curves

ROC Curve A(P)   d
c

CHANCE 0.5 0
THD 0.717 0.24
NN 0.904 0.483
HYPOTHETICAL
(with exponents
α = 3.5 and β = 6.9)

0.971 0.595

IDEAL 1.00 0.707
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