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Preface

- /

In this book I treat the problem of predicting (and exploiting) the sliding
motions that workpieces undergo when they are manipulated on a surface by
a robot, or when they pass through a parts-feeder. The results are useful in
the automated design of parts-feeders and of robot manipulation strategies.

The prediction problem, although it falls squarely in the domain of
classical mechanics, is nontrivial because it is not enough to have predictive
power for a well-described initial condition. We need bounds on the possi-
ble motions of a pushed workpiece for a broad class of initial conditions.
Specifically, the distribution of pressure between a workpiece and the sur-
face it slides on is realistically unknown, so the motion of the workpiece in
response to a push cannot be predicted uniquely. In Chapter 3 the set of
possible motions of a workpiece for a given push, for all collections of points
of contact, is found. The answer emerges as a locus of centers of rotation.

Even when a prediction problem (such as the sliding problem) is fully
understood, automated synthesis (also known as ‘‘planning’” or ‘‘design’’)
may be intractable. The synthesis problem here is to use sliding motions,
without sensors or feedback, to orient and align workpieces from an initial
random state. Configuration maps are introduced, mapping all configura-
tions of a workpiece before an elementary sliding operation to all possible
outcomes, thus encapsulating the physics and geometry of that operation.
Using products of configuration maps and appropriate search techniques,
operation sequences can be found that reduce the configurational uncer-
tainty of a workpiece. As an example, in Chapter 5 we design automatically
a class of passive parts-feeders consisting of multiple sequential fences
across a conveyor belt.

Along the way I describe a simple variational principle for constrained
quasi-static mechanics which I call the minimum power principle (MPP): “‘a
constrained quasi-static system performs that allowed motion which mini-
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mizes the instantaneous power.”” The principle seems intuitive, but it is
false. Only under certain quite restrictive conditions is the minimum power
principle true, and these are not uncommon in robotics.* The minimum
power principle is considered in Chapter 2.

Michael A. Peshkin

* I am aware of several authors who have recently done or are currently doing further
work on MPP and related ideas: Jeff Trinkle (Arizona), Imin Kao and Mark Cutkosky (Stan-
ford), and Suresh Goyal and Andy Ruina (Cornell).

~
Acknowledgments

NS /

This book is based on a dissertation [54] completed in November, 1986, for
the Ph.D. degree in the Department of Physics, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.*

1 wish to thank my thesis advisor, Arthur Sanderson, for the proper
combination of guidance and freedom and for getting me quickly into the
mainstream of robotics. Matt Mason introduced me to the problem of ma-
nipulation of sliding objects. I benefited greatly from discussions with him.
I also thank Robert Schumacher for insisting that the theoretical mechanics
problem addressed in Chapter 2 be considered, and for several discussions
about friction.

My change from experimental physics at Cornell to robotics at Carne-
gie-Mellon would have been impossible without the flexibility and accommo-
dation of the CMU Department of Physics headed by Raymond Sorenson. 1
especially appreciate the help of Robert Griffiths in this regard. The Ro-
botics Institute at CMU provided a stimulating atmosphere in which to learn
and work.

Michael Fuhrman blazed the trail in the physics/robotics combina-
tion. James Russ served as committee chair for both of us. I am grateful to
them as well as to Lee Weiss and Nigel Foster for advice.

Gerard Cornuejols, Jeff Koechling, Luiz Scaramelli Homem de Mello,
Mark Cutkosky, Matt Mason, Marc Raibert, Robert Schumacher, Yu Wang,
and Randy Brost provided constructive criticism of my papers and talks, and
Mark Zaremsky and Nigel Foster helped familiarize me with robots and with
the local computers. Thanks to Jim Schubert for quick work in the machine
shop.

* Several equations were simplified using MACSYMA. This work was supported by a
grant from Xerox Corporation and by the Robotics Institute, Carnegie-Mellon University.

Xi



xii Acknowledgments

The writing of the thesis upon which this book is based would not have
been possible without the cooperation of my daughter Danielle, who slept
through the night at a young age. Finally, I wish to thank the Peshkin and
Strandburg families, and most of all my wife Kathy, for encouragement,
love, and faith in me during my graduate studies.

\

Introduction

\- /

1.1. PLANNING WITH UNCERTAINTY

Given geometric models of a robot, workpiece, and environment, and
clearly expressed goals, automatic planning of robot manipulation is still a
very difficult task. One difficulty is that some discrepancy between model
and reality is unavoidable, and a good plan must be sufficiently robust to
succeed despite the errors.

One has a choice of philosophies with regard to planning in the pres-
ence of uncertainty. One can make plans based on the model, and hope, or
preferably check, that these plans succeed in the presence of typical errors.
In a well-controlled environment, or for a model sufficiently updated with
sensory information, this philosophy may be adequate.

Alternatively, one can include uncertainty in the model and explicitly
plan for its control. This approach does not necessarily make planning more
difficult. Consider planning the motion of a cylindrical mobile robot in a
cluttered room. Projecting the robot and the obstacles onto the plane of the
floor, one can shrink the robot to a point and expand the obstacles to com-
pensate, reducing the problem to that of moving a point [48] [66]. Since the
shortest path from start to goal would skim the obstacles, which is undesir-
able, we could pick a path equidistant between obstacles. This plan may
succeed and can be checked. Or uncertainty may be incorporated explicitly
in planning by further expanding the obstacles by the uncertainty in their
position and in the robot’s position. Then the shortest path will succeed by
construction and need not be checked.



2 Introduction Chap. 1

1.1.1. Physics and Uncertainty

One important component of planning with uncertainty is reasoning
about the physics of the interaction between robot, workpiece, and environ-
ment. The foregoing example is perhaps unrepresentative because it was
only necessary to make plans which avoid the positional errors, not plans
which control or eliminate them. In grasping, in manipulation, or in assem-
bly operations, our knowledge of the position of a workpiece is changed by
an operation. These operations necessarily include contact between robot,
workpiece, and environment. Therefore the physics of bodies in contact,
rather than purely geometry as in the path planning example, must be con-
sidered.

Chapters 3 and 4 address this issue. The physics problem considered
is that of a rigid body sliding on a planar surface. While by no means
the only nontrivial mechanics problem which must be addressed in
manipulation planning, it is nevertheless an important one, first considered
in the context of robotics by Mason [44]. When a workpiece rests on
a tabletop, it rests in planar contact, and any attempt to grasp or push
it may result in sliding. This sliding may increase or decrease our
knowledge of the workpiece’s location and orientation, as we will see
shortly.

Besides positional errors, another form of uncertainty which breaks
the connection between model and reality is lack of knowledge of the
workpiece. A robot must deal with many instances of a workpiece, and
these may vary not only from the model but from each other. The motion
of the workpiece may be determined by rather fine details of its manu-
facture.

Consider a workpiece which has a nominally flat surface. This surface
may be in contact with another flat surface, that of the tabletop. The actual
points of contact between workpiece and tabletop can depend on particles of
dirt, or on slight deviations from flatness of either surface. We will find the
set of all possible motions of such a workpiece when it is pushed, without
knowing the details of the planar contact. This allows planning when we
cannot know the details, as in the case of nominally flat surfaces. It also
allows us to plan in ignorance of the details, even when they could in princi-
ple be known, as when the workpiece’s surface has three screw heads pro-
truding from it.

We can conclude from this example that when there is uncertainty, it is
not enough to be able to calculate motion for any completely defined situa-
tion. For manipulation planning we need a deeper insight into some kinds of
mechanics (such as sliding) which allow us to find sets of motions for a range
of instances.

Sec. 1.1 Planning with Uncertainty 3

1.1.2. Geometry and Uncertainty

The other component of planning in the presence of uncertainty is
geometric (rather than physical) reasoning. Here we have to consider which
surfaces of modeled bodies will come into contact, given some uncertainty
of the configuration of a workpiece and of the actual motion performed by
the robot. Geometric reasoning determines the possible parameters of con-
tact. Physical knowledge is needed to determine the possible outcomes of
each possible contact. The geometry of the problem is in turn altered by the
outcome of the interaction. Planning requires an integration of geometric
and physical reasoning to synthesize a control strategy.

In Chapter 5, we show how planning may be done on the basis of a
representation of an elementary operation we call a configuration map. The
configuration map describes simultaneously the geometric and physical con-
sequence of one operation on all (or a range of) initial states. In our ap-
proach the operation, with its geometric and physical consequences precom-
puted, is the basic element of planning.

1.1.3. Sensing

Another approach to dealing with uncertainty would use information
gathered from sensors to modify motion plans during execution. Besides the
additional hardware and software complexity it introduces, reliance on sen-
sors alone is not a sufficient solution. First, at some level of resolution any
sensor fails. Below that level it is the physics of contact between bodies that
determines the outcome of an operation. Second, and perhaps more funda-
mentally, even given complete information about the present state, which is
the most sensors can hope to provide, we still have to plan how to get from
that state to the goal. In the case of the sliding workpieces which are the
subject of this book, we may know exactly where a workpiece is, but still not
know how to push it to get it where we want it to go, because we do not
know how it will respond to a push. Here too, at some level the intrinsic
mechanics of a task takes over from control based on sensing.

We might suppose that in sufficiently sensor-intensive environments
little uncertainty will remain in the geometry of contact between objects. If
so, the physics of contact can be decoupled from the geometry, and much of
the motivation for combining the two in a configuration map will disappear.
However, in the case of sliding motion, a ‘“‘sufficiently sensor-intensive’’
environment might have to detect the points of contact between surfaces,
which is difficult. In the opposite extreme of completely sensorless manipu-
lation, a great deal of uncertainty in geometry exists, and to try to plan
manipulation strategies by repeated appeals to geometric and physical simu-
lators becomes impractical.

B



4 Introduction Chap. 1

Although the strategies discussed in this book are completely sensor-
less ones, there is no reason why similar strategies cannot be used in combi-
nation with sensors. There are at least three areas in which such integration
could be considered. First, the mechanics of contact can be used to plan a
motion to take a workpiece from a configuration identified by sensors toward
a goal configuration, thus allowing less frequent sensor readings. Second,
sensorless strategies can take over when the resolution limit of sensors is
reached. And, third, sensors can be used to limit the initial uncertainty with
which sensorless strategies must contend. This subject is discussed further
in Section 7.1.

1.2. EXPLOITING MECHANICS IN ASSEMBLY

Sometimes it is possible to take advantage of contact forces to accomplish a
task in the presence of uncertainty. This may be done using compliant robot
mechanics.

1.2.1. Compliant Mechanics

A common task which requires physical understanding of object con-
tact is close-tolerance parts mating and, specifically, the peg-in-hole prob-
lem. The problem is difficult because the tolerances needed to avoid jam-
ming are often smaller than the positional accuracy of the robot, or the
accuracy with which the positions of the peg and hole are known, or both.
Humans solve the accuracy problem by using force feedback, modifying
their motions in accordance with forces detected. Robots can use this tech-
nique too [25] [49] [69], but alternatively they can be fitted with a compliant
wrist whose motion in response to forces is appropriate for peg insertion [70]
[72] [16]. The point in space (if such exists [34]) at which the matrix relating
forces and torques to displacements and rotations becomes diagonal is the
center of compliance. Placement of the center of compliance ahead of the
end of the peg facilitates peg insertion.

In the technique illustrated in Figure 1-1 (copied from Erdmann [17D,
the robot is commanded to move the peg down and to the right, diagonally.
The point of first contact is arranged to be well to the left of the hole. After
first contact, the peg slides to the right until it drops into the hole. This
operation takes advantage of the mechanical interaction of the part held by
the robot and the workpiece.

It is required that the robot be able to execute a compliant move in the
commanded direction. (Mason [41] contains a useful treatment of compli-
ance.) We command the robot to move down and to the right, but when it
encounters a resisting force in the +y direction, it should continue its motion
to the right, while exerting a predetermined maximum force in the — y direc-
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Figure 1-1 Erdmann’s peg-in-hole simulation with compliant motion, from [17].
The robot is commanded to move the peg down and to the right, diagonally. The
point of first contact is arranged to be well to the left of the hole. After first
contact the peg slides to the right until it drops into the hole. This operation takes

advantage of the mechanical interaction of the part held by the robot and the
workpiece.

tion. Raibert and Craig [59] described a hybrid force/position control which
is useful for compliant moves.

1.2.2. Sliding Friction

Both of the techniques just described depend on compliance of the
robot. Without compliance, position control combined with uncertainty in
workpiece location can lead to uncontrolled forces when contact is at-
tempted.

Most robot controllers are incapable of compliant move; they are
purely position controlled. This is unfortunate from the point of view of
exploitation of task mechanics, which necessarily involves contact between
workpieces. Since the positions of the workpieces are not known exactly,
many operations (for instance the diagonal compliant move in Figure 1-1)
cannot be performed under pure position control.

The types of operations discussed shortly, and those which are the
subject of this book, can be performed under pure position control, and
without special compliant robot mechanics. A common characteristic of
these techniques is a reliance on sliding. In the examples just given a con-
trolled force was needed to perform operations involving contact in the
presence of uncertainty. A position-controlled robot can produce a con-
trolled force by making use of sliding. Sliding friction translates a controlled
movement into a controlled force, which the robot could otherwise not
produce. That force can then be utilized in manipulation strategies in much
the same way as if it were produced by force control or compliant robot
mechapics.
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1.3. EXPLOITING MECHANICS IN GRASPING

Important criteria for planning a grasp are uncertainty reduction, grasp sta-
bility, and grasp strength. There is no reason to think that these criteria
must be (or even in general can be) met in a single operation.

1.3.1. Uncertainty Reduction

Grasping is often the crucial first step at which uncertainty in a work-
piece’s position and orientation is encountered. Many robotic operations
involve a workpiece which is free to slide on a tabletop or a conveyor belt.
Individual strategies have been developed which take advantage of sliding
friction between the workpiece and the surface it slides on to facilitate accu-
rate positioning of the workpiece or reliable grasping of it.

An example is the hinge-grasp strategy used by Paul [57] (Figure 1-2).
To understand this and similar operations, Mason determined the conditions
required for translation, clockwise (CW) rotation, and counterclockwise
(CCW) rotation of a pushed workpiece [44]. Mason’s result is summarized
in Section 1.6.2.

Another example is the strategy of centering and aligning a workpiece
to be grasped by first squeezing it with the robot’s gripper. This operation
has been analyzed in detail by Brost [12]. Brost’s results enable the auto-
mated planning of a grasping motion (consisting of a translation of the robot
hand while the gripper is simultaneously closed at a controlled speed) which
will acquire the workpiece in a uniform way despite the presence of some
uncertainty in the workpiece’s initial orientation.

1.3.2. Grasp Stability and Grasp Selection

Finding a geometrically feasible grasp from a model of a workpiece,
even for simple grippers, is a nontrivial task. Several authors consider se-
lection of grasping surfaces from a geometric model [35] [32] [55]. Salisbury
[63] discusses grasp selection in terms of constraining the grasped work-
piece. Asada and By [3] have done recent work on selection of contacts to
allow detachment of a grasped workpiece.

Which of the feasible grasps is then ‘‘best’ is not well defined, since
different tasks, materials, and presentations of the workpiece may require
different grasps. Various physical properties of grasps are clearly relevant.
Wolter, Volz, and Woo [73], Jameson [26], Jameson and Leifer [27], Barber,
Volz, and Desai [5], Holzmann and McCarthy [24], and Li and Sastry [33]
calculate the resistance of the grasp to forces applied to the workpiece.
Cutkosky [14] [15] considers whether the workpiece will become unstable as
gripping force is increased. Asada [2] and Baker, Fortune, and Grosse [4]
study the local stability of the orientation of the workpiece in the grippers, in
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Figure 1-2 Hinge-grasp strategy (Paul [57] and Mason [42]). The robot fingers
follow the trajectory indicated by the dotted lines, closing as they translate. On
contact with the hinge-plate the trajectory causes the plate to rotate into alignment
with the gripper and then to self-center. This open-loop strategy requires no
sensing and succeeds despite some uncertainty in the initial configuration of the
plate.

the absence of friction. Fearing [19], Cutkosky [15], Kerr [29], and Nguyen
[47] consider stability and constraint including friction. Trinkle [65] con-
siders the problem of finding an enveloping grasp for lifting a workpiece
away from a surface, including consideration of friction.

Analysis of the maximum torque a grasp can sustain has a difficulty in
common with analysis of the motion of a sliding workpiece: the distribution
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of forces in planar contacts is usually not known, as it may depend on fine
details of the contacts. Barber, Volz, and Desai [5] deal with this problem
by assuming a linear force distribution. The force distribution affects the
torque required to rotate the two planar surfaces relative to one another.
The sliding problem is solved without information about the force distribu-
tion in Chapter 3. The solution is probably applicable to calculation of the
torque resistance of a grasp as well.

1.4. WORKPIECE ALIGNMENT AND PARTS-FEEDERS

Parts-feeders perform uncertainty reduction without grasping. Boothroyd
[7] has analyzed and cataloged classes of parts-feeders. Recent work by
Lozano-Perez [38] and Natarajan [46] begins to build a systematic under-
standing of parts-feeders. Automated design of a class of parts-feeders is
demonstrated in Chapter 5 of this work.

Mani and Wilson [40] constructed a general-purpose parts-aligner
based on sliding friction. A workpiece, initially having unknown orienta-
tion, is pushed across a tabletop by a straight fence. The angle of the fence
and its direction of motion are under computer control, making the aligner a
sort of special-purpose robot. By a properly selected sequence of pushes,
the workpiece can be brought into a unique final orientation independent of
its initial orientation. The planning method described in Chapter 5 can be
applied directly to Mani and Wilson’s system.

Erdmann and Mason [18], inspired by work of Grossman and Blasgen
[23], devised a system in which a workpiece dropped at random into a
rectangular tray is aligned by a sequence of tipping motions of the tray. With
each movement, the workpiece slides across the bottom of the tray, or slides
along one edge of the tray, or both. Automated planning of the sequence of
tipping motions required to orient a given workpiece has been demonstrated
[18], and the system has been tested by using a robot to tip the tray.

1.5. STATE SPACES, OPERATION SPACES,
AND PLANNING

Much effort has been expended on the automatic planning of manipulation
strategies [60]. Several such works have dealt with uncertainty: Lozano-
Perez, Mason, and Taylor [37] developed a method using compliance and
explicitly dealing with uncertainty. Erdmann [17] developed algorithms for
planning manipulation strategies based on successive backprojections from a
desired goal to a set of starting configurations broadened by uncertainty.
Brooks [8] described a symbolic ‘‘plan checker’” that determines if a plan
will succeed in the presence of uncertainty.
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A recurrent construction in planning is the higher-dimensional space in
which parameters of motion or state are orthogonal axes. In configuration
space (C-space) [36], orthogonal axes are the translational or rotational
coordinates of a workpiece. This is the natural space for path planning.
Udupa [66] showed that the collision avoidance problem for two objects can
be reduced to the problem of moving a point in the vicinity of a ‘‘C-space
obstacle,”” which is a convolution of the two objects. The C-space obstacle
is closely related to the Minkowski sum of the two objects.

Operation space is formalized by Mason and Brost [45] as a higher-
dimensional space describing parameters of operations which may be per-
formed on a given workpiece in a known configuration. It is a space of robot
motions, not workpiece configurations. Examples cited in [45] are the
fence-pushing spaces and squeeze-grasp diagrams of Brost [12] and the
closely related pushing space of Mani and Wilson [40], Kerr and Roth’s
grasp space [30], and the jamming and wedging diagrams of Siminuvic [64]
and Whitney [71].

In Chapter 5 of this work a configuration map is developed. A configu-
ration map is a function of two copies of C-space, representing the initial and
final configurations of a workpiece (before and after an operation) and map-
ping into logical values 0 (not possible) and 1 (possible). Configuration maps
are used for planning sequences of operations.

Phase space is a well-known construction in which the coordinates and
momenta of a particle are the dimensions of the space. Liouvilie’s theorem
[31] states that the volume in phase space (representing an ensemble of
particles or a probability cloud for one particle) is constant under nondissipa-
tive operations. In robotics, where ‘‘objects in motion tend to come to rest’’
[1], Liouville’s theorem could only be applied to brief events. (It is included
here in the hope that someone will make use of it in robotics.)

1.6. PREVIOUS WORK ON MANIPULATION
OF SLIDING WORKPIECES

The subject of this book is directly descended from the work of Mason [44]
[42]. This section summarizes some of Mason’s results which are used in
this work and describes some of the problems approached in [44] which are
fully solved here. It also relates the present work to that of Brost [12], of
Mani and Wilson [40], and of Erdmann [17].

1.6.1. Sliding as an Important Physical Effect
Mason first identified sliding operations as fundamental to manipula-

tion, and especially to grasping. As argued above, to plan sliding (or more
generally, manipulation) operations, it is necessary to study not only the
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geometric aspects of the interaction between robot and workpiece, but also
the physical aspects: the forces generated and the motions those produce.

The prototypical sliding problem is to solve for the motion of a work-
piece on a planar surface with friction, when a force is applied to it at a
known point. This is a problem in classical mechanics, indeed in quasi-static
mechanics. It was recognized but never solved in the heyday of classical
mechanics [28] [39] [58], although the answers turn out to be simple and of
analytical form. The sliding problem is difficult because the pressure distri-
bution beneath the workpiece is in general unknown. The nineteenth- and
early twentieth-century classical mechanicians (cited earlier) assumed a par-
ticular form of the pressure distribution, either uniform or with linear varia-
tion over the bottom surface of the workpiece, and solved the very difficult
mechanics problem which resulted.

Mason realized the only useful result would be one which
applied for all pressure distributions, as the pressure distribution is un-
known.

1.6.2. Mason'’s Rules for Rotation [44]

One such result that has already proven its usefulness [40] [12] con-
cerns whether a pushed sliding workpiece will rotate clockwise (CW) or
counterclockwise (CCW). This rule may be summarized as follows, refer-
ring to Figure 1-3. Construct the friction cone, of half-width tan~! y., at the
point of contact between pusher and workpiece. The friction cone is cen-
tered on the normal to the edge, as shown. As will be explained in Section
4.1.1, the line of force applied by the pusher to the workpiece must fall
within the friction cone. If the line of force passes to the left (right) of the
CM of the workpiece, the workpiece will rotate CW (CCW). If both edges of
the friction cone are left (right) of the CM, the line of force must be left
(right) of the CM too. If the edges of the friction cone straddle the CM, the
line of motion (drawn horizontally in Figure 1-3) acts as a tie-breaker. In
Figure 1-3, one edge of the friction cone passes to the left of the CM, one
edge passes to the right, and the line of motion passes to the left. Therefore
the workpiece will rotate CW. .

As this rule makes no mention of the pressure distribution, it is tempt-
ing to believe that the rule is understandable purely as a consequence of the
symmetries of the lines of force and CM of the workpiece. This is incorrect:
there is no symmetry in the problem because the pressure distribution may
be asymmetric. The content of the rule is that the asymmetry doesn’t
matter.
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PUSHER

Figure 1-3 Mason’s rules for determining CW or CCW rotation of a pushed
workpiece. Construct a friction cone of half-width tan™' . at the point of contact
between pusher and workpiece. The friction cone is centered on the normal to the
edge. If the line of force passes to the left (resp. right) of the CM of the work-
piece, the workpiece will rotate CW (resp. CCW). The line of force applied by the
pusher to the workpiece must fall within the friction cone. If both edges of the
friction cone are left (resp. right) of the CM, the line of force must be left (resp.
right) of the CM too. If the edges of the friction cone straddle the CM as here, the
line of motion acts as a tie-breaker. Here, one edge of the friction cone passes to
the left of the CM, one edge passes to the right, and the line of motion passes to
the left. Therefore the workpiece will rotate CW.

1.6.3. Center of Rotation

The foregoing rule determines the sense of rotation of a pushed work-
piece, but not the rate of rotation. Mason recognized the importance of rate
information and framed the problem of determining the center of rotation
(COR), which describes the instantaneous motion of a pushed workpiece
completely. We cannot hope that the COR will be independent of the pres-
sure distribution, as the sense of rotation is. Rather we may attempt to find
the set of CORs as the pressure distribution takes on all functional forms.
(This is the problem solved in Chapter 3 of this work.)
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Mason’s theorem 5 greatly reduces the difficulty of the problem. It
states that to find the extremal points of the COR locus (which it is hoped
will be a well-behaved compact region of the plane), it is not necessary to
consider pressure distributions of all functional forms, but only those con-
sisting of three nonzero points of support, called *‘tripods.”” Mason states
that **while numerical search through all possible three-point pressure distri-
butions is not an appealing prospect, it is certainly more appealing than
search through all possible supports’ [44].

Even finding the COR for a single three-point pressure distribution
turned out to be surprisingly difficult, consuming from a few seconds up to a
minute of computation on a lisp machine. The technique Mason used was
two one-dimensional false-position iterative calculations, corresponding
roughly to the two degrees of freedom of the COR. Compared to the two-
dimensional energy minimizing iterative method (Section 3.3.3) used in this
work to create Figures 3-5 and 3-6, Mason’s method is slower but converges
reliably. Because of the computational expense, Mason attempted to guess
heuristically which tripods provide extremal CORs.

1.6.4. Manipulation Planning and Grasp Planning

Mason [44] also included applications to manipulation planning and to
grasp planning. Later work of Mani and Wilson [40] and of Brost [12] dealt
more comprehensively with similar applications. Mason analyzed a fence
movement across a tabletop which would align and position a small work-
piece, in this case a rectangular block, without sensors, by taking advantage
of the rotation of the workpiece as it is pushed. The operation was demon-
strated and worked with fair reliability. Mani and Wilson extended the idea
to general polygonal shapes, and to an arbitrary sequence of pushes of the
workpiece with a reorientable movable fence. A special-purpose robot was
constructed to demonstrate the idea. Mason also showed how his results
could be used to optimize a ‘‘push grasp’ in which robot fingers close on a
workpiece at a controlled rate while the fingers simultaneously translate.
The push grasp combines workpiece reorientation with grasping. Brost con-
sidered related classes of grasp in more generality and detail.

Besides generalizing the fence push strategy or the push-grasp strate-
gies of Mason, Mani and Wilson [40] and Brost [12] dealt more directly with
the issue of planning. The closely related ‘‘squeeze-grasp’ and *‘push-
grasp’’ diagrams of Brost [12] and ‘‘edge-stability’’ maps of Mani and Wilson
[40] essentially plot Mason’s rule for sense of rotation as a function of the
parameters of a grasping or manipulation operation. These are then exam-
ples of “‘operation spaces,’” formalized by Mason and Brost [45]. In [40] and
[12] the parameters of an operation are the angle of the fence or gripper
surface, and the direction it is translated, relative to the orientation of the
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workpiece to be grasped or manipulated. Where Mason analyzed the phys-
ics of an operation, Mani and Wilson [40] and Brost [12] included the geome-
try and the physics in one construction. An alternative approach to encap-
sulating the physics and geometry together is described in Chapter 5 of this
work, where configuration maps for the same purpose are introduced.

Erdmann [17] developed a method for manipulation planning based
primarily on geometric considerations. The backprojection of a state is the
set of configurations from which that state can be achieved despite uncer-
tainty, by executing a particular motion. Plans are formed by chaining back-
projections until all possible initial states are included. While primarily geo-
metric, Erdmann’s method does include the physics of interaction in that
sliding or sticking of workpieces in contact is determined. For the purpose
of this determination a representation of the friction cone (Section 4.1.1)
generalized to configuration space is introduced.

1.7. SUMMARY OF RESULTS

1.7.1. Chapter 2: The Minimum Power Principle

The motion of a pushed, sliding workpiece, if it is not too fast, is a
problem in quasi-static mechanics. In Chapter 2 we study a simple, perhaps
obvious, variational principle for quasi-static systems which we call the
minimum power principle. This principle can be stated

A quasi-static system chooses that motion, from among all motions satisfying
the constraints, which minimizes the instantaneous power.

For our purposes ‘‘instantaneous power’’ may be understood as the
rate of energy dissipation to sliding friction. The principle expresses the
intuitively appealing idea that when a workpiece is pushed, it gets out of
the way of the pusher (i.e., ‘‘satisfies the constraints’’) in the easiest
way: the way which minimizes the energy lost to sliding friction.

The relationship of the minimum power principle to other energetic
formulations of the laws of mechanics is discussed. Contrary to popular
misconception, the minimum power principle is not an existing principle in
mechanics, and, in fact, it is false. A simple counterexample is given.

We prove that in the special case of Coulomb friction, the minimum
power principle is correct, however. For systems with other dissipative
forces (e.g., viscous forces) the minimum power principle produces incor-

rect results.
L
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1.7.2. Chapter 3: The COR Locus for a Sliding
Workpiece

In Chapter 3 we consider the problem of predicting the instantaneous
motion of a pushed sliding workpiece. A typical sliding problem is shown in
Figure 1-4. The instantaneous motion is completely given by the location of
the center of rotation of the workpiece (COR), somewhere in the plane of
sliding.

The motion of the workpiece (and therefore the location of the COR) is
sensitive to the pressure distribution P which supports the workpiece on the
tabletop. P is unknown in practice, so we wish to find the locus of all
possible CORs, for all P.

Using the minimum power principle, we find analytic expressions de-
scribing the boundary of the COR locus. A typical such boundary is shown
in Figure 1-6. Depending on the pressure distribution, the COR of the work-
piece may fall anywhere within the ice-cream-cone shaped boundary, but
never outside of it.

The parameters of the sliding problem are the center of mass (CM) of
the pushed workpiece, the point of contact ¢ between the pusher and the
workpiece, and the angle « between the edge being pushed and the line of
pushing, as shown in Figure 1-5. We also require the radius a of a disk
circumscribing the workpiece. The COR locus we find is exact for the disk
and encloses the COR locus for any inscribed workpiece.

The coefficient of friction u, between workpiece and tabletop does not

LINE OF MOTION OF FENCE

Figure 1-4 A typical pushing problem. A fence moving horizontally, and tipped
at an angle « with respect to its line of motion, pushes a corner of a workpiece
which is able to slide. The instantaneous motion of the workpiece is completely
specified by its center of rotation, somewhere in the plane of sliding. The COR
cannot be found uniquely because it depends upon unavailable information about
the pressure distribution supporting the workpiece. But we will be able to find the
COR locus, over all pressure distributions.
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Figure 1-5 Parameters of the pushing problem. Important geometric parameters
are the angle « of the edge being pushed relative to the line of motion of the
pusher, the vector & from the center of mass (CM) to the point of contact between
pusher and workpiece, and the radius a of the disk which circumscribes the
workpiece. When these parameters are given, the locus of centers of rotation for
all possible pressure distributions can be found.

affect the motion so long as we assume uniform Coulomb friction. The
coefficient of friction u, between the pusher and the edge of the workpiece
does affect the motion. In Chapter 3 we assume u, = 0.

Note that the COR locus is symmetric about the angle of the edge «,
which is drawn as a vector & in Figure 1-6. The farthest point of the COR
locus from the CM falls on a. For most applications this “‘tip”’ of the COR
locus is of particular importance, as it specifies the slowest possible rotation
of the workpiece as it is pushed, for any pressure distribution. The distance
ryp to the tip of the COR locus has a simple relation to the parameters of the
problem:

a2

rtip =

(212

>
o
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This formula has an interesting geometric interpretation. As the edge
angle « is varied, the tip of the COR locus traces out a straight line called the
““tip line’” and shown in Figure 1-6. The tip line is perpendicular to ¢ and a
distance a?/c from the CM. Simple formulas also exist for the curvature of
the boundary of the COR locus at the tip (and at the opposite end as well),
and for the points of intersection of the boundary of the COR locus with the
perimeter of the disk. For most purposes the analytic formulas for these
points of the COR locus suffice, and it is unnecessary to generate the entire
locus.

As an application of the results so far, we can calculate the maximum
distance it is necessary to push a polygonal workpiece with a frictionless
fence in order to guarantee alignment of an edge of the workpiece with the
fence, regardless of the pressure distribution beneath the workpiece.

MOTION

Figure 1-6 r,,(«) versus a and construction of the tip line. As the angle of the
edge being pushed « is varied, the tip of the COR locus boundary traces out a
straight line: the tip line.
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1.7.3. Chapter 4: The COR Locus Including
Contact Friction

The COR loci derived in Chapter 3 apply only when p,., the coefficient
of friction between the pusher and the pushed workpiece, is zero. In Chap-
ter 4 we generalize to w,. > 0. The COR locus for u. > 0 turns out to be a
combination of two of the COR loci calculated for u. = 0. The two COR loci
used are those with ‘‘effective’’ edge angles a =+ tan™' u.. Part of each of
these two loci, plus a linear segment just above the tip line, constitutes all the
possible centers of rotation for w. > 0. In Figure 1-7 the shaded and bold
sections are the resulting COR locus for u,. > 0.

To demonstrate the use of the results, we find the distance a polygonal
workpiece must be pushed by a fence to assure alignment of an edge of the
workpiece with the fence, now with u. > 0. We also analyze the motion of a
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Figure 1-7 Construction of the COR sketch. The COR locus for u. > 0 turns out
to be a combination of two of the COR loci calculated for u, = 0. The two COR
loci used are those with “‘effective’” edge angles a = tan~! p.. Part of each of
these two loci, plus a linear segment just above the tip line, constitutes all the
possible centers of rotation for u, > 0. The shaded and bold sections are the
resulting COR *‘sketch’ for u, > 0.



18 Introduction Chap. 1

sliding disk as it is pushed aside by the corner of an object in linear motion.
Finally, we study the effectiveness of a sensorless manipulation strategy
based on ‘“‘herding’’ a disk toward a central goal by moving a pusher in a
decreasing spiral about the goal.

1.7.4. Chapter 5: Planning Manipulation Strategies

In Chapter 5, a method of planning operation sequences is proposed.
The planning problem is to create, given the shape of a workpiece, a se-
quence of operations which will perform a desired manipulation on the
workpiece, despite substantial uncertainty in the initial position and orienta-
tion of the workpiece.

We define a configuration map which describes the effect of a single
operation on all initial configurations of a workpiece. Figure 1-8 shows a
configuration map for the interaction of the five-sided workpiece shown with
a moving fence tipped at —60 degrees with respect to its direction of mo-
tion. The horizontal axis of the configuration map is the initial configuration
of the workpiece. The vertical axis is the final orientation of the workpiece
after it has collided with the fence, slid along its face, and left the end of the
fence. Shaded regions of the map are logical ‘‘1,”’ meaning a workpiece with
that initial orientation could have the indicated final orientation after inter-
acting with the fence. Both geometric reasoning and the physics of sliding
developed here are needed to generate the configuration map. The map does
not have a unique final configuration for each initial orientation, because the
pressure distribution supporting the workpiece is unknown and affects the
motion.

In general a configuration map is a function of two copies of configura-
tion space (C-space X C-space), taking on logical values. In this case we are
interested only in the orientation of the workpiece, so we use only a one-
dimensional projection of C-space. The utility of configuration maps lies in
the fact that the configuration map for a complex sequence of operations is
simply the product of configuration maps for the elementary operations
composing the sequence.

As an example of planning using configuration maps, we consider a
class of passive parts-feeders based on a conveyor belt. Workpieces arrive
on the belt in random initial orientations. By interacting with a series of
stationary fences angled across the belt, the workpieces are aligned into a
unique final orientation independent of their initial orientation. Figure 1-9
illustrates a sequence of six fences which aligns the five-sided workpiece
shown. The configuration map for the sequence of six fences has only one
horizontal band across it: all initial orientations are reduced to a narrow band
of final orientations.

In this example the planning problem is to create (given the shape of a
workpiece) a sequence of fences which will align that workpiece. Using
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Figure 1-8 Configuration map for workpiece interacting with —60-degree fence.
The configuration map describes the effect of a single operation on all initial
configurations of a workpiece. This is the configuration map for the interaction of
the five-sided workpiece shown with a moving fence tipped at —60 degrees with
respect to its direction of motion. The horizontal axis of the configuration map is
the initial configuration of the workpiece. The vertical axis is the final orientation
of the workpiece after it has collided with the fence, slid along its face, and left the
end of the fence. Shaded regions of the map are logical **1,”” meaning a workpiece
with that initial orientation could have the indicated final orientation after interact-
ing with the fence. The map does not have a unique final configuration for each
initial orientation, because the pressure distribution supporting the workpiece is
unknown and affects the motion.

configuration maps, we transform the planning problem into a purely sym-
bolic one. A tree consisting of all fence sequences is quickly searched to find
a successful feeder design, by using some effective pruning strategies.

1.7.5. Chapter 6: Experiments

In Chapter 6 several experiments are described which test the adher-
ence of real physical systems to the analytic bounds derived in earlier chap-
ters. In general we find that the analytic bounds derived in Chapters 3 and 4
and used in Chapter 5 are rather conservative bounds. But when nonuni-
form sliding surfaces are used or when lubricants (non-Coulomb friction) are
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in random initial orientations. By
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fences angled across the belt, the work-
pieces are aligned into a unique final

orientation independent of their initial
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present on the surfaces, substantial disagreement with the analytic bounds is
expected and observed.

1.7.6. Chapter 7: Suggestions for Further Work

In the final chapter we consider relaxation of some of the assumptions
made in earlier chapters, particularly with regard to non-Coulomb friction
and high-speed manipulation. We also consider the prospects for extending
the configuration maps developed in Chapter 5 to include probability of
various results and to incorporate sensory information.

1.8. SIGNIFICANCE OF RESULTS
1.8.1. Physics of Sliding

In Chapters 3 and 4 we find the COR loci which completely specify all
possible motions of a sliding workpiece. These results generalize those of
Mason [44] which determine the sense of rotation (i.e., whether the work-
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piece will turn clockwise or counterclockwise). The COR contains rate as
well as sense information and specifies the motion completely.

There are some real problems which can be solved with sense-of-rota-
tion information alone. In Erdmann and Mason’s tray-tipper (Section 1.4),
when a workpiece slides into contact with a wall of the tray, we only need to
know whether it rotates and which way it rotates to calculate its eventual
state. Erdmann’s C-space friction cones and geometric reasoning provide
this information. But most problems cannot be solved without rate informa-
tion. In all problems where the pushing motion is of finite length we must
calculate the rate of rotation. In Mani and Wilson’s fence aligner and
Brost’s push grasps, it is assumed that a face of the workpiece rotates into
alignment with a face of the pusher before the pusher’s motion terminates.
Rotation rates are needed to calculate the push lengths needed to justify that
assumption. The tray-tipper avoids the assumption by not restricting the
duration of pusher motion, which is effectively replaced by gravity.

By no means all workpiece-alignment strategies count on alignment
with fences. In the conveyor belt—based aligner described above and in
Section 5.4, we use the relative rates of workpiece rotation and slippage of a
fence’s endpoint along a workpiece edge to calculate the eventual orienta-
tion of a workpiece after it leaves the endpoint of the fence. In Section 4.5,
we find the maximum rate at which a point pusher could “‘herd” a disk
toward a central goal by spiraling around it. Paul’s hinge-grasp strategy
(Figure 1-2) assumes that the hinge plate will rotate until it contacts both
fingers before the converging fingers become too close together to encom-
pass both sleeves. To find the maximum allowable convergence rate re-
quires us to find the minimum possible rotation rate of the hinge plate when it
is being pushed by one finger.

1.8.2. Grasp Planning
COR loci are relevant to grasping in two distinct ways:

1.8.2.1. Grasp strength. When a grasp is formed with a parallel jaw
gripper, the maximum torque which the grasp can withstand before slipping
depends on where the COR is when that slipping begins. Just as the COR for
sliding on a tabletop depends on the details of the contact with the surface,
so does the COR for slipping in a gripper. And since in both cases the details
are often unknown, the motivation for finding a set of all possible results is
the same. Though the grasp strength problem has not been addressed di-
rectly in this work, it is closely related.

1.8.2.2. Uncertainty reduction in grasping. The motion of a
pushed sliding workpiece is particularly relevant to grasping actions. Work-
pieces are often acquired from belts or tabletops on which they could slide.
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When grasping is attempted they are invariably pushed, and consequently
slide, before being fully constrained by a gripper. It is at this point that
carefully maintained knowledge of the workpiece’s position and orientation
could be lost by bumping it. On the other hand, a haphazardly placed work-
piece could be acquired in such a way that knowledge of its position in the
gripper is enhanced (e.g., Brost’s push grasps [12]). Fundamental to avoid-
ing the former or achieving the latter event is careful consideration of the
mechanics of sliding.

A configuration map can be computed for a grasping operation. If the
grasping operation consists of several simpler operations, the configuration
map for the grasp can be computed as a product of the simpler ones. The
product of the configuration map for the grasp with those of preceding and
subsequent manipulation operations can be used to keep track of uncer-
tainty, and to plan strategies which control uncertainty.

1.8.3. Assembly Planning

Configuration maps can be used in planning assembly operations, in
order to keep track of uncertainty and to represent the elementary opera-
tions which may be combined in a motion plan. Unlike grasping, the fully
three-dimensional mechanics problems which occur in assembly will only
occasionally involve planar sliding. An example of an assembly operation
which does involve planar sliding is positioning a washer above a hole prior
to dropping a bolt through the washer and hole.

1.8.4. Manipulation Planning

Configuration maps are probably best adapted to the planning of multi-
ple-step manipulation strategies. Parts-feeders are an example of such strat-
egies, but similar strategies for the broader class of motions a robot can
perform can be planned by the same method (Section 5.4). Much manipula-
tion can be accomplished before and during grasping, and for these opera-
tions planar sliding is a major effect. Because of the limitations of simple
grippers, very few manipulation operations can be performed on a work-
piece once it is grasped. However, one can imagine intentionally causing
the workpiece to rotate or slip in the gripper by pushing the grasped work-
piece into a rigid object, or by allowing the workpiece to rotate in the gripper
under the influence of gravity (in the way that humans may handle a glass of
water). Calculating the effects of these operations requires an understand-
ing of planar sliding.
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1.8.5. Parts-Feeders and Robot Manipulation
Strategies

Parts-feeders are closely related to sensorless manipulation strategies
for robots. The set of elementary operations which can be used in a feeder is
somewhat restricted because the unperturbed movement of a workpiece is
usually required to be linear (driven by a belt or a vibrating ramp), whereas
the motion of a robot may be arbitrary (e.g., the “‘herding’’ strategy consid-
ered in Section 4.5). On the other hand, the designer of a parts-feeder may
consider a broader class of levers, bumps, flaps, and holes for a workpiece to
interact with than are available as part of a robot gripper.

The example described in Section 5.4 of a conveyor belt-based parts-
feeder, in which the elementary operations are interactions with fixed fences
angles across the belt, is usable both as a parts-feeder and as a robot strat-
egy. Indeed, in Mani and Wilson’s implementation of a similar system [40],
it is the fences that move (as part of a special-purpose robot) and the work-
pieces that are on a fixed surface.

1.8.6. Practicality of the Belt Parts-Feeder

Considered as a parts-feeder, the conveyor belt-based system de-
scribed in Section 5.4 may indeed be practical. To implement it, one needs
moderate control of the coefficient of friction w. between the fences and the
workpieces. Of the many designs generated by the algorithm described, for
a given workpiece shape, one should be selected for which the sensitivity of
the design to u. is minimal. Additionally, we shall see in Section 6.6 that
nonuniformity of the sliding surface may cause trouble. Here too, the design
chosen should be one in which slight shifts in individual configuration maps
do not cause the design to fail. The required length of each fence is not
addressed in Section 5.4, but can be easily computed from the results of
Chapter 4. While speed of operation may be a concern if a robot is to
execute a strategy consisting of several large movements, the same concern
does not apply for a conveyor belt.
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Quasi-static mechanical systems are those in which mass or acceleration is
sufficiently small that the inertial term ma in F = ma is negligible compared
to dissipative forces. Many instances of robotic manipulation can be well
approximated as quasi-static systems, with the dissipative force being dry
friction.

Energetic formulations of Newton’s laws have often been found useful
in the solution of mechanics problems involving multiple constraints. The
following energetic principle for quasi-static systems seems intuitively ap-
pealing, or perhaps even obvious:

A quasi-static system performs the allowed (i.e., unconstrained) motion which
minimizes the instantaneous power.

Roughly speaking, the minimum power principle states that a system
performs the lowest-energy, or ‘‘easiest,” motion in conformity with the
constraints.

Surprisingly, the principle is in general false. For example, if viscous
forces act the motion predicted by the minimum power principle will be
incorrect. But we prove that the principle is correct in the useful special
case that Coulomb friction is the only dissipative or velocity-dependent
force acting in the system.

24
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2.1. INTRODUCTION

2.1.1. Quasi-static Systems and the Minimum Power
Principle

The quasi-static approximation to the motion of a mechanical system is
the solution to Newton’s law F,,,, = ma with the inertial term ma ignored.
Ignoring ma is only exact in trivial cases, but in many systems dissipative
forces so overwhelm the inertial term that the quasi-static approximation is
useful.

The quasi-static approximation can be used even when neither mass
nor velocity is small. In particular, velocities need not be so small that the
motion is only sensitive to the » — 0 limit of velocity-dependent forces:

A bacterium swims in a viscous fluid. Dissipative forces are proportional to
v. A bacterium can drift only about 1076 body lengths without swimming [6],
so inertial effects are minimal. The shape assumed by the bacterium’s flexible
flagellum for a given motion at its base can be analyzed in the quasi-static
approximation, despite the fact that viscous forces vanish in the v — 0 limit.

The quasi-static approximation is appropriate for many interesting
driven dissipative systems below a characteristic driving velocity. For sys-
tems involving frictional forces, characteristic velocities for quasi-static mo-
tion have been discussed in [43] and [54]. Bounds on the error caused by
using the quasi-static approximation can be estimated in particular cases.

Example: A credit card on a tabletop, with weight uniformly distributed over
the area of contact, rotates as it is pushed by a robot finger. Here we find that a
characteristic pushing velocity at which the quasi-static approximation pro-
duces 10% errors is roughly 10 cm/sec.

Example: A rope lying snaked on the ground straightens as one end is pulled
steadily.

The minimum power principle can be stated

A quasi-static system chooses that motion, from among all motions satisfying
the constraints, which minimizes the instantaneous power.

For the preceding two examples ‘‘instantaneous power’’ may be un-
derstood as the rate of energy dissipation to sliding friction. Note that in
each example one of the constraints is a ‘‘moving constraint’’ (one that
imposes a motion on the system). Were this not so the systems would
choose-the lowest power motion of all: no motion.
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The minimum power principle expresses the intuitively appealing idea
that when the credit card is pushed or the rope is pulled, each ‘‘satisfies the
constraints’’ (e.g., gets out of the way of the pushing finger, or complies with
the motion of the pulling hand) in the easiest way: the way which minimizes
the energy loss to sliding friction.

2.1.2. Relation of the Minimum Power Principle to
Other Energetic Principles

Because of its simplicity the minimum power principle seems reminis-
cent of many other energetic principles in mechanics. This has caused much
confusion. The minimum power principle is not an existing principle of
mechanics, and in fact, it is false.

In particular the minimum power principle is not related to the well-
known “‘principle of virtual work.”” The latter, discussed in most elemen-
tary mechanics texts, is a method of calculating the internal forces in a
system. To find a force exerted by a constraint, one imagines a ‘‘virtual
displacement” § of part of the system, violating the constraint. The princi-
ple of virtual work states that the change in energy of the system due to & is
equal to & times the force of constraint. The principle of virtual work is not a
method of predicting the motion of the system as the minimum power princi-
ple is.

The minimum power principle is also not related to the ““principle of
least action’” in Lagrangian mechanics or to the Hamiltonian formulation of
mechanics. These formulations apply only when all forces are conservative,
that is, when there are no dissipative forces. (However, see [21] for an
extension of Lagrangian mechanics to include radiative and relaxation pro-
cesses.)

The minimum power principle is related to topics in the classical theory
of plasticity [62] [13]. These topics are beyond the scope of this chapter.
Interested readers may find a summary and further consideration of the
validity of the minimum power principle in the work of Goyal and Ruina
[22].

All energetic formulations of mechanics, including Lagrangian and
Hamiltonian, are ultimately isomorphic to simple Newtonian (F = ma) me-
chanics. In other words, it can be proved that the answers obtained from all
formulations are the same. This fact has not diminished the usefulness of
the energetic formulations. In dynamic systems, especially with multiple
constraints, the energetic principles greatly simplify the solutions because
constraint forces need not be evaluated.

The minimum power principle is much less powerful than Lagrangian
or Hamiltonian mechanics, dealing as it does only with quasi-static sys-
tems. The subject of this chapter may be stated: “‘Is the minimum power
principle isomorphic to Newtonian mechanics in the quasi-static approxima-
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tion?”’ If so, the minimum power principle can be a useful addition to the
available techniques for dealing with quasi-static systems. It shgres \X{ith
Lagrangian and Hamiltonian mechanics avoidance of explicit conadgratlon
of constraint forces, and it is able to deal with dissipative systems, which the
others are not.

In fact we will find that for the isomorphism to hold we must assume
not only the quasi-static approximation, but also that all Velocity—dependo?nt
forces acting on the system act in accordance with the simplest existing
model of friction: Coulomb friction. The minimum power principle does not
produce correct results for other dissipative forces (e.g., viscous forces or
more detailed models of dry friction).

2.1.3. Quasi-static Systems in Robotics

The minimum power principle is used here to solve a problem similar
to the earlier “‘credit card”” example. Works of Mason [44], Brost [12], a_nd
Mani and Wilson [40] analyze similar scenarios in which a part free to slide
on a tabletop is manipulated by a robot. In these works the rpotio_n of a
sliding object must be determined, which is a problem in quasi-static me-
chanics.

Trinkle [65] has found the minimum power principle relevant to the
planning of robotic grasps in three dimensions. ‘

The dynamics of the robot itself or of its effects on the environment
cannot be considered within quasi-static mechanics when kinetic effects are
important. However, many other problems arise in robotics which can be
partially or completely analyzed in the quasi-static approximation:

The strength and mode of failure of a grasp as external forces are
applied to the grasped part.

The stability or mode of collapse of a partially assembled structure.
Prediction of backlash in a system of gears or tendons (with friction,
but at low speeds).

The effect of terrain on the trajectory of a mobile robot with coupled
wheels, when wheel slip is an issue.

Rigidity (and deviation from nominal shape) of a robot under load,
including frictional coupling of the links of the robot. Similarly, rigid-
ity of a part as it is machined under numerical control, and the shape
actually cut.

2.1.4. Constraints

In testing the correctness of the minimum power principle we compare
its solution to that of Newton’s law. We are interested in n-particle systems
including multiple constraints, so the treatment of those constraints is' irq—
portant. Constraints enter the minimum power principle solution only indi-
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rectly, as a limitation on the space of motions over which instantaneous
power is minimized. However, the forces which maintain the constraints
must be considered explicitly in the Newtonian solution.

To compare the solutions we introduce 3n-dimensional constrained
directions, which mesh neatly with the method of Lagrange multipliers in the
Newtonian solution. In the minimum power principle solution, the same
constrained directions are the basis vectors of a subspace complementary to
that over which instantaneous power is minimized.

Constraints are central to the analysis of the foregoing example sys-
tems. In the “‘rope’” example, the rope, which is a continuous object, may
be approximated by an arbitrarily dense linear collection of point particles,
each constrained to be at a fixed (small) distance from its two adjacent
neighbors.

The credit card may be considered to be a network of point particles,
each constrained to lie at fixed distances from several nearby particles. With
enough such constraints the object is rigid. The credit card and the rope are
also affected by an external constraint that keeps them in the plane of the
tabletop or of the ground, respectively. And each system is affected by an
external, moving constraint: the robot finger or the hand pulling the rope.

Of course one would not normally analyze a rigid object as a collection
of particles and constraints. Simpler specifications of it are possible, having
as few as six degrees of freedom and no internal constraints. We will use the
*“collection of particles’” specification in discussing the validity of the mini-
mum power principle, because that specification is completely general. In
actually using the minimum power principle, simpler specifications would be
employed. This issue is discussed further in Section 2.5.

2.1.5. What Is a Constraint?

Real forces exerted on a particle are always continuous functions of the
particle’s position. The forces of constraint mentioned earlier are so abrupt,
however, that a useful idealization is to consider them to be due to perfectly
rigid links, enforcing fixed distances. This idealization is useful because
with sufficient rigidity the detailed nature of the forces is unimportant to the
motion. However, the idealization brings with it difficulties in calculation
due to the singularities which may arise.

We therefore segregate the forces Wthh act in a system into two
classes. One class, which we will call FC, consists of forces due to the
idealized rigid constraints, The second class contains all remammg
forces, and will be denoted Fxc. (XC stands for ‘‘except constraints.”’) F Y
may include external fields (e.g., gravitational, electric, magnetic), dissipa-
tive forces (e.g., friction, viscosity), and interparticle forces (e.g., spring

Sec. 2.1 Introduction 29

> > > . X > .
forces). We have Fy,.y = Fc + Fxc. Newton’s law is simply F,.y = 0 in the
quasi-static approximation.

2.1.6. The Minimum Power Principle

We define the ‘‘instantaneous power’’ P, of a system of particles to be

Po= =3 Fra 2.1

where i ranges over the pamcles F xc, 1s all forces acting on particle i except
forces of constraint, and »; is the velocity of particle 7.

Dissipative forces (such as friction) contribute negatively to this sum,
and conservative forces can contribute with either sign. Constraint forces,
including moving constraints, do not contribute to P,. Because forces of
constraint are left out of Fy., P, bears no obvious relation to actual energies
of the system.

As P, is insensitive to mass and acceleration, the minimum power
principle cannot give the correct result (i.e., the one which agrees with
Newton’s law) for non-quasi-static systems. Our purpose is to find out
whether the minimum power principle gives the correct result for quasi-
static systems. The minimum power principle is not in general isomorphic
to Newton’s law even for quasi-static systems, and an example of their
disagreement is given in Section 2.5. We will find that a sufficient condition
for isomorphism is that all velocity-dependent forces acting in the system
must be essentially equivalent to Coulomb friction. (All dissipative forces,
and some conservative forces, are velocity dependent.)

We will be considering two ways of finding the motion of a system
involving constraints without becoming entangled with singularities. The
first of these is the familiar method of Lagrange multipliers, using Newton’s
law. In the second we use the minimum power principle. By equating the
two solutions, we determine restrictions on the types of forces for which the
minimum power principle gives the correct (i.e., consistent with Newton’s
law) solution.

We will first consider a single-particle system without constraints. A
few lines of vector algebra are sufficient to find the restrictions on the types
of forces. In Section 2.3 we introduce constraints in terms of ‘‘constrained
directions’ along which the projection of velocity must be zero. In Section
2.4 we generalize the forces from three dimensions to 3n dimensions to
represent an n-particle system. The constrained directions generalize easily
to 3n dimensions. The equations derived for the one-particle case retain
their form when generalized to n-particles. Finally we consider a simple
example.

i
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2.2. ONE-PARTICLE SYSTEMS WITHOUT CONSTRAINTS

We will assume that the system has arrived at its present state in accordance
with the laws of physics and ask only what happens in the next moment.
The instantaneous velocity alone completely answers that question. We can
find the instantaneous velocity by using Newton’s law or the minimum
power principle.

2.2.1. Newton’s Law

The Newtonian solution for the instantaneous velocity of a particle in
the quasi-static approximation is that velocity that satisfies

N
Fiow =0 (2.2)

In the absence of constraints, F Yo = I?,o,a,.
2.2,2. Minimum Power Principle

With P, as defined in equation (2.1), and in the absence of constraints,
the velocity specified by the minimum power principle is the one for which

VP, =0 (2.3)

Note that the gradient is taken with respect to 7, the possible motions.
If we had constraints, they would enter equation (2.3) only as a restric-
tion on the vector space over which P, is minimized.

2.2.3. Equating the Solutions

We wish to find the conditions under which equations (2.2) and (2.3)
are satisfied for the same velocity 7, that is, where the minimum power
principle gives the same solution as Newton’s law.

A necessary and sufficient condition for equivalence of the solutions is
that the left side of equation (2.2) is zero exactly where the left side of
equation (2.3) is zero. We will use the stronger (sufficient) condition that the
left sides are equal. Equating the left sides of equations (2.2) and (2.3) and
using the definition of P, from equation (2.1), we have

> >
Fior = V(Fxc * D) 2.4)
. >
Since Fyc = F roral WE NOW drop the subscripts. Equation (2.4) may be
broken into scalar components and transformed:

V, F=--(F 3 2.5)

dv,
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i Fi= dV, 2 Fvi

i

V) F= S g Fi SR
d
Vj P}:ZV,d_v,F +F/

d
v, 0= 2 Vi F; (2.6)

The indices i and j run from 1 to 3, as we are dealing with one particle in
3-space. In later sections we will generalize to n particles in 3n-space, with i
and j running from 1 to 3n.

Equation (2.5) [or (2.6)] is a sufficient condition, in its most general
form, on the types of forces for which the minimum power principle gives
the correct solution.

2.2.4. Forces for Which the Minimum Power Principle
Is Correct

Note that equation (2.5) is linear. If two types of forces individually
satisfy (2.5), their sum will also.

If a force is independent of velocity, its derivative with respect to any
component of velocity will be zero, so it will satisfy (2.6). Therefore the
minimum power principle is valid for all velocity-independent forces. Most
common external forces (electric fields, springs, gravity) are velocity inde-
pendent. A magnetic field acting on a moving electric charge, however,
exerts a Velocxtdeependent force.

If a force F' is perpendicular to v, (F ) in equation (2.5) is zero.
Therefore equation (2.5) cannot be satisfied. The minimum power principle
does not find the correct solution for forces which are perpendicular to the
velocity which gives rise to them. A magnetic field acting on a moving
electric charge is an example of a perpendicular force. This result is not
surprising: a perpendicular force can do no work on a particle, and so is
invisible in P,. Yet it does affect the motion.

Finally, consider forces which are parallel to the velocity which gives
rise to them. We may write

>
F=Fp 2.7

where F is a scalar and 7 is a unit vector in the direction of 7. Condition (2.4)
becomes

Fv = V(F|v|) (2.8)
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F7 = [v|VF + FV|y|
F7 = |v|VF + Fp
0= |p|VF (2.9)

To satisfy equation (2.9), the gradient of F must be zero. Therefore l‘—'Z must
be a constant. Such forces are generalized versions of Coulomb friction,
where the frictional force is directed opposite to the velocity, but the magni-
tude of that force is independent of velocity and direction.

We can conclude that the minimum power principle does not in general
give the correct solution for the motion of a one-particle quasi-static sys-
tem. However, the solution is correct if the forces acting can be composed
of

® Forces independent of the velocity of the particles.

® Forces parallel to the velocity of the particles, but whose magnitude
is independent of the velocity of the particles.

2.3. ONE-PARTICLE SYSTEMS WITH CONSTRAINTS

In this section we include constraints in the Newtonian and minimum power
principle solutions for the motion of a system. By formulating both solutions
in terms of the same ‘‘constrained directions’’ along which the projection of
the particle’s velocity must be zero, the constraint forces in the two solu-
tions are shown to cancel exactly. The question of the equivalence of the
Newtonian and minimum power principle solutions is thus reduced to the
previous case in which no constraints were involved. The constrained direc-
tions will be generalized in Section 2.4 to 3n dimensions.

2.3.1. Newtonian Solution by Lagrange Multipliers

When there is a constraint, there is a force to_)maintain the constraint.
These ‘‘forces of constraint’” must be included in F,,,; = 0. Generally, the
forces of constraint are unknown and cannot be solved directly. The method
of Lagrange multipliers [20] has been developed to deal with constraints.

In a formulation of the method of Lagrange multipliers well suited to
our purposes, each constraint is replaced by a spring that exerts a force
proportional to the difference between its length and its ‘‘relaxed’’ length d.
We denote the proportionality constant A. As A — oo, the spring becomes
rigid and therefore acts as a constraint. Recall that rigid constraints were
themselves only idealizations of real forces so sharp that their details ceased
to be relevant to the motion of a system. Therefore the choice of a very stiff
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spring to replace the constraint does not reduce the generality of the con-
straints.

The force exerted by a spring with spring constant A constraining a
particle to be a distance d from the origin is

f=ad - R)F (2.10)

where 7 is the position of the particle and 7 indicates a unit vector in the
direction of 7.

We have initially a state of the system (described by the vector 7)
which satisfies the constraints, and ask what happens in the next instant dt.
We wish to find 7, the vector specifying the instantaneous velocity of the
particle. If a particle is constrained to be a distance d from the origin, and is
presently at that distance, then the constraint may be stated as a restriction
on the instantaneous velocity of the particle:  must be perpendicular to 7.
The force arising from a violation of this constraint is

= =A@ PdiF @.11)

7 here is a constrained direction: the velocity must be perpendicular to this
direction. Figure 2-1 illustrates the constrained direction 7. The velocity of
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Figure 2-1 7 is a constrained direction. If the particle (dot) is constrained (by a
rope, perhaps) to lie a fixed distance d from the origin, then the vector Fisa
constrained direction for the particle. This means that the particle’s instantane-
ous velocity 7 must have no component in the direction 7.
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the particle 7, if it is not to violate the constraint, must be perpendicular to
the constrained direction. Should it not be perpendiculdr the distance from
the origin to the partlcle would increase by ¥ - 7 dt, and a force of constraint
fs would develop as given by equation (2.11).

We will require two general forms for forces of constraint. The first,

fi= =A@ odtc (2.12)
is used to enforce a fixed distance from a particle to a point in space. (It can
be used for fixed interparticle distances, too, as we will see in Section 2.4.)
By properly selecting constrained directions ¢ in velocity space, equation
2.12)1i Is sufficient to represent general distance constramts Suppose a par-
ticle at 7 1s constrained to lie a distance d from a point p fixed in space. Its

velocity ¥ must be perpendicular to (7 — p). The unnormalized vector &
which represents this constraint is

> > >
Cx = Fy = Dx
gy = 7y - 5y 2.13)

> > >
C; =¥, = P;
The second form of constraint we shall need imposes a velocity ¢ on

the motion of a particle. We can write a force term to maintain this con-
straint

F=—yIG-2) cleds (2.14)

where vy is another spring constant like A. This equation _may be interpreted
to say that 1f the component of the particle’s velocity 7 in the e direction
differs from &, we will impose a force in the € direction.

Newton’s law may now be written as

= 2 NG T)T d — g i@ — &) - elecdt = 0 (2.15)
- :

where the second a_pd third terms are the forces of constraint from equations
(2.11) and (2.13). Fxc represents all forces other than the constraints.
To solve the system, one must solve for the components of 7 in terms

of the multipliers A; and y;, and then take the limit as all the multipliers go to
infinity.

2.3.2. Minimum Power Principle Solution with
Constrained Directions

A quasi-static system chooses that motion, from among all motions satisfying
the constraints, which minimizes P,.

In the notation developed, P, may be written

2 >
P,,= —Fxc'V (216)
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F Yo regresents all forces other than the constraints. P, is a scalar quantity,
while Fyc and 7 are vectors. Were it not for the restriction ‘‘among all
motions satisfying the constraints,”” the motion minimizing P, would satisfy

Ve, =0 2.17)

If certain directions of motion 3, violate the constraints, we do not care if P,
could be further lowered by moving in those directions. So we only require
that P, is at a minimum when we change 7 in unconstrained directions. In
terms of the gradient of P,, we do not insist that it be zero in all directions,
but only in the unconstrained directions. In the constrained directions the
gradient of P, may be nonzero. This requirement may be written

VP,, = 2 O[/gl (2]8)
!

Note that the minimum power principle is satisfied if equation (2.18) is true
for any set of values of the parameters «;. Another way of understanding
this is that we require P, to be minimized not over the entire velocity space
(of dimension 3 now, but which will be generalized to 3n), but only on a
subspace reduced in dimensionality by the number of constraints. The basis
vectors of this subspace are perpendicular to all the constrained directions
5. P, is also defined on the complementary subspace whose basis vectors
are the constrained directions 5, but it is of no interest what the projection of
VP, onto this space is, because the system is constrained to have zero
velocity in this subspace. The minimum power principle therefore allows
VP, to be composed of an arbitrary linear combination of the constrained
directions.

2.3.3. Forces for Which the Minimum Power Principle
Is Correct

We now wish to find the conditions under which equations (2.15) and
(2.18) are satisfied for the same velocity 7, that is, where the minimum power
principle gives the same solution as Newton’s law. When that occurs we
have

ﬁXC - z )\J(I—l) . E)J)EJ dt — Z 'Yk[(l_’) - gk) - ele dt
7 k N (2.19)
= V(Fyc - ¥) — 2 o)
!

The constrained directions 5, in the minimum power principle solution are
the directions along which the projection of VGIOCIty must be zero to satisfy
the constramts That is also what the vectors c and ey are, m the Newtonian
solution. The s, are simply a relabeling of the ¢; and the ;. The values o
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may be chosen arbitrarily, so we choose «; to be of the form
a=\@-3)dt (2.20)
or
a=y[@ -2 - eldt

depending on whether § corresponds to a & or a ¢;. Then the summations in
equation (2.19) cancel, leaving only

> > >
Fxc = V(Fxc - v) (2.21)

The algebra of equations (2.5) to (2.6) applies directly to this equation. The
conclusions of Section 2.2.4 therefore apply to one-particle systems with
constraints, as well.

2.4. n-PARTICLE SYSTEMS WITH CONSTRAINTS

We now generalize the foregoing results to n-particle systems. Both the
algebra in Section 2.2 and the constrained directions in Section 2.3 general-
ize to the 3n-dimensional velocity space needed for n particles. Henceforth,
all vectors will be assumed to be 3n dimensional. c;, will denote the x com-
ponent of ¢ for particle i. If a vector is only three dimensional, it will be
indicated as, for example, 3.

2.4.1. Newtonian Solution by Lagrange Multipliers

If a system consists of n particles, we can consider a force F to be a
vector of 3n components. F ot = 0 then describes the Newtonian solution
for the whole system at once.

Equatxon (2.12) gave the force required to maintain a constrained direc-
tion ¢. It is merely a formality to translate equation (2.12) to a general
constrained direction in 3n-space,

fi=-\G-Ddic (2.22)
where ¢ is a 3n-vector with components
Cix = ¢
¢y = o (2.23)
¢, =3¢,

and i is the partlcle number of the constrained particle. The other 3n — 3
components of ¢ are zero.
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The force required to impose a velocity 3¢ on the motion of a particle
[equation (2.14)] also generalizes trivially. We can write a force term to
maintain this constraint

f= =@ =2 - eledr (2.24)
where
e = ey
ey = e, (2.25)
e, = e,

The other 3n — 3 components of ¢ are zero.

Many other constraints relating movement of the particles, most of
them unphysical can be expressed in terms of 3n-vector ‘‘constrained direc-
tions”’ ¢ or ¢. In an n-particle system we need a constraint maintaining
interparticle distances. The 3n-vector ¢ which represents a constrained di-
rection for an mterpartlcle constraint has six nonzero components. If partl—
cle p has position 5, and particle ¢ has position ? g, then the 3n-vector ¢
which constrains them to maintain their current distance is

gp,\' = 35)( -3g

gpy = 35y - 3‘—1),v

2 =37 3z

Cpz = "Pz — 7q;

s a3 33 (2.26)

Cox = "qx — "Px

gw = 3513 - 35}'

ng - 351 - 352
The other 3n — 6 components of ¢ are zero. These three types of constraints
[equations (2.23), (2.25), and (2.26)] allow us to tie a particle to a given point
in space by a fixed-length link, to impose a velocity on a particle, and to tie
two particles of a system to each other by a fixed-length link. Thus rigid
bodies may be modeled by specifying three non-coplanar interparticle con-
straints for each particle. Nonrigid bodies (e.g., a rope) may be modeled by
specifying fewer constraints (two per particle in the case of a rope, as dis-
cussed in Section 2.1.4).

All the equations in the preceding sections apply to 3sn-dimensional
velocities as well as to the 3-dimensional velocities for which they were
explained. Therefore we can generalize the conclusion of Section 2.2 to
apply to n-particle systems as well: the minimum power principle does not in
general give the correct solution for the motion of a quasi-static system.
However, the solution is correct if the forces acting can be composed of

&
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© Forces of constraint.
® Forces independent of the velocity of the particles.

® Forces parallel to the velocity of the particles, but whose magnitude
is independent of the velocity of the particles. Such forces are essen-
tially Coulomb friction.

2.5. EXAMPLES

Note that in using the minimum power principle, it is not necessary to model
the problem as a collection of particles and constraints. That was done only
for purposes of generality in the foregoing sections. Any set of parameters
which includes all the degrees of freedom of the system may be used. The
required constraints are only those which impose restrictions on the parame-
ters chosen.

For instance, in Section 2.1.4, we mentioned a system in which a credit
card slides on a tabletop. The card can be considered to be a network of
point particles connected by so many constraints that the network becomes
rigid. But the minimum power principle can also be applied to a much sim-
pler specification of the card: we may consider only the 3-space coordinates
of 3 non-colinear points of the card. In that case the only constraints which
are needed are those which constrain the three points to lie in the plane of
the tabletop, and the moving constraint which forces it to move. A still
simpler specification of the card is one in which only the x and y coordinates
of one point of the card are used, with the z coordinate understood to be that
of the tabletop. One angle describing the orientation of the card must also be
given. In this specification no constraints besides the moving constraint are
needed.

The minimum power principle becomes most advantageous when there
are numerous constraints. However, we can demonstrate its use on a very
simple system. As an example, consider the two-dimensional one-particle
system shown in Figure 2-2. A moving constraint imposes a velocity v, on
the particle, in the +x direction. (The constraint could be a frictionless
vertical fence.) The constraint applies a force only in the +x direction. An
external constant force (e.g., gravity) acts in the —y direction with magni-
tude mg. A dissipative force nv" opposes the velocity v of the particle. (g
should not be interpreted as a coefficient of friction, as we have not defined
any normal force which gives rise to it. In particular, note that ‘‘gravity”
acts in the y direction rather than perpendicular to the plane of motion.)

Coulomb friction corresponds to n = 0, viscous friction to n = 1. If
n = 0and n < mg, the particle will accelerate in the —y direction, violating
the quasi-static approximation, so we will assume % > mg. After motion
begins, the particle will approach a terminal velocity. Until the terminal
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Figure 2-2 Example of a quasi-static system. A moving constraint imposes a
velocity », on the particle, in the +x direction. (The constraint could be a friction-
less vertical fence.) The constraint applies a force only in the +x direction. An
external constant force (e.g., gravity) acts in the —y direction with magnitude
mg. A dissipative force nr" opposes the velocity v of the particle. We wish to
solve for the instantaneous velocity  of the particle.

velocity is achieved, the motion of the particle is sensitive to its mass, so the
quasi-static approximation is not appropriate. We will consider only the
time period after inertial effects have been damped out. Motion will then be
uniform with time. We wish to find the velocity », of the particle as a
function of v, and the dissipative parameters n and .

2.5.1. Newtonian Solution

The external force mg must be equal to the y component of the dissipa-
tive force:

mg = fv = np" Yy (2.27)

14

The constraint moving at velocity v, determines the x component of the
particle’s velocity. Using

v = (vl +vd) (2.28)
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we obtain an implicit solution for v,:

_I_’.)’l;’g - Vy(Vi + VJ%)(n—l)/Z (229)

2.5.2. Minimum Power Principle Solution
Instantaneous power due to the external force is —mgv,. The dissipa-
tive force is nv", so power is nv**!. Total power is then
P, = —-mgv, + n(vi + p2)ntni2 (2.30)
v, is constrained; v, unconstrained. We minimize P, with respect to »,:

dp,
 dv,

n+1

0 2

= —mg + Nk + vy, (2.31)

Solving we find

ng = 1,2 + v D2(n + 1) (2.32)

which is equivalent to the correct answer [equation (2.29)] only when n = 0.
As concluded in Section 2.2.4, for the minimum power principle to be cor-
rect, dissipative forces must be velocity independent, that is, n = 0.

\
The COR Llocus

for a
\ Sliding Workpiece Yy

In this chapter we consider the motion of a workpiece free to slide on a
surface. Physical analysis of the workpiece’s motion is made difficult by the
absence of information about the pressure distribution of the workpiece and
of the resulting frictional forces.

The instantaneous motion of the workpiece can be described as a pure
rotation about a center of rotation (COR) somewhere in the plane. We find
the locus of CORs for all possible pressure distributions, given only the point
of application and the direction of a pushing force.

In one application to robotic manipulation, bounds on the distance a
workpiece must be pushed to come into alignment with a frictionless robot
finger or a fence are determined.

3.1. RANGE OF APPLICABILITY
3.1.1. Workpiece Shape

In this chapter we will treat the workpiece as a two-dimensional rigid
body, since we are only concerned with the interaction of the workpiece
with the table on which it is sliding. All pushing forces will be restricted to
lie in the plane of the table. The results may be applied to three-dimensional
workpieces, so long as the vertical component of the pushing force is negligi-
ble, and: so long as the point of contact is near the table.

41
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3.1.2. Point of Contact Between Workpiece and Pusher

In the general case, when a workpiece is being pushed, there is only
one point of contact between the workpiece and the pusher. The contact
may be where the flat edge of a pushing fence or robot finger touches a
corner of the workpiece (Figure 3-1), or it may be where a pushing point
touches an edge of the workpiece (Figure 3-2). In most of this chapter we
will assume that the pusher is a point in contact with a flat facet of the
workpiece, but the analysis applies equally well if the pusher is a flat surface
in contact with a corner of the workpiece.

Motion of a workpiece when there are two or more points of contact
between pusher and workpiece has been considered by Brost [12] and by
Mani and Wilson [40].

3.1.3. Position Controlled Pusher

It is assumed the pusher will move along a predetermined path in the
plane, that is, it is under position control. Equivalently, the surface on
which the workpiece slides may move, carrying the workpiece relative to a
fixed pusher, for example, on a conveyor belt. The workpiece has two de-
grees of freedom, with the third degree of freedom of its motion fixed by the
contact maintained between the pusher and the workpiece. Our results may
be easily converted to the case where the pusher exerts a known force on the
workpiece rather than following a known path.

3.1.4. Center of Rotation (COR)

The two degrees of freedom of the workpiece are most conveniently
expressed as the coordinates of a point in the plane called the center of

LINE OF MOTION OF FENCE

Y

Figure 3-1 The edge of an advancing fence pushing a corner of a sliding work-
piece. The motion of the workpiece depends on the angle («) of the front edge
of the fence, measured relative to its line of motion, which in this case is hori-
zontal.
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Figure 3-2 A corner of an advancing pusher pushing an edge of a sliding work-
piece. The motion of the workpiece depends on the angle (o) of the edge being
pushed, measured relative to the line of motion of the pusher, which in this case is
horizontal. Compare to the meaning of « in Figure 3-1. The analysis done in this
chapter applies equally well to either figure.

rotation. Any infinitesimal motion of the workpiece can be expressed as a
rotation df about some COR, chosen so that the infinitesimal motion of each
point 1 of the workpiece is perpendicular to the vector from the COR to the
point w. If the workpiece is a disk, and the motion it performs is pure
rotation in place, the COR is at the center of the disk. Motions we might
describe as ‘‘mostly translation’ correspond to CORs far from the point of
contact. In the extreme case, pure translation occurs when the COR is at
infinity.
All kinematic results can be obtained once the COR is found.

3.1.5. Pressure Distribution Between Workpiece and Table

The weight of a workpiece is supported by a collection of contact
points between the workpiece and the table. The pressure distribution may
change as the workpiece moves relative to the table. Finding the COR is
complicated by the fact that changes in the pressure distribution under the
workpiece substantially affect the motion; that is, such changes affect the
location of the COR. Intuitively, if pressure is concentrated near the center
of mass (CM), the workpiece will tend to rotate more and translate less than
if the pressure is uniformly distributed over the entire bottom surface of the
workpiece.

The pressure distribution may be changed dramatically by tiny devia-
tions from flatness in the workpiece’s bottom surface (or of the surface it is
sliding on). Indeed, if the workpiece and the table are sufficiently rigid and
not perfectly flat, they may be expected to make contact at only three
points. The three points may be located anywhere on the workpiece’s bot-
tom surface, but like the legs of a three-legged stool, the triangle formed by
the points of support always encloses the projection of the CM onto the
surface. ,
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Since any assumption we could make about the form of the pressure
distribution (for instance, that it is uniform under the workpiece as in [58])
would not be justified in practice, our goal is to find the locus of CORs under
all possible pressure distributions.

Let the CM be at the origin, and w be a point in the plane. All that is
known about the pressure distribution P(w) is that

e P(w) is zero outside the workpiece. The workpiece can be entirely
contained within a circle of radius a centered at the CM.

® P(f«’/) = 0 everywhere.

e the total pressure [ P(w)dw = Mg, the weight of the workpiece.

® the first moment of the distribution [ P(#)w dw = 0. This means that
the centroid of the distribution is at the CM of the workpiece, which
is at the origin.

3.1.6. Coulomb Friction

It turns out that the coefficient of friction of the workpiece with the
supporting surface (called u, for “‘sliding friction’’) does not affect the mo-
tion of the workpiece if we use a simple model of friction. We assume that
u, is constant over the work surface, that it is independent of normal force
magnitude and tangential force magnitude and direction (isotropic), and that
it is velocity independent. In short, we assume Coulomb friction.

There is another coefficient of friction in the problem, u. (for ‘‘contact
friction’”), at the point of contact between the edge of the workpiece and
pusher. This is distinct from the coefficient u, between workpiece and table,
discussed earlier. Initially we consider only w,. = 0. This assumption is
relaxed in Section 4.1.

3.1.7. Quasi-static Motion

It is assumed that all motions are slow. This quasi-static approxima-
tion requires that frictional forces on the workpiece (due to the coefficient of
friction with the surface w,) quickly dissipate any Kinetic energy of the
workpiece:

v? < Xgu, 3.1

where v is the velocity of the workpiece, g is the acceleration due to gravity,
and X is the precision with which it is desired to calculate distances. The
high-speed limit is discussed in Section 7.4. Characteristic speeds for quasi-
static motion are discussed in [54] and [43].
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3.1.8. Bounding the Workpiece by a Disk

We will take the workpiece being pushed to be a disk with its CM at the
center. Given another workpiece of interest we can consider a disk centered
at the CM of the workpiece, big enough to enclose it. The radius a of the
disk is the maximum distance (from the CM) of the workpiece to any point of
the workpiece. Since any pressure distribution on the workpiece could also
be a pressure distribution on the disk, the COR locus of the disk must
enclose the COR locus of the workpiece. The locus for the disk provides
useful bounds on the locus for the real workpiece.

3.1.9. Geometric Parameters

Geometric parameters of the problem are the point of contact ¢ be-
tween the pusher and the workpiece and the angle « between the edge being
pushed and the line of pushing, as shown in Figure 3-3. The values of « and

MOTION OF PUSHER o

xy

COR

Figure 3-3 Parameters of the pushing problem. Important geometric parameters
are the angle a of the edge being pushed relative to the line of motion of the
pusher, the vector ¢ from the center of mass (CM) to the point of contact between
pusher and workpiece, and the radius a of the disk which circumscribes the
workpiece. When these parameters are given, the locus of centers of rotation for
all possible pressure distributions can be found.
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¢ shown are useful in considering the motion of the five-sided workpiece
shown inscribed in the disk. We do not require the point of contact to be on
the perimeter of the disk, as this would eliminate applicability of the results
to workpieces inscribed in the disk. Indeed, for generality we do not even
require the point of contact to be within the disk. Similarly, we will not
require « to be such that the edge being pushed is perpendicular to vector é,
as it would be if the workpiece were truly a disk. The disk (with radius a), «,
¢, and the CM are shown in Figure 3-3. A particularly simple pressure
distribution P(#), in which the support is concentrated at just a “‘tripod’” of
points (W, -, wy) is indicated, along with the COR that might result for that
pressure distribution.

3.1.10. Notation

® Vectors are indicated by an arrow, for example, 7.

e 7 is the vector from the CM to the COR. r is the magnitude of that
vector, that is, the distance from the CM to the COR.

® A Greek letter is used to represent both an angle and a unit vector
that makes that angle with respect to the x axis (measured CCW).
An arrow is used to indicate the unit vector: & = (cos «, sin a).

® We indicate functional dependence with subscripts. E, is a function
of 7 (the COR).

® All integrals are over the area of the disk.

o Curly brackets indicate a locus of values of a quantity.

3.2. USING THE MINIMUM POWER PRINCIPLE

Suppose that the geometry of a pushing operation is specified; that is, the
radius a of the disk enclosing the workpiece, the point ¢ at which the work-
piece is being pushed, and the angle « of the flat surface involved in the
push. If we suppose further that a single pressure distribution is specified,
then a unique COR at a single point must be the result.

Our system is constrained because the pusher and the workpiece are in
contact, the pusher is advancing a distance dx in a given instant, and the
workpiece must slide enough to accommodate the advance of the pusher.
The COR could be at almost any point in the plane and still allow the
workpiece to accommodate the advance of the pusher. However, some of
these locations will require a greater rotation of the workpiece (about the
COR) to accommodate the advance of the pusher than do others.

To solve for the COR we use the minimum power principle proven in
Chapter 2. The minimum power principle states that the motion the system
makes (e.g., the COR about which the workpiece actually does choose to
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rotate) will be the one for which the energy dissipated to sliding friction is
minimized.

‘ We have proven that minimum power mechanics is correct under some
fairly restrictive conditions: slow (quasi-static) motion is required, and the
only dissipative forces that may occur in the system are (slightly general-
ized) analogues of Coulomb friction. The present system qualifies.

3.3. SOLUTION FOR THE COR LOCUS

In this section we compute the energy that is dissipated due to friction when
the pusher advances a distance dx, as a function of the center of rotation 7,
and for a given pressure distribution P(w). We will then minimize the energy
with respect to 7 to find the COR about which the workpiece actually does
choose to rotate.

It may help to imagine the disk ‘‘pinned’’ at the COR. This is not
difficult to imagine if the COR happens to fall inside the perimeter of the
disk, and one’s intuition can be extended to include the case where the COR
is outside the perimeter. Either way, the disk is free to rotate only about the
COR, and the COR itself stays stationary.

Given the COR, the motion of the disk is fully determined when we
apply our constraint: the edge being pushed (at &) must move out of the way
of the advancing pusher, but stay in contact.

3.3.1. Relation Between Motion of the Pusher and
Rotation of the Workpiece

To accommodate the advance dx of the pusher, the disk will rotate an
amount df about the center of rotation 7. A rotation of d allows an advance
of the pusher dx consisting of two parts, as shown in Figure 3-4.

dx; = df|é — 7| cos 0 = do(cy, — ry)
(3.2)

tanf ¢, —r,

dx, = dx =
2 'tan a tan «

Note that dx, corresponds to slipping of the point of contact along the
workpiece edge.

Defining the unit vector @ = (cos a, sin «) we can write

dx=dx1+dx2=%&)-(3—?) (3.3)

To avoid proliferation of absolute value signs, henceforth & - (& — 7) will be
taken to:be positive.
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Figure 3-4 Relation between advance of pusher (dx) and rotation about the COR
(d@). For fixed COR the pusher may advance a distance dx while the workpiece
rotates an angle df about the COR. dx consists of two parts: movement of the
workpiece edge (dx;) and slipping of the pusher along the edge (dx,).

Considerations of symmetry will allow applic_iltiog of the results to
cases where & - (¢ — 7) is negative. Physically, @ - (¢ — 7) > 0 corresponds
to clockwise rotation of the workpiece as it is pushed.

3.3.2. Energy Lost to Friction with the Table

An area element of the disk at w supports a force P(w)dw normal to the
table. The element will slide a distance

do|w — 7| (3.4)
due to the rotation d6 about the center of rotation 7, and in the process will
dissipate an amount of energy

dE, = u,P(W)dw do|w — F| (3.5)

Integrating over the area of the disk, the total energy dissipated due to
rotation d6 is
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E, = do u, [ PG| ~ 7|d (3.6)
where we write E, to remind ourselves that the energy is a function of the
presumed location of the center of rotation 7. Substituting for df, we have
dx g sin «
ENEEEN
a-(¢c—F)
The system will find a location for 7 which minimizes E.. At this minimum

the derivatives of E, with respect to both 7, and F)y must be zero. Evaluating
the derivative of E, with respect to 7 and setting it equal to zero, we find

lda-va- (-7 _

[a- (& - 7))

E, = | PG| ~ ?law 3.7)

VE, = dx u, sin « 0 (3.8)

where
d, = [ P - 7ldib (3.9)

a scalar, can be physically interpreted as the weighted distance from the
COR to the pressure distribution, and
> >
5= [ Pod) 5L ait (3.10)
W — 7|
a vector, can be interpreted as the weighted direction from the COR to the
pressure distribution.

3.3.3. A Digression: Iterative Numerical Solution

Minimization of E, can be carried out in an iterative manner to find the
COR for a given pressure distribution P(w). Figure 3-5 shows the locus of
CORs obtained in this manner. Each point is the COR for a randomly cho-
sen three-point pressure distribution. Only pressure distributions consisting
of three points (a tripod) need be considered since according to Mason’s
theorem 5 [42] three points are sufficient. Weights were computed for the
three points in such a way as to satisfy the constraint that the CM be at the
center of the disk. (If this required any of the weights to be negative, the
tripod was discarded.)

For each tripod selected as above, the center of rotation was located by
this iterative method: an initial guess was made for the location of the COR
7, and VE, evaluated at that point. The minimization technique used requires
computation of V(VE,), the second derivative of E, (a two-by-two matrix),
which can be obtained analytically. A new guess for 7 is then made by
adding to the old guess

—VE,

7 =
A = SFE)

3.11)
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LINE OF MOTION /:/

Figure 3-5 COR locus for a disk found by iterative minimization (dots). The disk
shown encloses the workpiece of interest. The pusher moves horizontally along
the line indicated and contacts the edge of the workpiece at the arrowhead. (In
reality this point of contact would always fall within the disk bounding the work-
piece, but numerical convergence is simplified for this unrealistic case.) Thft angle
« of the edge that the pusher contacts is indicated. Dots indicate the locations of
the center of rotation for 500,000 randomly chosen pressure distributions support-
ing the workpiece.

This method usually converged quickly if the initial guess was suffi-
ciently close to the correct answer. By moving only one leg of the tripod at a
time, and by only a small amount, the value of 7 found for one tripod could
be used as an initial guess for the next. Figure 3-5 represents 590,000 tri-
pods, taking 4 CPU hours on a VAX-780. Similar figures done with fgur
points of support instead of tripods are identical, numerically validating
Mason’s theorem 5 [42]. Figure 3-6 is a similar run with a square workpiece
replacing the disk.

3.3.4. Analytic Solution

Resuming our analytical discussion from Section 3.3.2, we set VE, = 0
in equation (3.8). The constant terms drop out leaving

rPa = gla- (& = 7)) (3.12)

where we define the quotient moment, a vector, as

R
@=ﬂ§ (3.13)
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with 7, and d, given in equations (3.9) and (3.10). 4, is a function of the COR
7and the pressure distribution P(#) and has units of distance. In this section
we hold the center of rotation ¥ fixed and analyze the quotient moment for all
pressure distributions P(w).

The quotient locus {q,} is the set of g, for all possible choices of the
pressure distribution P(%) consistent with the requirements listed in Section
3.1.5. It is still a function of 7, but the dependence on P(w) has been re-
moved. Unfortunately we have been unable to develop any physical intui-
tion about the meaning of the quotient locus. We regard it merely as an
intermediate mathematical construction, more tractable than the COR locus
to which it is related.

We will always plot the quotient locus displaced by 7, that is, based at
the COR. {g,} may be plotted as a region of space, if we remember that a
given § € {g,} is a vector with its tail at the COR and its head anywhere in
that region.

We will find the boundary of the quotient locus. The results will allow
us to find the boundary of the COR locus in Section 3.3.9.

Figure 3-6 COR locus for a square found by iterative minimization (dots). It is
only for a disk that we are able to find the COR locus boundary analytically. Here
the CORs for a square are found numerically for 500,000 randomly chosen pres-
sure distributions. This square can be inscribed in the disk shown in Figure 3-5,
and the parameters of pushing « and ¢ are the same. It can be seen that the COR
locus (dots) found here fill an area that is entirely covered by the COR locus found
for the disk (Figure 3-5). For workpieces other than disks, such as the square
shown here, the COR locus for the circumscribing disk is a useful bound on the
COR locus for the actual workpiece.
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To simplify discussion, we take the total weight of the workpiece Mg =
1, that is,

MngP@M$:1 (3.14)

Since multiplying the pressure distribution P by a constant factor changes
both numerator and denominator of ¢, by that same factor, the assumption is
harmless. Physically, the mass of the disk has no effect on the motion, so
we can choose it arbitrarily.

3.3.5. Extrema of the Quotient Locus

Since 7, [equation (3.10)] can be interpreted as a weighted average of
unit vectors from the COR to the pressure distribution, the greatest magni-
tude 7, can have will be 1 and will be attained when the pressure distribution
is concentrated at the CM. In all other cases the direction to elements of the
pressure distribution varies, and so some cancellation is inevitable. When
the magnitude of 7, is maximal, it must be directed from the COR to the CM.

The smallest magnitude 7, can achieve depends on whether the COR is
inside or outside the disk, that is, on whether r > g or r < a, where a is the
radius of the disk. In either case we wish to achieve the maximum amount
of cancellation of direction possible. If r > q, this occurs when the pressure
distribution consists of two points at opposite edges of the disk, providing
the minimum possible agreement on direction between the two vectors, as
shown in Figure 3-7.

Figure 3-7 Dipod responsible for the
smallest value of o,, for r > a. We
study extrema of the moments 7, and d,
of the pressure distribution to find
extrema of the ‘‘quotient moment’’

g, = v,/d,. And we study extrema of
the quotient moment g, to obtain
bounds on the COR to which it is
related.

7, is the weighted unit vector from
the COR (7) to the pressure distribu-
tion. It is maximized when the pres-
sure distribution supporting the work-
piece is concentrated at the CM. When

prg r > a, v, is minimized by the pressure
-~ distribution shown here: half the weight
-7 of the workpiece is concentrated at
- e each of the two points of support w,
and w,, which are chosen to provide as
vy little agreement in direction from the
COR COR as possible.
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If r < a, we can arrange for 7, to be zero. Indeed we can arrange for 7,
to point from the COR maximally away from the CM by making a two-point
pressure distribution as shown in Figure 3-8. (In the figure the distance from
w, to the COR is infinitesimal.) The two vectors w; and w, point in opposite
directions. To maintain the centroid of the pressure distribution at the CM,
we find the weights of w; and w, are

P, = T a (3.15)
and
a
Py = r+a

Therefore w, is more heavily weighted than Wy, and

1-/),=P11—/)1+P21—/)2=(P2—P1)1_/>2:Z+:1—/)2 (316)
points from the COR away from CM.

Now consider d, [equation (3.9)]. Clearly if the pressure distribution is
concentrated at the CM, the weighted distance from the COR to the pressure
distribution is just r. Infact r is the smallest value which d, can attain. In the
configuration shown in Figure 3-8,

d=P-@a+r+tP-0=r (3.17)

d, takes on its maximum value when the pressure distribution consists of two
points as in Figure 3-7. That value is

d, = (2 + a?)1? (3.18)

Since ¢, is the quotient of , and d,, extreme values of |g,| occur when v, is
maximal and d, minimal, and when 7, is minimal and d, maximal. Figures 3-7

Wy

Figure 3-8 Dipod respensible for a
negative value of 7,, for r < a. If the
COR is within the disk ( < a), it is
even possible to arrange for 2, to point
from 7 away from the CM, by choosing
the pressure distribution to be a dipod
such as this one. As w, is closer to the
CM than wy, it bears more than half the
weight oftthe disk.
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and 3-8 illustrate the pressure distributions that (simultaneously) minimize 7,

and maximize d, for r > a and r < a, respectively.

3.3.6. Numerical Exploration of the Quotient Locus

We can find the locus of all possible quotients numerically. It is much
easier to find the {g,} locus (for a given value of 7) than it is to find the COR
locus. No iteration is required; for a given tripod, the moments v, and d, can
be calculated immediately. Figures 3-9 and 3-10 show typical {g,} loci for r <
a and r > a, respectively. The dots are values of g, found numerically, while
the solid curve is the empirical boundary of the locus as described shortly.

Figure 3-9 Quotient locus {g,} (dots) and empirical boundary (solid), for r < a.
Hundreds of thousands of randomly selected pressure distributions were chosen,
and for each the quotient moment was evaluated and plotted (dots). All the ob-
served values of the quotient moment fall within the boundary (solid curve) gener-
ated by quotient moments of special pressure distributions consisting of just two
points of support: dipods. In fact, the boundary turns out to be a circle, the radius
of which can be determined analytically.
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Figure 3-10 Quotient locus {f]’,} (dots) and empirical boundary (solid), for r > 4.
As in Figure 3-9, the quotient moments for randomly generated pressure distribu-
tions all fall within the boundary generated by quotient moments of a special
group of dipods. Here r > a, and the bean-shaped boundary does not have a
simply named shape such as the circle we found for r < a. However, it is still
described by analytic formulas.

The dots in Figures 3-9 and 3-10 represent over 3,000,000 and 500,000
randomly chosen tripods, respectively. The solid curves which appear to
bound the dots are generated by two classes of dipods, discussed shortly.
On the basis of numerical studies such as shown in these figures, we believe
that no value of ¢, generated by a tripod or any other pressure distribution
falls outside the dipod curve. Therefore, the dipod curve is the exact bound-
ary of {g,}. We have not been able to prove analytically that no value of g,
falls outside the dipod curve, so the boundaries should be considered empiri-
cally justified only.

3.3.7. Boundary for [COR| < a

We observe that for r < a the boundary of the locus is a circle. This
empirical boundary can be generated by two-point pressure distributions
(dipods) of the type shown in Figure 3-11, where the angle w can vary.
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Figure 3-11 Dipods contributing to the
boundary of {§,}, for r < a. When r <
a, that is, when the COR turns out to
be within the disk, these are the pres-
sure distributions which are responsible
for the boundary of the quotient locus
and thus also are responsible for the
boundary of the COR locus. They are
simply dipods, in which one point of
contact between workpiece and sliding
surface is at the periphery of the disk
and the other point is internal to the
4 disk, near what turns out to be the
COR. More than half the weight is
supported by the internal contact, as it
is nearer to the CM. It is not surprising
that the workpiece rotates about a COR
essentially coincident with a point
supporting most of the weight of the
workpiece [22]. As the internal point of
support is moved in an infinitesimal
circle parametrized by angle w, the
corresponding COR traces out the
boundary of the COR locus inside the
disk.

These dipods are a generalization of the one shown in Figure 3-8. (The
distance from 7 to w, is infinitesimal.) We can then calculate a parametric
form for the boundary in terms of w:

> r 7'_2—>__—>)
qr"r_‘_a(am r (319)

> . . . .
where = (cos w, sin w). This generates a circle of radius

ar

b:r+a

(3.20)

3.3.8. Boundary for |COR| > a

For r > a, the empirical boundary of the locus {g,} is generated by
dipods of the type shown in Figure 3-12, where w is allowed to vary. These
dipods are a generalization of the dipod shown in Figure 3-7. Again, the
boundary can be calculated parametrically from o (via intermediate terms
dt,d ,y*,and y7) as
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d* = (r* + a® = 2ar cos w)”? (3.21)
sin v = & sin @
y di

cos y* = (1 — sin? y*)2
> _ <sin yt —siny~ cosy* + cos 'y‘)

Yr 2 ' 2
dt+d
dy =
v
Z])rzrzzif

It is the boundaries of {7,} that will be used (in Section 3.3.9) to deter-
mine the boundaries of the COR locus. Therefore the boundaries of the
COR locus, too, can be found by considering only dipods. This is a stronger
statement than Mason’s theorem 5, which requires tripods. Additionally,

Figure 3-12 Dipods contributing to the
boundary of {g,}, for r > a. When r >
a, that is, when the COR turns out to
be outside the disk, these are the pres-
sure distributions which are responsible
for the boundary of the quotient locus
and thus also are responsible for the
boundary of the COR locus. Again,
they are simply dipods, but now in
each dipod both points of contact with
the sliding surface are at the periphery
of the disk and so each supports half
the weight of the workpiece. As the
dipod system rotates around the CM
(parametrized by angle ), the corre-
sponding COR traces out the boundary
of the COR locus outside the disk. COR

a sin w
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we have found the two points constituting the dipods. However, it should be
noted that the sufficiency of tripods holds for any workpiece, whereas di-
pods are sufficient only for a disk.

Figures 3.9 and 3.10 demonstrate that the two classes of dipods consid-
ered, and illustrated in Figures 3-11 and 3-12, generate extremal quotient
moments. In other words, the locus {g,} of values of g, for all pressure
distributions P(i%) satisfying the conditions of Section 3.1.5 fall inside the
empirical boundary generated by the dipods. The boundaries themselves
are, of course, part of {g,}, since the boundaries are generated by acceptable
pressure distributions.

3.3.9. Analytic Form of the COR Locus

Having found a parametric representation of the {g,} locus, we can find
the COR locus. Recall the requirement for minimizing the energy lost to
friction [equation (3.12)]:

r2a = gla- @& -7l (3.22)

The COR locus is the set of all 7 for which there exists a §, € {g,} satisfying
equation (3.22).
Equation (3.22) is a vector equation. The left side obtains its dlrectlon
-from the edge angle «. The right side obtains its dlrectlon from ¢,, since
(¢ = F)is ascalar. To satisfy the vector equation ¢, must have direction
. We can rewnte equation (3.22) in scalar form, retaining the direction
constraint on ¢, separately:

2 =g lla- @ -7 (3.23)
where
g €44}
and
> (1>
qr”a

We wish to find the locus of 7 for all distributions P(w) It is best to
imagine 7 to be an mdependent variable. Each value of 7 yields a locus @)
with one element ¢, € {J,} correspondmg to each acceptable pressure distri-
bution P(%). For some values of 7 7, the value of ¢, required to satisfy equa-
tion (3.23) is in {g,}; for other values, it is not. The former values constitute
the COR locus.

It is confusing, but unavoidable, that the locus {@,} shifts as we con-
sider different locations of the center of rotation 7. In Figure 3-13 we have
plotted several {@,} loci for different values of 7. Note that var ylng the mag-
nitude of ¥ continuously changes the shape or size of the {g,} loci. But
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Figure 3-13 Boundaries of quotient loci {g,} for various 7. As 7 is changed, the
boundary of the quotient locus changes continuously. Sweeping 7 around the CM
causes a corresponding rotation of the quotient locus boundary. Changing the
distance of 7 from the CM changes the shape and size of the quotient locus
boundary.

changing the direction of ¥ only causes a corresponding rotation of the {3}
locus.

The variables of equation (3.23) are shown geometrically in Figures 3-
14, 3-15, and 3-16. In each figure we have plotted a value of 7 and the locus
{g,} for that 7. We then calculate and plot the value of g, required to satisfy
equation (3.23). In Figure 3-14, the value of ¢, required does not fall in {7,},
so the value of 7 shown is not in the COR locus. In Figure 3-15, the value of
g, required does fall in {g,}, so the value of 7 shown is in the COR locus. In
Figure 3-16, the value of g, required to satisfy equation (3.23) happens to be
on the boundary of the {g,} locus. The boundary of the COR locus is gener-
ated by such cases. Interior points of the COR locus are generated when the
g, required is interior to the {g,} locus, as in Figure 3-15. Since we are
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Figure 3-14  Variables of equation (3.23), for a value of 7 not in the COR locus. Is
a proposed value of 7 the COR of the workpiece for some pressure distribution?
First generate the quotient locus boundary for the proposed 7. In this case it is a
circle, because 7 falls within the disk. Now compute the value of §, which would
be required to satisfy energy minimization [equation (3.23)]. Plot it too. If g, falls
within the quotient locus boundary (which it does not here), then 7 is the COR of
the workpiece for some pressure distribution. g, points to a quotient moment in
the locus, so the pressure distribution which led to that quotient moment is the
one which causes the COR to be at 7.
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interested only in the boundary of the COR locus, we will consider only
values of ¢, which are on the boundary of the {g,} locus, as shown.

3.3.10. Solution for the |[COR| < a Part of the COR
Locus

It will be convenient to represent the COR by its polar coordinates

(r, &), and to define the relative angle m. Both angles are shown in Figure 3-
16. We have

—
o

MOTION

el

COR

Figure 3-15  Variables of equation (3.23), for a value of 7 in the COR locus. Here
g, does fall within the quotient locus boundary, so the COR is at 7 for some
pressure distribution.
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e=m+a—n (3.24)

If r < a, the boundary of {q,} is a circle. The condition that g, lie on the circle
can be expressed

[g]a + (r = b)E| = b (3.25)

-
[+3

MOTION

ol

Figure 3-16 Variables of equation (3.23), for a value of 7 on the boundary of the
COR locus. Here ¢, falls on the boundary of the quotient locus, so 7 is on the
boundary of the COR locus. We could test all values of 7 to see if they fall on the
boundary in this way. Instead, we generate the boundary of the quotient locus
(parametrized by an angle w in the dipods) and solve for the value of 7 which gives
rise to a §,, satisfying this figure.
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where b is the radius of the circle, from equation (3.20). Equation (3.25) can
be expressed in terms of the angle n as

gl = (+ = b) cos n]* + [(r = b) sin n]* = b2 (3.26)
Solving this quadratic equation for |g,| we find
13| = (r = b) cos m = {b> = [(r — b) sin n]2}" (3.27)

Inserting this value of |Z]),| into equation (3.23) and eliminating the square root
we obtain

[3—(—;_—7) — (r — b) cos n]z = b? = [(r — b) sin ] (3.28)
Substituting b from equation (3.20) and simplifying we find
a+r)+-ala - @-FP -24a-C-Flcosn=0  (3.29
where
[@-(C—Fl=a ¢+ rcosn
Equation (3.29) is cubic in r and quadratic in cos n. The solution for cos 7 is

_rlr a4 @ 8" - a@ - 0)
B r(r + a)

cos m (3.30)
The other quadratic root is invalid. Since 7 is related by equation (3.24) to
the polar angle ¢, equation (3.30) describes the boundary of the COR locus in
the polar coordinates (r, €) for r < a. A typical COR locus boundary gener-
ated using equation (3.30) is shown in Figure 3-17.

3.3.10.1. Extremal radius of the COR locus boundary for |COR| < a.
The minimum radius of the COR locus boundary occurs at ¢ = «, which
corresponds to w = 7. From equation (3.29) we find

a@ - ¢)

T2+ @- o)

Fimin (331)
Note that r,,;, is not the minimum distance from the CM to an element
of the COR locus; that distance is zero. r,,;, i1 the minimum distance from
the CM to the boundary of the COR locus. r,,;, is indicated in Figure
3-17.

1t will also be useful to have the angles at which the COR locus bound-
ary intersects the disk boundary. From equation (3.30) we obtain

B [(a - 3)2 + 4a2]2 — (@ - g)

cOos =g =
L] Mr=a 2a

(3.32)
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MOTION «

Gg |

Figure 3-17 COR locus boundary for r < a. Shown is the part of the COR locus
boundary internal to the disk. The pressure distributions which give rise to CORs
on the bold boundary are dipods, with one point of support at the COR and the
other on the periphery of the disk as far as possible from the COR.

T'min 1S the minimum distance from the CM to the boundary of the COR locus.
Note that r,,, is not the minimum distance from the CM to an element of the COR
locus; that distance is zero.

3.3.10.2. Curvature of the COR locus boundar{/ at r,,. From
equation (3.29) we can find the radius of curvature of the COR locus bound-
ary at r,,, to be
a@ - dl@- &) + 2aP

- 3.33
T @t 4@ 4 8@ D)+ (-39
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3.3.11. Solution for the |COR| > a Part of the COR
Locus

Ifr>a, , we cannot find a 51mple equation analogous to equation (3.25)
constraining g, to the boundary of {7,}. An effective approach is to parame-
trize the boundary of the {g,} locus by the angle o of equation (3.21) and
solve for both ¢ and r by binary search.

For each o the following procedure is used: we guess a value of r, in
the range a < r < ry,, where ry, is an upper bound to be found in Section
3.3.11.1. Equation (3.21) is then used to calculate a value of ¢,. Angle M is
related to the terms of equation (3.21) by

(3.34)

by

and so can be computed from w. Equation (3.23) can be written in terms of
the angle 7 as

r2=1g|@ ¢+ rcosmn) (3.35)

which is easily tested. Ifit is satisfied, we have found angle 7 and magnitude
r describing a point on the boundary of the COR locus. ¢ is then obtained
from 7 using equation (3.24).

If the left-hand side of equation (3.35) is greater (resp. less) than the
right-hand side, we increase (resp. decrease) the value of r guessed earlier.
In this way we perform a binary search, quickly converging on a solution for
r and e.

Figure 3-18 shows the boundary of the COR locus for various & and «.
The part of the boundary inside the disk was computed using equation (3.30),
while the part outside the disk was found by binary search as outlined here.
Calculation of each locus required about 2 CPU seconds on a VAX-780.

3.3.11.1. Tipline. We can calculate the extremum of the COR locus
analytically. For many purposes this may be all that is required. Addition-
ally, it gives us a range within which to conduct the binary search discussed
in Section 3.3.11. By symmetry, r takes on an extremal value when n = 0.
In Figure 3-12 this corresponds to 7, = 0, which in turn occurs only when
w=0o0rw=mxw/12.

The extremum at w = 0 has no apparent meaning. At o = 7/2 we find
from equation (3.21)

> _ > 3
qr = « r2 ¥ az (336)
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LINE OF MOTION

Figure 3-18 Boundaries of COR loci for various ¢ and . The pressure distribu-
tions which give rise to CORs on the boundary of the COR locus external to the
disk are dipods, with both points of support on the periphery of the disk diametri-
cally opposite each other. The boundary is generated as the angle parametrizing
the dipods is varied (Figure 3-12).

In the figures the point at which the workpiece is being pushed is indicated by an
arrowhead, and the angle () of the edge being pushed is indicated by the line the
arrowhead contacts. (In several cases the arrowhead is outside the disk; this is
unrealistic.)

At this value equation (3.23) yields

Fip = 33 (3.37)
o C

This is the greatest distance 7 may be from the CM, and it occurs at polar

angle ¢ = 7w + a. In Figure 3-19 we plot Iip Versus contact angle «, for a
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given value of ¢. Asais varied, the tip of the COR locus at distance Frp from
the CM traces out a straight line, the tip line.

The use of this graphical construction is illustrated in Figure 3-19. For
a given value of «, as shown, ry, is at the intersection of the tip line just
described with a line through the CM at angle a.

An interesting case occurs when @ becomes perpendicular to . (Note
that this does not require a = 7/2.) As & - ¢ — 0, we have Fip —> . The
COR at infinity corresponds to pure translation perpendicular to «. Figure
3-18c shows a case in which @ is almost perpendicular to & Note that
rip — © does not mean that pure translation is assured, only that it is possi-
ble. The COR may fall at any distance less than r,.

MOTION

Figure 3-19 r,(a) versus « and construction of the tip line. The most useful
point on the COR locus boundary seems to be the tip, as this is the COR for which
rotation of the workpiece is slowest. The distance to the tip (from the CM) is
given by the simple formula r,, = aa - . As the angle of the pushed edge « is
varied, the tip of the COR locus sweeps out a straight line called the tip line.

®
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The radius of curvature of the COR locus boundary at the tip can be
found analytically to be
rli/)

§ = (3.38)

1+ (rf,p/a“)

3.3.12. Symmetries of the COR Locus

We now have the ability to quickly compute the COR locus for any ¢
and a.

The COR locus is a function of four parameters: the disk radius a, the
edge angle o (which may be the angle of the pushing fence or of the work-
piece edge pushed, measured with respect to the line of motion of the
pusher), and the two components of the point of contact ¢ between pusher
and pushed workpiece. However, the COR locus is really much simpler in
functional dependence than the existence of four parameters would seem to
imply.

The most obvious symmetry is one of total size: if both & and a are
changed by a factor of y, the COR locus will be scaled by a factor of 7y as
well.

Note that the COR locus has an axis of symmetry through the CM at
angle a. The “‘tip”’ of the locus falls on this axis of symmetry, and the tip-
line construction (Section 3.3.11.1 and Figure 3-19) makes use of this sym-
metry.

The shape of the COR locus depends only on the distance of the tip of
the locus from the CM, a?/a - ¢, as a multiple of the disk radius a. If COR
loci for various tip distances are precomputed, we need only select the
appropriate one, scale it by the disk radius a, and tilt it at the appropriate
angle a.

Finally, the COR locus can depend only on the force and torque ap-
plied by the pusher. Displacing the point of contact ¢ perpendicular to the
edge angle « (i.e., along the line of action of the applied force) changes
neither force nor torque, and therefore cannot change the COR locus. In
Figure 3-18, the COR loci in sections a and b are identical because the point
of contact ¢ has been displaced perpendicular to the edge.

3.3.13. Summary

We have found the boundary of the COR locus for any choice of ¢ and
a. Within the disk the boundary is given by a simple formula relating  and ¢,
the polar coordinates of the boundary [equation (3.30)]. Outside of the disk,
the polar coordinates of the boundary are found by binary search as outlined
in Section 3.3.11. For most applications it is not necessary to find the entire
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COR locus boundary, as simple formulas exist for several important points
on the boundary. Most important of these is the tip-line construction de-
scribed in Section 3.3.11.1.

Further brief discussion of the boundaries of the quotient locus (Sec-
tion 3.3.7) is in order. The quotient locus is an intermediate mathematical
construction whose boundaries are transformed directly into the boundaries
of the COR locus. The boundaries of the quotient locus were found by
making an informed guess as to the pressure distributions which give rise to
the boundaries. Then this guess was tested by extensive computer simula-
tion of random pressure distributions. These numerical results suggest that
the analytic quotient locus boundaries were indeed correct: no randomly
generated pressure distribution ever appeared which landed outside the ana-
lytic boundary of the quotient locus. Because of the empirical justification
of the boundaries of the quotient locus, however, our derivation of the
analytic boundaries of the COR locus is not rigorous. It may well be that it
was this step (requiring computer testing) which prevented analytic solution
for the COR locus long ago [28] [39] [58].

3.4. APPLICATION

The foregoing results can be usefully applied to the problem of aligning a
workpiece by pushing it. In Figure 3-1 a misoriented rectangle is being
pushed by a fence. The fence is moving in a direction perpendicular to its
front edge. Evidently the rectangle will rotate CW as the fence advances
[42] and will cease to rotate when the edge of the rectangle comes into
contact with the front edge of the fence [12]. The problem is to find how far
the fence must advance to assure that the CW motion is complete.

The geometry of this problem differs from the geometry used in pre-
vious sections. Previously a point pusher made contact with a straight
workpiece edge. Here the straight edge of the pusher makes contact with a
point (corner) of the workpiece. But since the coefficient of friction between
the pusher and the edge of the workpiece (u.) is zero, we know that in either
case the force exerted by the pusher on the workpiece is normal to the edge,
regardless of whether the edge is that of the pusher or that of the work-
piece. Since the motion of the workpiece can depend only on the force
applied to it, the angle of the fence takes the place of the angle of the
workpiece edge («), and all the results derived remain unchanged.

In this section we will generalize the problem slightly, relative to the
problem illustrated in Figure 3-1:

® The workpiece pushed is arbitrary, not a rectangle.
® The motion of the fence is not necessarily perpendicular to its face.
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First, we circumscribe a disk of radius a about the workpiece. The
disk is centered at the CM of the workpiece (Figure 3-20). Note that the
contact point need not be on the perimeter of the circumscribed disk.

We know [42] that the workpiece will rotate CW and will cease to
rotate when the final configuration shown in Figure 3-21 is reached.

We now ask the rate of rotation of the workpiece about the COR, with
unit advance of the pusher dx. Let the angle of the CM from the direction of
motion of the pusher be 8. This is also the angle between the tip line and the

MOTION

Figure 3-20 Initial configuration of workpiece and fence and resulting COR lo-
cus. The fence travels horizontally and contacts the shaded workpiece as shown.
As the fence advances, the workpiece rotates clockwise at a rate which depends
upon the location of the COR. The workpiece is circumscribed by a disk of radius
a, since this is the only shape for which we can find exact COR locus boundaries.
The ice-cream-cone shaped COR locus boundary is shown. The minimum rate of
rotation occurs when the COR is at the tip of the locus.
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MOTION

Figure 3-21 Final configuration of workpiece and fence and resulting COR locus.
Finally the workpiece has rotated into alignment with the fence. At the moment
before alignment the COR locus boundary is as shown. We want to determine the
maximum advance of the fence which could possibly be required to get from the
orientation shown in Figure 3-20 to the one shown here. So we assume that the
COR is always at the tip of the locus, which is the point at which the workpiece
rotates most slowly as the fence advances.

perpendicular to the line of motion. (Both angles are indicated in Figure 3-
20). From equation (3.3) we have

d > > >
sinBa a-(¢—7F) (3.39)

dx =

where 7 is the distance from the CM to the COR. The rate of rotation per
advance of the pusher, d/dx, depends on where the COR 7 falls within the
COR locus. Since we wish to find the longest push which could possibly be
necessary to achieve a certain amount of rotation, we need to know for
which 7 in the COR locus dB/dx is minimized, that is, we consider the worst
case location for 7. This occurs when 7 is at the tip of the COR locus.
Therefore, we use

=B .2-

N " sin

Fiip) (3.40)
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Using r,, from equation (3.37), this can be integrated to yield the indefinite
integral

_—c sin(a + B) a? 1 + sin(a + B)
sin « 2esina BT sin(a + B)

(3.41)

To find the maximum pushing distance, Ax, required to cause the workpiece
to rotate from its initial configuration shown in Figure 3-20 to its final config-
uration shown in Figure 3-21, we simply substitute the initial and final values
of 8 into equation (3.41) and take the difference X, — Xjniiar-

The COR Llocus A

Including
Contact Friction
J

o

In this chapter we present results for the locus of centers of rotation for all
possible pressure distributions, in the presence of friction between the push-
ing and pushed workpieces. To demonstrate the use of our results, we find
the distance a polygonal workpiece must be pushed by a fence to assure
alignment of an edge of the workpiece with the fence. We also analyze the
motion of a sliding disk as it is pushed aside by the corner of a workpiece in
linear motion. Finally, we study the effectiveness of a sensorless manipula-
tion strategy based on ‘‘herding’’ a disk toward a central goal by moving a
pusher in a decreasing spiral about the goal.

4.1. SOLUTION FOR THE COR LOCUS INCLUDING
CONTACT FRICTION

Up to now we have assumed that the coefficient of friction between the
pusher and the edge of the pushed workpiece was zero, that is, u. = 0. The
pushing force was therefore normal to the edge being pushed. Since the
motion of the workpiece can depend only on the force applied to it, we will
designate the locus we found {COR}, to indicate its dependence on the force
angle, which is perpendicular to a.

We know how to generate the COR locus for a given angle of applied
force. Unfortunately, when u, > 0, it is not possible to tell what the force
angle will be. We will describe angular /imits on the force angle in Section
4.1.1, but within those limits, the force angle depends on the pressure distri-
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bution, which is not known. If we already knew that the COR would be at a
certain point, however, it would then be possible to find the force angle.

Our approach to this problem is to seek CORs that are consistent with
the force angle which gives rise to them. For each force angle ¢ within the
angular limits, we generate {COR},. For each COR in {COR},, we find the
force angle implied. If the force angle implied matches ¢, that COR is a
possible one for the workpiece. This formulation seems to threaten a great
deal of computation, which in fact is not required.

We will refer to the set of consistent CORs as the COR sketch, to
distinguish it from the elementary COR loci {COR}, produced for known
force angles. Two elementary COR loci will be used in the construction of
the COR sketch. In the figures, these COR loci will be left visible in outline,
while the actual COR sketch—the consistent CORs—will be shown shaded.

4.1.1. Contact Friction and the Friction Cone

Let u, be the coefficient of friction between the pusher and the work-
piece. If u. > 0, two distinct modes of behavior of the system are possible:
sticking and slipping. In Figure 3-1, sticking means that the element of the
fence in contact with the corner of the workpiece remains invariant as the
pusher’s motion proceeds. Referring to Figure 3-2, sticking means the ele-
ment of the workpiece edge which is in contact with the pushing point
remains invariant as the pusher’s motion proceeds. Slipping is simply the
case in which either the element of the pusher or the element of the work-
piece, which are in contact with each other, changes as the motion proceeds.

Define

v = tan~! p, 4.1)

In Flgure 4-1 we construct a friction cone, of half-angle v, at the point
of contact ¢. The cone is centered on the edge normal, at angle o — 7/2
relative to horizontal. Note that the edge may be either that of a fence,
where it contacts a corner of the workpiece (as in Figure 3-1), or an edge of
the workpiece, where it is touched by a corner of the pusher (as in Figure
3-2). The friction cone is a well-known construction in classical mechanics.

The component of the applied pushing force tangential to the edge, Fy,
is supported by friction. Its magnitude cannot exceed u.F, , where F, is the
component of force normal to the edge. Therefore the total applied force
vector must lie within the friction cone.

If we attempt to apply a force to the workpiece edge at an angle outside
of the friction cone, friction cannot support the tangential component of
force. The result is slipping along the edge, and the actual applied force is
directed along one extreme of the friction cone. If we apply a force within
the friction cone, friction is sufficient to support the tangential component of
force, and slipping will not occur: we have sticking.

p—
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MOTION OF PUSHER

Figure 4-1 Construction of the friction cone. The force which the pusher applies
to the workpiece edge must lie within the friction cone shown. If we attempt to
apply a force at an angle falling outside the friction cone, friction cannot support
the component of force tangential to the workpiece edge. The pusher will then
slip along the workpiece edge, and the actual force applied will lie along one
extreme of the friction cone. If we apply a force which lies within the friction
cone, the pusher will not slip relative to the workpiece edge.

In short, slipping is only consistent with a force vector at one extreme
of the friction cone, while sticking is only consistent with a force vector
within the friction cone. It is not usually possible to tell if slipping or sticking
will occur: often, depending on the pressure distribution, either may occur.

4.1.2. Sticking and Slipping Zones

In this section we presume that the COR is known: a single point is the
COR for the workpiece. We divide the plane into three zones, called the
sticking line, the up-slipping zone, and the down-slipping zone (Figure 4-2).
The up-slipping and down-slipping zones are regions of the plane with posi-
tive areas, while the sticking line is merely a line, but all three will be
collectively designated ‘‘sticking and slipping zones.”” The motion of the
workpiece is qualitatively different for the COR falling in each of the three
zZones.

The sticking line is the line perpendicular to the pusher’s line of mo-
tion, intersecting the point of contact between pusher and workpiece (i.e., &
lies on the sticking line). Since we choose to draw the pusher’s line of
motion horizontally, the sticking line is vertical. The sticking line divides
the down-slipping zone, on its left, from the up-slipping zone, on its right.
Also shown in Figure 4-2 is the edge normal line. Above this line, the up-
slipping and down-slipping designations are reversed. The area above the
edge normal will be unimportant, however.
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UP-
SLIPPING
ZONE

Figure 4-2 Construction of zones: up-slipping, down-slippin‘g, ‘and sticking line.
The location of the COR has implications for slipping or sticking of the pusher
with respect to the workpiece edge. If the COR lies on the sticking line Shf’“’“’
pusher and workpiece edge move along (horizontally) together and there. is no
slipping of one relative to the other. If the COR falls in the up- or dqwn-shppmg
zones to either side of the sticking line, then the workpiece has a vertical compo-
nent of motion and so must slip relative to the pusher (which moves horizontally).

4.1.2.1. Sticking line. First, consider the workpiece’s motion when
the COR is on the sticking line. Recall that the motion of any point of the
workpiece is perpendicular to the vector from the COR to that‘ point. If the
COR lies on the sticking line, the workpiece’s motion at the point of contact
is perpendicular to the sticking line, and is therefore parallel to the pusher’s
line of motion. ; .

Since the pusher’s line of motion and the workpiece’s motion gt the
point of contact are parallel, the pusher and the workpiece, at the' point of
contact, travel along together. There is no need for one to slip relative to the
other; the workpiece and the pusher are sticking at the point of contact.

4.1.2.2. Slipping zones. Now suppose that the COR is in the down-
slipping zone. The workpiece’s motion at the point of contact has a down-
ward component, relative to the pusher’s line of motion. The pusher-work-
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piece contact must be slipping, with the workpiece moving down relative to
the pusher.

Similarly, if the COR is in the up-slipping zone, the workpiece at the
point of contact moves up relative to the pusher as the pusher advances.

4.1.3. Consistency for Slipping

If we know that the workpiece is slipping relative to the pusher (and
whether up or down), then the force angle is known: it is at one extreme of
the friction cone, perpendicular to « =+ v.

If the COR lies in the down-slipping zone, the workpiece moves down
as the pusher advances. Therefore the force angle must be along the upper
extreme of the friction cone, at angle o + v — 7/2. Similarly, if the COR lies
in the up-slipping zone, the workpiece moves up as the pusher advances,
and the force angle must be along the lower extreme of the friction cone, at
angle o — v — 7/2.

Combining these observations, we see that if slipping occurs, the COR
must be either in {COR},., and the down-slipping zone, or in {COR},_, and
the up-slipping zone. These two intersection regions are called the down-
slipping locus and the up-slipping locus. A very similar construction was
used by Mason and Brost in Figure 5 of [45].

The down-slipping and up-slipping loci are two components of the
COR sketch, because every COR in either locus is consistent with the force
angle that was used to generate it. We construct the down-slipping locus of
the COR sketch by intersecting the down-slipping zone (left of the stick-
ing line) with {COR},,,. We construct the up-slipping locus of the COR
sketch by intersecting the up-slipping zone (right of the sticking line) with
{COR},_, .

In Figure 4-3, {COR},+, and {COR},_, are shown in outline. The
down-slipping and up-slipping loci are the shaded areas left and right of the
sticking line, respectively.

4.1.4. The Sticking Locus

The third set of consistent CORs belong to the sticking locus. The
sticking locus, together with the up-slipping and down-slipping loci whose
construction was just described, are all the CORs consistent with the force
angle they presume. The three consistent loci constitute the COR sketch.

If the COR lies on the sticking line, sticking occurs. The force angle
can be anywhere in the friction cone, that is, between a — v — 7/2 and o +
v — @/2. The sticking locus is therefore the intersection of the sticking line
with the union, over all ¢ perpendicular to a force angle within the friction
cone, of {COR},. The sticking locus is shown as a bold section of the stick-
ing line in-Figure 4-3.
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Figure 4-3 Construction of the COR sketch. When the coefficient of friction
between pusher and edge of workpiece p. > 0, the locus of possible CORs can be
constructed from two of the simpler COR loci which we calculated for u, = 0.
The two u, = 0 loci are shown in outline, while the COR “‘sketch’ for a nonzero
1. is shown shaded. Depending on where the COR falls in the COR sketch,
slipping of the workpiece (either up or down) relative to the pusher, or sticking,
may be predicted.

As discussed, the two slipping loci are {COR},.,, possibly cut off by
the sticking line. In calculating either slipping locus, the force angle is
known: it is @ = v — «r/2. But in calculating the sticking locus (which is just
a simple line segment), the force angle is not known, except that it lies within
the friction cone. To find the endpoints of the sticking locus exactly, we
could form every locus {COR},, for (« — v < ¢p < a + v), and intersect each
locus with the sticking line. The union of these intersections is the sticking
locus. This is not an efficient method.

The lower endpoint of the sticking locus is of particular interest. It is
possible to approximate it by using the tip-line construction described in
Section 3.3.11.1. The procedure for finding the sticking locus is to form
every locus {COR},, for (« — v < ¢ < a + v), and intersect each locus with
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the sticking line. As we vary ¢, {COR}, varies continuously from {COR},_,,
which is outlined in Figure 4-3, to {COR},, , also shown outlined. The tip of
the extreme loci, as well as of all intermediate loci, fall on the tip line. The
tip line is shown dashed in Figure 4-3.

Were it not for the fact that each {COR},, locus drawn dips slightly
below the tip line, the lower endpoint of the sticking locus would be exactly
at the tip line. We will use this approximation. The small error so intro-
duced can be bounded [54] and is usually negligible.

Using the tip line to approximate the lower endpoint of the sticking
locus in this way depends on an unstated assumption: that the tip of
{CORY},-, lies to the left of the sticking line while the tip of {COR},., lies to
the right of the sticking line. This assumption is necessary so that the tip of
some intermediate locus {COR}, will intersect the sticking line. In Section
4.1.6, we will deal methodically with this problem.

The shaded slipping loci and the bold sticking locus of Figure 4-3
contain all the possible locations of the COR.

4.1.5. Possible Configurations of an Elementary COR
Locus

The down-slipping, up-slipping, and sticking loci play an important
part in the rest of this work. It is worth describing the qualitatively different
ways in which an elementary COR locus {COR}, can intersect the three
zones (down-slipping, up-slipping, and sticking line) to form the loci. These
qualitatively different types of intersections will be called distinct elemen-
tary configurations. Later we will describe the qualitatively different COR
sketches which can occur; they will be called distinct skerches. Two COR
loci are used in the construction of a COR sketch, so there are more distinct
sketches than distinct elementary configurations.

For a given contact point &, changing « yields four distinct elementary
configurations of the resulting COR loci. In Figure 4-da, the pure slipping
elementary configuration, the entire COR locus falls in the up-slipping
zone. In Figure 4-4b, the COR intersects all three zones, but the tip of the
locus falls on the same side of the sticking line as the CM. This is the same-
sided-split elementary configuration. As o is further decreased, the tip of
the COR locus crosses the sticking line, entering the opposite-sided-split
elementary configuration, as shown in Figure 4-4c. Finally, when « de-
creases to the point where the edge normal at ¢ intersects the CM, the COR
locus goes to infinity [42]. The COR at infinity implies pure translation (with
no rotation) of the workpiece as the pusher advances. Beyond this point the
workpiece’s sense of rotation switches from clockwise to counterclock-
wise. For our purposes in constructing a COR sketch, counterclockwise
rotation is unphysical [42], and so we will class this and pure translation as
one elementary configuration, the wrapped elementary configuration, as
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(b) Same-sided split

(a) Pure slipping

STICKING
LINE

.
\,

N
.
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(c} Opposite-sided split (d) Wrapped

Figure 4-4 Possible elementary configurations of the COR locus. As the angle «
of the pushed edge varies, the COR locus may intersect the three zones in differ-
ent ways, called distinct ‘‘elementary configurations.”” The entire locus may fall
in the down-slipping zone (part a), the locus may intersect both slipping zones and
the sticking line with the tip of the locus on one side or the other (parts b and ¢), or
the locus may ‘‘wrap’’ through infinity as shown in part d.

shown in Figure 4-4d. No part of a ‘“wrapped’’ locus will ever contribute to
the COR sketch, yet we will continue to draw its outline as shown in the
figure.

The same four elementary configurations can be defined (now with
increasing a) when the sticking line is to the right of the CM (Figure 4-5).

4.1.6. Possible Distinct COR Sketches

Depending on « and u., each of the two elementary COR loci {COR} 4,
used in constructing the COR sketch may be any of the four elementary
configurations described in Section 4.1.5 (pure slipping, same-sided split,
opposite-sided split, or wrapped). There are nine possible distinct sketches
composed of two elementary configurations, as shown in Figure 4-6. (Of the
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42 combinations, 6 are eliminated because the tip of {COR},., cannot be left
of the tip of {COR},_,. The one sketch in which both {COR},., are
““wrapped’’ elementary configurations is inconsistent with clockwise rota-
tion of the workpiece.)

It is worth looking carefully at each sketch in particular to understand
the construction of the sticking locus. The sticking locus is the intersection
of {COR}, with the sticking line, as ¢ is swept from & + » to « — ». The
sweeping is always clockwise. In Figure 4-6g, sweeping clockwise means
sweeping from the pure slipping locus, clockwise, to the wrapped locus.
The intermediate loci therefore do intersect the sticking line, even though
neither locus {COR},., does. Unless this is understood, the origin of the
sticking locus in Figures 4-6g and h will remain mysterious.

{a) Pure slipping (b) Same-sided split

{c) Opposite-sided split (d) Wrapped

Figure 4-5 Possible elementary configurations with sticking line to the right of the
CM. The same four elementary configurations shown in Figure 4-4 can be defined
when the sticking line is to the right of the CM.
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Figure 4-6 Nine distinct COR sketches with respect to the sticking line. Depend-
ing on the angle « of the pushed edge (not labeled here) and the coefficient of
friction w, (which determines the width of the friction cones shown), the two
elementary COR loci which contribute to a COR sketch may intersect the slipping
and sticking zones in nine different ways.

Look closely at each distinct sketch to understand the origin of the sticking
locus (the bold section of the sticking line). The sticking locus is the intersection
of {COR}, with the sticking line, as ¢ is swept from @ + v to @ — v. The sweeping
is always clockwise. In sketch g, sweeping clockwise means sweeping from the
pure slipping locus, clockwise, to the wrapped locus. The intermediate loci there-
fore do intersect the sticking line, even though neither locus {COR},., does.

Several of the sketches shown in Figure 4-6 have interesting proper-
ties. In sketch a, the workpiece must slip up relative to the pusher. In
sketches b and d, the workpiece must stick or slip up. In sketch g, the
workpiece must stick to the pusher. In sketches h and i, the workpiece must
stick or slip down. In the remaining sketches ¢, e, and f, either mode of
slipping, or sticking, is possible, depending on the pressure distributi(_))n.

Analogous qualitative results are possible when the point of contact ¢ is to
the right of the CM. The distinct COR sketches for this case can be obtained
from those shown in Figure 4-6 by reflecting about a vertical axis. (The
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pusher’s motion should still be considered left to right, however.) The dis-
tinct sketches for counterclockwise rotation of the workpiece may be ob-
tained by reflecting about a horizontal axis.

4.2. FROM INSTANTANEOUS MOTION TO GROSS
MOTION

We have shown how to find all possible instantaneous motions of a pushed
sliding workpiece, given only the parameters «, ¢, and a. In some cases it is
possible to say with certainty that a particular kind of motion, such as
sticking, can or cannot occur. The set of possible CORs, as found by con-
structing the COR sketch, describes completely the possible instantaneous
motions of the workpiece as long as those parameters remain in effect.
Usually, however, the instantaneous motion that results changes the param-
eters (except the radius a), so that a new COR sketch must be constructed.

Often we wish to calculate not the bounds on the instantaneous direc-
tion of motion, as we did earlier, but bounds on a gross motion of the
workpiece which can occur concurrently with some other gross motion of
known magnitude. (For instance, we may wish to find bounds on the dis-
placement of the pusher which occurs while the workpiece rotates 15 de-
grees). Our approach to dealing with gross motion follows a definite strat-
egy, which will be illustrated in the sample problems solved in Sections 4.3,
4.4, and 4.5.

Suppose we wish to find the greatest possible change in a quantity x,
while quantity 8 changes from B to Bfinar- From the geometry of the
problem we find an equation of motion relating the instantaneous motions dx
and dB. We then construct the COR sketch for each value of B. In each
sketch we locate the possible COR which maximizes dx/dB. Using that
COR, we integrate the equation of motion from Binitiat 10 Binas» yielding an
upper bound for the quantity x.

Sometimes the possible COR which maximizes dx/dB can be found
analytically, or at least approximated analytically, and sometimes it must be
found numerically. When an analytical solution is found, it may or may not
be possible to integrate the equation of motion in closed form using that
analytical solution. The examples that follow illustrate all these situations.

4.3. EXAMPLE: ALIGNING A WORKPIECE BY PUSHING
WITH A FENCE

In this example, we wish to find the maximum distance a fence must advance
after first contacting a workpiece, in order to assure that an edge of the
pushed wotkpiece has rotated into contact with the fence. A typical initial
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configuration is shown in Figure 4-7, with the workpiece shown shaded.
(Note that the fence does not advance perpendicular to its front edge.) The
final configuration is shown in Figure 4-8. (In Section 3.4 we solved this
problem for the case where u. = 0.)

Also shown in Figure 4-7 is the COR sketch for the initial configuration
and the angle 8 between the line of motion and the line from the point of
contact to the CM. g is also the angle between the tip line and the sticking
line. Angle 8 changes from 45 degrees initially in Figure 4-7 to 80 degrees in
the final configuration, Figure 4-8. Note that a 1-degree rotation of the work-
piece about the COR will produce a 1-degree change in 8 as well. We wish
to find the advance x of the pusher (fence) required to change B by 35
degrees.

The workpiece’s rate of rotation about the COR dB, for advance of the
pusher dx, was found in equation (3.3) to be
dﬁ > > >

a-(c—r

dx = 4.2)

T sina

Figure 4-7 Initial orientation of the fence and pushed workpiece. As the fence
advances horizontally, the four-sided workpiece rotates clockwise. The COR
sketch is the shaded portion plus the bold section of the sticking line called the
sticking locus. The two elementary (u, = 0) COR loci which were used to gener-
ate the COR sketch are shown in outline. We need to find the COR responsible
for slowest rotation of the workpiece. This turns out to be at the lowest point of
the sticking locus (marked B), not at the tip of one of the u, = 0 loci as in the
frictionless case considered in Section 3.4.
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Figure 4-8 Final (aligned) orientation of the fence and pushed workpiece. Here
we show the COR sketch at the moment before the conclusion of the workpiece’s
clockwise rotation into alignment with the fence. By this time the COR responsi-
ble for slowest rotation of the workpiece is no longer at the bottom of the sticking
locus but rather at the point marked B, which is the tip of one of the elementary
(s = 0) COR loci.

To find the maximum required pushing distance, we must find the maximum
value of & - 7 for any possible COR 7 in the COR sketch. This will be the
slowest COR, the one for which the rotation of the workpiece with advance
of the pusher is slowest.

Reviewing the nine distinct COR sketches in Figure 4-6, we see that the
slowest COR is at the lower endpoint of the sticking locus in sketches d, e, g,
and h. We will call this behavior sticking-slowest. It occurs when the tips of
the two loci {COR},-, fall on opposite sides of the sticking line.

In sketches a, b, ¢, f, and i, the slowest COR is an element of one of the
slipping loci {COR},.,. We will call this behavior slipping-slowest. Tt oc-
curs when the tips of the two loci {COR},-, fall on the same side of the
sticking line. (For the purposes of the rule given here, the ““wrapped’’ loci in
sketches g, h, and i count as having their tip to the left of the sticking line.)
In fact, the slowest COR in the slipping-slowest regime is very nearly the
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COR at the tip of one of the loci {COR},.,. It is only because the angle of
symmetry a = v differs from « that the tip is not the slowest COR. We will
use the tip of one of the loci {COR},~, as an approximation to the slowest
COR. The error introduced by this approximation can be bounded [54] in
terms of the radius of curvature of the tip of the COR loci, but for practical
purposes it is negligible.

It is possible to have a transition from slipping-slowest behavior to
sticking-slowest behavior within a pushing operation, as 8 increases. Such a
transition occurs when the tip of one of the loci {COR},-, passes through the
sticking line. In Figure 4-9, for example, it is {COR},., which passes
through the sticking line. We may derive the condition for the intersection:

a*+ ¢?= —a’tan B tan (o £ v + B) (4.3)

Figure 4-9 Transition from sticking-slowest to slipping-slowest behavior. This is
the moment of “‘transition’” from the COR responsible for slowest possible rota-
tion of the workpiece being at the bottom of the sticking locus, as in Figure 4-7, to
being at the tip of one of the elementary (1, = 0) COR loci, as in Figure 4-8.
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The tip of locus {COR},-, is on the same side of the sticking line as the CM
when the left side of equation (4.3) is less than the right side. The value of 8
at which the tip crosses the sticking line may be found by solving equation
(4.3) for B:

2 . ) 2 ) V112
cttan(a = v) = [¢* tanXa = v) — 4a? (a® + )]
tan Btr'(msition = 202 (44)

The pushing distances required to advance S from its initial value to the
transition, and from the transition to the final value, must be evaluated
separately. In our example, the locus {COR},., is type same-sided split
initially, but changes to type opposite-sided split. Using equation (4.4) we
find By unsirion = 69.4 degrees, as shown in Figure 4-9.

4.3.1. Slipping-Slowest Regime

If the slowest COR is at the tip of one of the loci {COR},.,, we have

_ dB > > >
dx = Sna (¢ = Fup) 4.5)
where

a?

Fiip = m_g
which can be integrated to yield the indefinite integral

—csinfa v+ B) a® 1 + sinla = v + B)
sin « 2¢ sin « 1 —sinfa = v + B)

(4.6)

Since, in the example being considered, the motion from B,q.siion = 69.4
degrees until Bp,, = 80 degrees falls in the slipping-slowest behavior regime,
we simply evaluate x at these two angles and subtract. Here the *“—’’ sign in
“a = p”’ is used. The distance dx obtained is one component of the maxi-
mum required pushing distance to align the workpiece.

4.3.2. Sticking-Slowest Regime

In Figure 4-7 the slowest COR is the lowest point of the sticking locus,
labeled B. When the COR is at point B, @ -7 may be approximated as
l'—) —)] C2 + a2

= g @.7)

If the radius of curvature of the tip of the COR locus boundary were zero,
this approximation would be exact. As it is not zero, the bottom of the
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sticking locus drops slightly below the tip line. This is a negligible effect,
bounded in [54]. We will neglect it here.

Note the absence of any dependence on the friction cone angle v. This
is because when the pusher and workpiece are already sticking, further
increase in u. has no physical effect. To find the maximum required pushing
distance, it is only necessary to integrate equation (4.5) with & — 7 as given
here. We obtain the indefinite integral

2 + a? |1—cos,8

2c 1 +cospB 4.8)

x =
In our example, motion from B, = 45 degrees until B,,4usinion = 69.4 degrees
falls in the sticking-slowest behavior regime, so we simply evaluate x at
these two angles and subtract. The distance dx obtained is the second com-
ponent of the maximum required pushing distance to align the workpiece.
The total required pushing distance to align the workpiece is the sum of the
two partial results obtained from equations (4.6) and (4.8).

4.4. EXAMPLE: MOVING POINT PUSHING ASIDE A DISK

In this example we consider a disk being pushed not by a fence, but by a
point moving in a straight line. The point may be a corner of a polygonal
pusher, as long as it is only a corner of the pusher that touches the disk, and
not an edge.
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Figure 4-10 Configuration of the disk and the path of the pusher, before and after
collision. A point pusher in linear motion encounters a disk. The collision is
characterized by an initial value of the ‘‘collision parameter’ ;... After the
pusher has translated a distance x,,couu.r, the disk has become tangent to the path
of the pusher and the two break contact, ending the collision. B, is m/2. During
the collision the disk rotates an angle £&. We wish to place bounds on x,,cgume- and
on €.
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In all cases the outcome of the collision is the same: the disk is pushed
aside by the pusher, and contact is broken. The disk ceases to move at the
instant the pusher loses contact with it (we assume slow motion), so the disk
will be left tangent to the pusher’s path when contact is broken. The initial
and final configurations of the disk are shown in Figure 4-10. We wish to
calculate the minimum and maximum length of the encounter, Xuouer, i
terms of the collision parameter, 3, as indicated in Figure 4-10. We might
also wish to know the minimum and maximum angles through which the disk
may rotate during the collision.

4.4.1. Length of the Encounter

In Figure 4-11, the variables of interest are x, which parametrizes the
advance of the pusher along its path, and 8, which completely characterizes
the collision. B will vary from B, its value at first contact, to Bfmaz /2
when contact is broken. X.ucoume i the corresponding change in x, as B
changes from B, to /2.

If the instantaneous COR is known, the direction of motion of the CM
of the disk is known: it makes an angle 6 with the horizontal, as shown in
Figure 4-11. If the CM of the disk moves a distance A/ along its line of
motion, we can find the resulting values of AS and dx, and thereby relate A
and dx to each other.

LINE OF MOTION . (X, v}
OF PUSHER

COR

STICKING LINE

Figure 4-11 Finding equation of motion (4.9). If the COR were known, we could
find relations among: (a) the motion of the CM of the disk A/, (b) the change in the
collisign parameter dB, and (c) the advance of the pusher dx.
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The pusher advances a distance
dx = Al cos 6 + Al sin 6 tan 8 (4.9)
due to Al. At all times 8 can be found from
asinf=y+ Alsin 6 (4.10)

where (x, y) are the coordinates of the point of contact.
Substituting A/ from equation (4.9), and evaluating the change in sin 8
due to A/, we find

dx sin 6

al(sin B) = cos 6 + sin 6 tan B8

4.11)

For infinitesimal motions AB and dx becomes dB and dx. Using d(sin 8) =
cos B dB, we find an equation of motion

. cos 8
dx = a dp (sm B+ tan 0) (4.12)
Since it will turn out that tan 6 > 0, the largest and smallest values of dx/dg
will result when 6 assumes its smallest and largest values, respectively.

Now we construct the COR sketch, shown in Figure 4-12. Since the
edge normal at & passes through the CM, the extremes of the friction cone
pass to either side of the CM, for any u. > 0. {COR},-, is a ““wrapped”
locus (as described in Section 4.1.5), so the COR sketch must be that of
Figure 4-6 sketch g, h, ori. In any case there must be a sticking locus, there
cannot be an up-slipping locus, and there may or may not be a down-slipping
locus. In Figure 4-12 we have shown a down-slipping locus.

In Figure 4-12, and in general when the COR sketch is any one of
distinct types g, h, or i, the smallest and largest values of 6 (Figure 4-11)
occur when the COR is at the lower or upper endpoints, respectively, of the
sticking locus. For sketches g and h the lower endpoint of the sticking locus
is well approximated by the intersection of the sticking line with the tip line,
and we will use this approximation (neglecting the small effect of the curva-
ture of the tip, though this could be included). For the lower endpoint of the
sticking locus in sketch i, and for the top of the sticking locus in all three
sketches, numerical methods would have to be used. We will not find these
numerical results here.

4.4.1.1. Greatest length of encounter. As in Section 4.3.2, we will
neglect the slight dip of the sticking locus below the tip line, which results
from the nonzero radius of curvature of the tip of the COR locus boundary.

We will also assume that the COR sketch is of type g or h, not i, so that
the lower endpoint of the sticking locus can be approximated by the intersec-
tion of the sticking line with the tip line. This assumption will be addressed
in Section 4.4.1.2.
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LINE OF MOTION

DOWN -
SLIPPING
LOCUS

N

STICKING LINE \STICKING LOCUS

Figure 4-12 COR sketch for a point pushing a disk. The COR sketch for the
collision between pusher and disk. The angle of the edge being pushed, a, is the
tangent to the disk at the point of contact ¢. Therefore one of the two elementary
COR loci which compose the COR sketch is ““wrapped’’ (Figure 4-4). The COR
sketch consists of only a down-slipping locus (left of the sticking line) and a
sticking locus. This is reasonable: it would be surprising if the disk should slip up
relative to the pusher.

If the COR is at the intersection of the sticking line with the tip line, we
find from Figure 4-13

tan 0 = ;‘% (4.13)
Xcor = —a cos B
and
sin? 8 — 2

=a -
Ycor sin 3

where ycor is found from the construction of Figure 4-13. Using ¢ = a,
equation (4.13) can be simplified to

cos B sin
tan 6 = cos Bsin B

. 1+ cos? B .14
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LINE OF
MOTION

{Xcor: Ycor!

STICKING LINE

Figure 4-13 Finding the smallest 0, equation (4.13). The length of the encounter
between pusher and disk is greatest if the COR is at such a location that 6 is
minimal. In most cases the bottom of the sticking locus is the location of the COR
which minimizes §. Using the tip line construction we can find the minimum value
of 6 as shown here.

Using this value of tan 6 in the equation of motion (4.12) results in

_ . 1+ cos?B
dx = a dB(sin B) + Sin 8 (4.15)
which, integrated, yields the indefinite integral
_ 1 — cos /3)
Xencounter = A <1n 1 + cos B (416)

The maximum value of x.,...uer Can be obtained by evaluating equation
(4.16) at Biniriw and B = /2 and subtracting. The value at 7/2 is zero.

4.4.1.2. Condition for sketch type i. The foregoing derivation of
Maximum Xe,c..... assumed that the lower endpoint of the sticking locus is at
the tip line. This is not true when the COR sketch is of type i, in Figure 4-6.

The COR sketch is of type i when the tip of {COR},., is left of the
sticking line. Simplifying equation (4.3) for a = c and @ + 8 = #/2, we find
the condition for sketch i to be

tan 8 > 2 tan v = 2u, 4.17)

wpas
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This means that the COR sketch will always become type i as 8 — /2,
unless u, = o, (u, = © can occur, for example, in pushing a gear, if a tooth
is engaged by the pusher.) In every case of pushing aside a disk, sketchiis
entered eventually.

By using the tip line as the lower endpoint of the sticking locus, despite
the fact that this is a poor approximation in sketch i, we find too low a value
for the minimum 6. Our calculated maximum for x,,couer [€quation (4.16)] is
unnecessarily high. We could in principle refine the upper bound by find-
ing the lower endpoint of the sticking locus more accurately by numerical
methods.

As mentioned, we are also neglecting the slight dip of the sticking locus
below the tip line (in sketches g and h), which causes us to underestimate the
maximum possible value of x,,. e Here too we could refine x,,coumrer DY
numerical methods.

Neglect of sketch i, and neglect of the dip due to tip curvature, cause
errors of opposite sign in calculating the maximum X, The latter is a
smaller error. Neither error will be addressed here.

4.4.1.3. Least length of encounter. The minimum possible value of
Xencounter OCCUrs when the COR is at the top of the sticking locus. We do not
have an analytical method of finding or approximating the upper endpoint of
the sticking locus, as we have for the lower endpoint. The lower endpoint is
similarly hard to analyze if the COR sketch is of type i in Figure 4-6. In these
cases it is necessary to find the endpoints numerically for all 8 in the range of
interest, calculate 8 for each B8, and then integrate equation (4.12) numeri-
CaHy to find Xencounter +

4.4.2. Rotation of the Pushed Disk During Encounter

4.4.2.1. Maximum rotation. In Section 4.4.1, both the largest and
smallest possible values of x,,couner resulted from CORs on the sticking line.
If the COR remains on the sticking line, the pusher does not slip relative to
the surface of the disk, and so evaluation of the rotation of the disk during
the encounter, &,,.ouer, 1S trivial. We have

T
“ 2 - Binitial
Since only up-slipping of the pusher is possible, equation (4.18) is an exact
upper bound for &,,.coume-; any slipping will only serve to reduce the rotation
of the disk.

Maximal slipping is obtained if w, = 0. The pushing force is directed
through the CM of the disk, so the disk can only translate and not rotate
[42]. So if u. = 0, we have &.,coumrer = 0 as both maximum and minimum
rotation. .

(4.18)

gencaunter -
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4.4.2.2. Minimum rotation. We found in Section 4.4.1 that extreme
values of dx/dB occur when 6 takes on extreme values. Having constructed
the COR sketch, we found that the extreme values of 8 for possible CORs
are assumed when the COR falls at the top or bottom of the locus. In this
section we will not be able to find a single geometric variable, analogous to 6,
whose extremes correspond to extremes of the rate of rotation.

Rotation of the disk will be measured by the angle ¢, measured at the
COR, as shown in Figure 4-14. We can relate A¢ to advance of the pusher
dx:

dx = [ sin & d¢ (4.19)

Combining equation (4.19) with equation (4.12), which relates A to dx, we
find

_a dp[sin B + (cos B/tan 6)]
B [ sin &

We can eliminate 6 and [ sin ¢ in favor of the coordinates of the COR,

dx

dg (4.20)

tan § = “COR 4.21)
Ycor

[siné=asinfB —y

yielding
d¢ _ alycor €08 B + xcor sin B) 4.22)
dg Xcor(a sin B — Ycor)
MOTION OF
PUSHER X

™5

COR

Figure 4-14 Finding equation of motion (4.19). If the location of the COR is
known, the rotation of the disk ¢ can be related to the advance of the pusher dx.

oA
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Figure 4-15 Contours of constant d¢/df and the COR sketch. To find the mini-
mum possible rotation of the disk ¢ during its encounter with the pusher we seek
that location of the COR which minimizes ¢ for unit increase in the collision
parameter 3, that is, which minimizes d¢/dB. Plotted are contours of constant d¢/
dB. We must find numerically the point in the COR locus which intersects the
least contour. For the COR locus plotted, the least contour intersected is about
.46, and the COR which intersects it is, once again, very near the tip of the COR
locus.

This has no simple geometric interpretation. Contours of constant d¢/dg are
plotted in Figure 4-15, for 8 = 45 degrees. Minimum rotation occurs at
minimum dé¢/dB. The COR sketch for 8 = 45 degrees is superimposed on
Figure 4-15. The possible value of the COR which is responsible for mini-
mum rate of rotation is the point of the COR locus which intersects the
slowest-valued contour line, indicated in the figure as point A (in this case
very close to the tip). Having obtained numerically the minimum possible
value of d¢/dgB, as a function of 8, we can numerically find the indefinite
integral:

e = [ (%) 0 a (4.29)

Minimum rotation in a given collision can then be evaluated by subtracting
gmin(Binitial)gfrom fmin (Bfinal = 77/2)
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4.5. EXAMPLE: SPIRAL LOCALIZATION OF A DISK

In this example we analyze an unusual robot motion by which the position of
a disk (a washer, say), free to slide on a tabletop, can be localized without
sensing. If the disk is known initially to be located in some bounded area of
radius b,, we begin by moving a point-like pusher in a circle of radius b,.
Then we reduce the pusher’s radius of turning by an amount Ab with each
revolution, so that the pusher’s motion describes a spiral. Eventually the
spiral will intersect the disk (of radius a), bumping it. We wish the disk to be
bumped toward the center of the spiral, so that it will be bumped again on the
pusher’s next revolution. If the spiral is shrinking too fast, however, the
disk may be bumped out of the spiral instead of toward its center, and so the
disk will be lost and not localized.

We wish to find the maximum shrinkage parameter Ab consistent with
guaranteeing that the disk is bumped into the spiral, and not out. (Ab will be
a function of the present spiral radius.) We also wish to find the number of
revolutions that will be required to localize the disk to some radius b, with a
< b < by, and the limiting value of b, called b.,, below which it will not be
possible to guarantee localization, regardless of number of revolutions.

4.5.1. Analysis

Suppose the pushing point has just made contact with the disk. Since
the previous revolution had radius only Ab greater than the current revolu-
tion, the pusher must contact the disk at a distance at most Ab from the edge
of the disk, as shown in Figure 4-16. We will consider only the worst case,
where the distance of the pusher from the edge is the full Ab.

We know that if Ab < a, the disk will move downward [42]. This is not
sufficient to assure that the disk will be pushed into the spiral (rather than out
of the spiral), because the pushing point will also move down, as it continues
along its path (Figure 4-16). To guarantee that the disk will be pushed into
the spiral, we must make sure that it moves down fasier than does the
pushing point.

Note that we will continue to draw the pusher’s motion as horizontal,
even though the pusher must turn as it follows the spiral. This is done to
maintain the convention for COR sketches used in previous sections. At
every moment we simply choose to view the system from such an angle that
the pusher’s motion is horizontal.

One way of comparing rates of moving down is by considering the
increase or decrease in the angle 3, called the collision parameter, in Figure
4-16. If, as the pusher’s motion along its spiral progresses, 8 increases, then
the disk is being pushed into the spiral; localization is succeeding. When 8
reaches /2, the pusher grazes the disk and leaves it behind. The disk is
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e CENTER OF SPIRAL
(PC)

Figure 4-16 Geometry at the moment of the second collision of pusher and disk.
A point pusher describes a decreasing spiral about a region of radius b, within
which a disk of radius a is known to be. As the spiral decreases in radius, the disk
is pushed toward the center of the spiral. We wish to find the fastest-shrinking
spiral which will guarantee that the disk is always pushed in toward the center and
never out of the spiral. It turns out there is a limiting radius of the spiral below
which further confinement of the disk cannot be guaranteed, no matter how slowly
the spiral decreases in radius.

In this figure the disk was first struck by the pusher when it was at radius b, and
was pushed toward the interior of the spiral. The disk was left tangent to the path
of the pusher and is about to be struck again by the pusher, which is now at radius
b,. Ab = b, — b, is the shrinkage rate of the spiral. Notice the collision parameter
B which results.

then left tangent to the spiral. If, as the pusher’s motion progresses,
decreases, the disk is being pushed our of the spiral; localization is failing.

4.5.2. Critical Case: Pusher Chasing the Disk Around a
Circular Path

In the critical case the angle 8 does not change with advance of the
pusher. The pusher ‘‘chases’’ the disk around the spiral, neither pushing it
in nor out. In this section we will take the spiral to be a circle (i.e., Ab = 0),
to simplify analysis. The critical case, shown in Figure 4-17, is highly unsta-
ble. The pusher’s motion is shown as an arc of a circle, labeled path of
pusher. (Underlined names refer to elements of Figure 4-17). The center of
that circle is labeled PC (for pusher center). Point PC is directly below the
point of contact, in keepmg with our convention of drawing the pusher’s line
of motion horizontal.

To maintain the critical case, the path followed by the CM of the disk
(labeled critical path of CM) must be as shown in the figure: an arc of a
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MOTION OF
PUSHER

CRITICAL PATH
OF CM

PATH OF
PC
PUSHER

CRITICAL LINE

Figure 4-17 Critical case: pusher “chasing” disk around a circular path. If the
shrinkage of the spiral Ab is too great, the disk can be pushed our of the spiral. To
find the critical value of Ab below which the disk is guaranteed to be pushed into
the spiral, we consider the marginal case where it is possible for the pusher to
‘“chase’” the disk, with the collision parameter 8 neither increasing (meaning that
the disk is going toward the interior of the spiral) nor decreasing (meaning that the
disk is going toward the exterior of the spiral).

circle, concentric with the arc path of pusher. Instantaneously, the direc-
tion of motion of the CM must be along the line labeled motion of CM,
tangent to the critical path of CM. The critical line, drawn through PC and
CM, is by construction perpendicular to motion of CM. The COR of the
disk must fall on the critical line, in order that the instantaneous motion
along the line motion of CM be t tangent to the critical path of CM.

We have just seen that the COR of the disk must fall on critical line for
the instantaneous motion of the CM to be consistent with the CM fol]owmg
the critical path of CM. If the COR falls to the left of the. critical line, the
CM diverges from the critical path of CM by moving inside the arc. There-
fore B will increase with advance of the pusher, and localization is succeed-
ing. If the COR falls to the right of the critical line, the CM diverges from
the critical path of CM by moving outside the arc. . Therefore B will decrease

with advance of the pusher, and localization is failing. The critical line

divides the plane into two zones: if the COR falls in the left zone, the disk is
pushed into the pusher circle, while if the COR falls in the right zone, the
disk is pushed out of the pusher circle.
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We wish to find a condition on the radius of the pusher circle which
guarantees that the disk will always be pushed into the circle. We will con-
struct the COR sketch, and then find positions for PC such that all possible
CORs are to the left of the critical line.

In Figure 4-18 we have constructed the COR sketch with collision
parameter 8. Since the edge normal at ¢ passes through the CM, the ex-
tremes of the friction cone pass to either side of the CM, for any u, > 0.
{COR}.-,is a ‘“‘wrapped’’ locus (Section 4.1.5), and the COR sketch must be
that of Figure 4-6g, h, ori. In any case, there must be a sticking locus, there
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Figure 4-18 COR sketch for critical case and solution for location of PC. We
wish to find a condition on the radius of the pusher circle which guarantees that
the disk will always be pushed into the circle. We will construct the COR sketch
and then find positions for PC such that all possible CORs are to the left of the
critical line.

To make sure that the whole COR locus falls to the left of critical line, we
need only place the center of the pusher motion (PC) below the lower endpoint of
the sticking locus.
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cannot be an up-slipping locus, and there may or may not be a down-slipping
locus. In Figure 4-18 we have a down-slipping locus.

To make sure that the whole COR locus falls to the left of the critical
line, we need only place the center of the pusher motion (PC) below the
lower endpoint of the sticking locus. (Point PC is required to have the same
x coordinate as the point of contact, in keeping with our convention of
drawing the pusher’s line of motion horizontal.)

4.5.3. Critical Radius Versus Collision Parameter

For every value of 8 (the collision parameter), we compute the dis-
tance from the pusher’s line of motion to the lower endpoint of the sticking
locus. This defines a critical radius r*(8). For each collision parameter 8,
r*(B) is the radius of the tightest circle that the pusher can describe with the
guarantee that the disk will be pushed into the circle, or at worst be
“‘chased’” around the circle indefinitely, but not be pushed out of the circle.
In Figure 4-19, 1/r*(B) is plotted as a function of collision parameter 8 for
each of several values of u.. (The discontinuity in slope results from the
discontinuity in slope of the COR locus boundary at r = a.)

The inverse of the function r*(8) will be denoted B8*(r), representing
the smallest value of 8 for which a pusher motion of radius r still results in
guaranteed localization. In terms of the pusher’s distance from the top of
the disk, d (Figure 4-18), we can use the relationship

a(l —sinB) =d (4.24)

to define the critical distance from grazing d*(r) as a function of r. d*(r) is
the largest distance of the pusher from the top of the disk for which a pusher
motion of radius r still results in guaranteed localization.

4.5.4. Limiting Radius for Localization

If there is a limiting radius b.. of the spiral motion below which localiza-
tion cannot be guaranteed, then as the spiral approaches radius b, the mo-
tion must become circular. Ab — 0 as b.. is approached, so collisions be-
come grazing collisions, and we have the distance from grazing d — 0. (In
terms of the collision parameter 8, we have 8 — 7/2). The COR sketch for
B = /2 is shown in Figure 4-20. If the disk is not to be bumped out of the
spiral, we must have b.. = r*(8 = w/2). b..is indicated in the figure and can
be shown analytically to be

b, = a(p, + 1) foru. =1 (4.25)
b, = 2a for w. = 1
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Figure 4-19 Radius r*() of the critical circle as a function of c.()llisif)n parameter
B. For every collision parameter 3 (here plotted as /), there is a tlghtest. radius
+* which the pusher can describe still maintaining the guarantee that the dx'sk can
be chased or pushed inward, but never be pushed outward. For a vanely of
coefficients of friction . we plot here the inverse of that tightest (critical) radius,

alr*.
k-2
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MOTION OF PUSHER

PATH OF
PUSHER

TIP LINE

STICKING LINE

Figure 4-20 COR sketch at the limiting radius, showing b... There is a limiting
radius of the spiral b.., below which we cannot guarantee that the disk will be
pushed inward, no matter how slowly the spiral is decreasing in radius, that is, no
matter how small Ab. As the spiral approaches this radius it must more and more
accurately approximate a circle, since it cannot go below radius b... Thus the
collision parameter 8 becomes 7r/2 as radius b.. is approached, and all collisions
become grazing collisions. Drawing the COR sketch for a grazing collision we
find that b, = a(u, + 1), a general kinematic limitation on the success this herding
strategy can achieve.

Only at u. = 0 can a disk be localized completely, that is, localized to within
a circle the same radius as the disk. Otherwise the tightest circle within
which the disk can be localized is given by equation (4.25).

4.5.5. Computing the Fastest Guaranteed Spiral

Let b, be the radius of the nth revolution of the pusher, so that we have
initially radius b, and b.. is the limiting radius as n — . (In specifying but a
single radius for each revolution of the spiral, we will not truly specify the
spiral completely, but this will be sufficient to characterize the number of
revolutions required to achieve a desired degree of localization.)

To excellent approximation we can define the fastest spiral recursively
by

bn = bn—l - d*(bn) (426)

The difference between the radii of consecutive turns of the spiral n — 1
and n is therefore Ab = d*(b,). Equation (4.26) thus enforces the condition
that on the nth revolution, the value of d is exactly the critical value for
circular pushing motion of radius b,. At worst, the disk is pushed neither in
nor out of the spiral. A slightly slower spiral would guarantee that the disk
cannot be chased in this way for long, but is pushed into the spiral. How-
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ever, the difference between our spiral and the ‘‘slightly slower’ one is so
slight that it is not worth dealing with here [54].

Figure 4-21 shows the fractional deviation of spiral radius b, above b..
versus number of turns s, on logarithmic and on linear scales. We start
(arbitrarily) with b; = 100a. The spiral radius was computed numerically for
e = .25, using the results for 8*(r) shown in Figure 4-19 and equation (4.26).

Figure 4-21 shows that when the spiral radius is large compared to the
disk radius a (which is taken to be 1 in the figure), we can reduce the radius
of the spiral by almost a with each revolution. As the limiting radius is
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Figure 4-21 Performance of the optimal spiral. For u, = .25 we plot the optimal
spiral. This is the fastest-decreasing spiral which still guarantees that the disk is
pushed into the spiral and cannot be pushed out, that is, localizes the disk as
quickly as possible. We found that the spiral cannot decrease below a radius b..
while maintaining the guarantee, so that value has been subtracted from the verti-
cal (spiral radius) axis, leaving only the difference between the spiral radius and its
limiting value. In the linear plot, we can see that the radius of the optimal spiral
decreases swiftly by almost the disk’s radius a with each revolution until quite
close to the limiting radius. It is then more instructive to look at the log-log plot to
see hew the spiral radius approaches the limiting radius.
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approached, the spiral reduces its radius more and more slowly, approach-
ing the limiting radius b., as about n~!'%, where n is the number of revolutions.

Figure 4-21 demonstrates the best performance that the ‘‘herding”
strategy can achieve.

4.6. CONCLUSION

We have solved for the possible instantaneous motions of a sliding work-
piece as it is pushed, in the presence of unknown frictional forces between
workpiece and table, and between workpiece and pusher. We have charac-
terized the qualitatively different kinds of sliding motion which are possible
and found the conditions under which each can occur. Using these results it
is possible to find bounds for gross motions of a pushed workpiece as well.
This is done by integrating the possible instantaneous motions.

As an example, we have found the maximum distance a polygonal
sliding workpiece must be pushed by a fence to guarantee that a side of the
workpiece has aligned itself with the fence. Using the useful tip-line con-
struction described here, approximate results are obtained both for the align-
ment problem and several others. Strict upper bounds for the maximum
required pushing distance are found by using slightly more sophisticated
methods, but the difference between the upper bounds and the approximate
results are so slight that the effort seems hardly justified.

In a second example, we have taken the pushed workpiece to be a disk,
and the pusher to be a point, or the corner of a polygon, moving in a straight
line. We have found the maximum distance that the pusher and the disk may
be in contact, before the disk is ‘‘pushed aside’” by the moving workpiece.
Bounds on the rotation of the disk during its interaction with the pusher are
also found.

Finally, we have analyzed an unusual robot maneuver in which a disk
known to be within a certain circular area can be ‘‘localized’’ to a much
smaller circular area by a pusher which, perhaps under robot control, de-
scribes a decreasing spiral around the disk. Thus the disk can be located by
a robot without sensors. We found the ultimate limiting radius below which
the disk cannot be localized further, no matter how slowly the spiral de-
creases in radius. We also found (to within tight bounds) the ‘“‘optimal spi-
ral’’: the spiral that localizes the disk with the fewest number of revolutions,
while guaranteeing that the disk is not lost from the spiral.

\

Planning
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Strategies
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In this chapter a configuration map is defined and computed, mapping all
configurations of a workpiece before an elementary manipulative operation
to all possible outcomes. Configuration maps provide a basis for planning
operation sequences, which may be considered to be parts-feeder designs or
sensorless manipulation strategies for robots. Sequential operations are rep-
resented as products of configuration maps for the individual operations.
Efficient methods for searching the space of all operations sequences are
described.

As an example we consider a class of passive parts-feeders based on a
conveyor belt. Workpieces arrive on the belt in random initial orientations.
By interacting with a series of stationary fences angled across the belt, the
workpieces are aligned into a unique final orientation independent of their
initial orientation. The planning problem is to create (given the shape of a
workpiece) a sequence of fences which will align that workpiece. Using
configuration maps, we transform the planning problem into a purely sym-
bolic one. The space of all fence sequences is searched to find a successful
feeder design. Designs for several workpieces are found.

5.1. APPLICATION TO INTERACTION WITH A FENCE
Consider a fence in linear motion which strikes and pushes a workpiece.
For a given initial orientation of the workpiece, a particular point will be first

struck by the fence. Whether a clockwise or a counterclockwise mode of
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Figure 5-1 Extremal outcomes of interaction of workpiece with endpoint of
fence. A snapshot of a workpiece as it leaves the endpoint of a fence. The result-
ing COR locus is shown. Depending upon where the COR falls within the COR
locus, any final orientation between that shown in inset A and that shown in inset
B may occur.

rotation then occurs can be determined from the COR locus, but if this is the
only information required, it is found more simply by using the rules derived
by Mason [44]. )

As the fence advances, the workpiece rotates, and it may also slip
along the fence. The rates of rotation and slipping as the fence advances are
bounded by the COR locus. The bounds allow calculation of the maximum
distance the fence must advance to assure that an edge of the workpiece has
rotated into alignment, and the distance the workpiece has slipped along the
fence during alignment.

Finally, the workpiece leaves the end of the fence (Figure 5-1). Two
points of the COR locus (shaded) in the figure are of particular interest. If
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the COR is anywhere along the line labeled A, the workpiece will rotate
without slipping relative to the fence. Rotation without slipping may persist
until a face of the workpiece is aligned with the motion of the belt, as shown
in inset A. Point B gives another extreme of the possible motions of the
workpiece, in which the workpiece slips relative to the fence as fast as
possible for each increment of rotation. Maximal slipping may persist until
the workpiece loses contact with the fence, as shown in inset B. The ex-
treme orientations shown in the two insets define the range of possible
outcomes as the workpiece interacts with the end of the fence. Line A and
point B have simple analytic forms. The motion of the workpiece specified
by point B can be integrated to find the extreme possible final orientation of
the workpiece shown in inset B.

5.2. CONFIGURATION MAPS

The physics of an operation (for instance, a collision between a fence and a
workpiece) may be encapsulated in a configuration map. A configuration
map is a function of two copies of configuration space [36] (C-space X C-
space), taking on logical values. A workpiece lying on a tabletop has a three-
dimensional configuration space: it has two positional degrees of freedom
and one rotational degree of freedom. The configuration map is therefore a
function of six dimensions. Often, however, not all the degrees of freedom
are of equal interest. For many purposes (e.g., planning a conveyor belt-
based parts-aligner), all we care about is the orientation of the workpiece
before and after its collision with a fence (or some other operation.) So while
the configuration map representation is quite general, we will use here only a
two-dimensional projection of it.

Figure 1-8 shows the configuration map M_¢, for the workpiece and
operation (interaction with a —60-degree fence) shown. We will consider
the workpiece to be on a moving surface traveling downward, but it could
equally well be on a stationary surface with the fence moving upward. The
horizontal axis of the map gives the initial orientation 6; of the workpiece,
before it contacts the fence. (Outlines of the workpiece illustrate the orien-
tations at several points along the axis.) The vertical axis gives the final
orientation 6, of the workpiece after it has collided with the fence, rolled
along the fence until a stable edge comes into contact with the fence, and
finally slid down the fence and off the end. A point M_e(6;, 6;) is shown
shaded if it is nonzero (logical 1), where nonzero values indicate it is possible
for a workpiece with initial orientation ; to emerge with orientation 6, from
its interaction with the fence.

For any initial configuration of the workpiece, the configuration map
gives the final configuration. Note that in the case shown, for a single initial
conﬁguratign, there is a range of final configurations. This does not reflect a
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deficit in our physical understanding of the operation. The ‘‘one-to-many”’
mapping occurs because we are given only the outline of a workpiece and do
not know the distribution of the weight of the workpiece upon the surface it
slides on. The behavior of the workpiece depends on the distribution of
weight, which in turn depends on the generally unknown details of the
surfaces in contact. Using our results from Chapter 4, the set of final orien-
tations for all distributions of weight is calculated. The horizontal bands in
this configuration map are associated with discrete alignments of the polygo-
nal faces of the workpiece.

The utility of the configuration map representation lies in the ease with
which configuration maps for sequential operations can be calculated. In
Figure 5-2, a workpiece is being carried along a belt, and will interact first
with a —60-degree fence, and then with a +60-degree fence. A configuration
map can be created which maps the workpiece’s initial configuration before
colliding with the first fence, into its final configurations after leaving the
second fence. That configuration map is simply the matrix product of the
configuration maps for the two individual interactions. In the figure the two
maps to be multiplied and their product are shown. The product M ¢ _g is

1Ky K, TR
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M, i
|
|
|
I
" B
oM
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| | |
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Figure 5-2 Product of two configuration maps. A workpiece is being carried
along a belt, and will interact first with a —60-degree fence, and then with a +60-
degree fence. A configuration map can be created which maps the workpiece’s
initial configuration before colliding with the first fence, into its final configura-
tions after leaving the second fence. That configuration map is simply the matrix
product of the configuration maps for the two individual interactions.
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defined as
Mgo-60(0:i, 0p) = MigoM_g0 = \/o iM1e0(t, 07) /N M_9(60;, @)} (5.1

where /\ is logical intersection (and) and \/ is logical union (or).
5.2.1. Symbolic Encoding

To take advantage of the ‘‘bands’’ evident in the configuration map, we
construct N subintervals B; of the 6, axis, each bounding one of the bands.
For each band B, a kernel K; of the 6; axis is defined as

K; = Uses, 6/ M(6;, @) > 0} (5.2)

which is the set of initial configurations that lead to a final configuration in
the band B;. A new ‘‘rectangularized’” map

M = Uj K, X BJ (5.3)

is nonzero wherever M is nonzero, and perhaps at other locations as well.
When M is made up entirely of rectangular bands, as in Figure 1-8, we have
M =M.

Now consider a product of two maps M, M, (operation M, followed by
operation M,). Using superscript 1 or 2 to indicate correspondence with one
of the maps, we can express the product M, M, in terms of the bands of M,
and the kernels of M;:

M2M1

Il

Uj 2Bj X {Uk€21q 1Kk} (54)

where

AC; = {k| °K; N 1By #+ T}

The code sets ?!C; contain all the information about the product. In the
example shown in the figure, with the bands B; as labeled, we have C; = {1,
2}, C, = {2}, C3 = {3}, Cy = Cs = . (In figures, this code set would be
written 1,2— 1, 2— 2, 3— 3.) Further products can be computed using the
code sets only, for example, the code sets *!C; for the product M;M,M, are

PG = Ureng, ey (5.5

5.3. PLANNING OPERATIONS SEQUENCES
5.3.1. The Search Tree
The space of all operations sequences may be represented as a tree.

Arcs correspond to operations, for example, collisions with fences of vari-
ous angles in our example. The root is labeled with the set of all initial
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configurations. Each node of the tree is labeled with the set of possible
configurations of a workpiece after execution of the operations on the path
from the root to that node. In Figure 5-3, part of a tree for operations which
are collisions with fences of various angles is shown. The possible configu-
rations of a workpiece at a given node are obtained by multiplying the
configuration maps for the operations on the path from the root to that
node. The product maps for the six nodes shown along the left edge of
Figure 5-3 are shown in Figure 5-4. Traversing the tree in order to search it
is facilitated by the ease with which products of multiple configuration maps
can be computed using the code sets C;. In Figure 5-3, each arc is labeled
with a fence angle « as well as the code sets for that fence angle. The sets of

—60 +60
+60: 1,2-1;,2-2;3-3 +20
-20: 11;2,3>2;4,56~3 —60
+60: 1,2-12->23->33~4 -20

&

G

+20: 1 2;2~3;3>4;3,4>5;5~> 1

-20: 1-1;2,3,4>2;4,5-3

o

Figure 5-3 Tree for searching for an effective operations sequence. The space of
all operations sequences may be represented as a tree. Arcs correspond to opera-
tions, for example, collisions with fences of various angles in our example. The
root is labeled with the set of all initial configurations. Each node of the tree is
labeled with the set of possible configurations of a workpiece after execution of
the operations on the path from the root to that node. A goal node is one in which
the set of possible configurations has been reduced to one.
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Figure 5-4 Configuration map products of successive fences. Part a is the configu-
ration map for the interaction of the workpiece with a —60-degree fence. Part b is
the configuration map for its interaction with a —60-degree fence followed by a
+60-degree fence, considered as a unit. Part f is the configuration map for its
interaction with all six fences considered as a unit. The map has only one final-
orientation band, showing that the initial randomly oriented workpiece has been
reduced to (nearly) one final unique orientation.

possible configurations which label a node are indicated as a subset of the
indices j of the bands “B; for the fence angle « of the arc above it.

A goal node is one in which the set of possible configurations has been
reduced to one, or to a sufficiently narrow range. In Figure 5-3, therefore, a
goal node is labeled with just one band index 7, such as is the depth 6 node on
the left.
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5.3.2. Pruning the Tree

Searching the tree exhaustively (to any reasonable depth, e.g., six) is
essentially impossible because the branching factor at each node is so high.
Two techniques may be used to make the search practical.

Among the many arcs (fences) leaving a node, only a few distinct code
sets will be observed. Suppose the arcs for fence angles +50 through +60
share code sets 1,2— 1,2 — 2, 3 — 3. It turns out (a result of the physics)
that the final-orientation bands of a given fence are entirely contained in the
corresponding final-orientation bands of a less steep fence. If a solution
exists using the +55-degree arc from a given node, it must also exist using
the +60-degree arc from that node. Given several arcs having common code
sets, it is always safe to follow only the arc for the steepest fence.

The pruning step just described keeps the branching factor to a man-
ageable level (typically 6-12). It is worth noting that for any particular in-
coming arc to a node, the collection of distinctly coded outgoing arcs can be
precomputed.

Second, branches of the tree can be pruned while the tree is being
searched. For each fence angle «, a list is kept of all node values computed
after traversing an arc labeled «. If a node value is computed which is a
superset of a previous value on the list, at a greater depth, the branch may be
pruned. As an example, consider the depth four node labeled *‘1, 2, 4" in
Figure 5-3. It follows an arc for a fence angle of —20 degrees. A previously
visited node of depth three labeled *‘1, 2*" also follows a —20-degree arc. ‘1,
2, 4" is a superset of ‘1, 2.”” If a solution exists in » steps from ‘1, 2, 4,”
the same solution must also exist from ‘1, 2.”> The total depth of the solu-
tion will be less starting from ‘1, 2,” so it is pointless to follow the “‘1, 2, 4”
branch further.

5.4. EXAMPLE: AUTOMATED DESIGN OF A PARTS-FEEDER

Figure 1-9 shows a top view of a system of fences suspended across a
conveyor belt. The configuration map for the workpiece shown with the first
(—60 degree) fence was given in Figure 1-8. The configuration map for the
first two fences, considered as a unit, was given in Figure 5-2. The configu-
ration map for the entire system of six fences is shown in Figure 5-4f.
Figures 5-4a—e are the partial products as labeled.

The configuration map for the system (Figure 5-4f) has but one final-
orientation band. Therefore the system of fences (Figure 1-9) is a parts-
feeder: workpieces in any initial orientation emerge from their interaction
with the system of fences in but one range of final orientations. To reduce
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Number of fences required
3

Figure 5-5 Number of fences required
in a parts-feeder for workpieces of
various shapes. For each workpiece
shape shown, the smallest number of
fences for which a guaranteed parts-
feeder design was found is indicated.
For one shape, no parts-feeder design
was found in a search to a depth of 20
fences.

Do b AoV D #

the range of final orientations to a single final orientation, the workpieces can
be ‘“‘used”’ (e.g., picked up by a robot) before they leave the final fence.

Some workpieces have two (or more) indistinguishable orientations. A
rectangle, for instance, has two. For such workpieces the configuration map
of a parts-feeder has two (or more) final-orientation bands. A goal node of
the search tree would be labeled with two (or more) band indices j.

5.4.1. Some Solutions

Figure 5-5 shows several workpieces and the lowest number of fences
for which a parts-feeder was found. In one case, no feeder design was found
in a search to a depth of 20. Planning a feeder requires only a few seconds of
computation.
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In this chapter several experiments are described that test tl}e adherence of
real physical systems to the analytic bounds derived in earlier chapters.

6.1. MOTIVATION

The analytic work in previous sections made several assumptiqns about the
environment in which sliding operations take place. The most important of

these are

® The sliding motions are slow (quasi-static), so that frictional forces
dominate inertial forces.

® The frictional force between the workpiece and the surface it slidgs
on obeys Coulomb’s law. The coefficient of friction must be velocity

independent and uniform over space.

Our objective in this chapter is to demonstrate some systems in which
these assumptions are valid and to show that the analytic bounds found are
indeed obeyed. Some systems studied experimentally violate the bounds,
and it is useful to speculate why. Finally, it is interesting to see whether the
bounds derived are much broader than the range of behaviors of real sys-

tems.
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In considering practical applications it is necessary to know how well
the analytic bounds are obeyed. If, for instance, the real behavior of Sys-
tems always falls well inside the bounds, then plans based on the bounds will
result in safe, guaranteed behavior of real workpieces. On the other hand, if
real systems approach and even sometimes exceed the bounds, plans should
not be made which depend too critically on the bounds.

6.2. APPARATUS

All experiments were performed by a PUMA 250 robot. The robot’s gripper
was removed and replaced by a piece of 1-inch extruded aluminum “‘1.”’ (&
inch thick), which was used as a fence in the experiments. The fence was
glued to a 3-inch-thick aluminum disk which was bolted to the robot wrist.

The robot’s working surface was covered by a sheet of .020-inch stain-
less steel. On top of this other sliding surfaces could be used. The sliding
surfaces used were (1) stainless steel, (2) 180 grade emery cloth, and (3) %-
inch neoprene friction surface belting (rubberized fabric), which is a typical
conveyor belt material.

At 106 cm above the sliding surface a CCD camera with a 75mm lens
pointed straight down. Its field of view was approximately 11.5 cm by 15
cm. The work space was illuminated by oblique lighting from the fluorescent
ceiling lights, as well as by oblique incandescent light. Little light came from
angles higher than 45 degrees so that specular reflections from the steel
surface into the camera could be minimized. For the emery cloth and rub-
berized fabric surfaces, which are dark, reflections were not a problem.

The output of the CCD camera was analyzed by a Machine Intelligence
Corporation VS-100 vision system. The VS-100 divides its 256-by-256 pixel
view into light and dark regions at an adjustable threshold level. It then
identifies the largest light-colored blob and computes its center of mass and
orientation.

The sliding workpieces were brass disks of radius 1.25 inches and brass
squares of side 2 inches (radius 1.414 inches). All workpieces were 1 inch
thick. The results of previous chapters require that the height of the point of
contact above the tabletop be minimal, so as not to shift the center of friction
away from the CM. The motion of the fence was arranged so that the fence
edge touched the sliding workpiece no more than ¢ inch from the tabletop.
The upper surface of each workpiece was painted black, and a 1-inch by 2-
inch white paper ellipse was glued to it. An ellipse was used so that the
vision system could measure the orientation of the disk, as well as its cen-
ter. An ellipse was preferred over a rectangle to minimize any possible
aliasing problems,within the vision system.



116 Experiments Chap. 6

It is necessary to inform the vision system of the size ratio of x coordi-
nate pixels to y coordinate pixels, which may be camera dependent. This
was done by causing the system to analyze a white disk of 1.8-inch diameter
on the sliding surface. The disk was placed in 10 locations, and the results
averaged. The vision system x and y scales were then adjusted appropri-
ately. The vision system was calibrated in inches, to maintain consistency
with the machined workpieces which have fractional inch dimensions.

By rigidly attaching a workpiece to the robot, and repeatedly moving
the robot and measuring the ellipse with the vision system, a combined
measure of robot/vision system accuracy could be obtained. Angular mea-
surements had a standard deviation of .09 degrees (1.6 mrad). Linear mea-
surements had a standard deviation of .005 inches (.13 mm).

Both the vision system and the robot have serial lines through which a
user can give instructions and receive results. Both of these lines were
attached to a computer so that experiments could be performed and data
recorded automatically.

6.3. STICKING LOCUS

In this experiment the front edge of the fence and the perimeter of a brass
disk were coated with strips of 320 grade emery cloth to increase the coeffi-
cient of friction w, to about .50 (see Section 6.4). The fence angle was set at
a = 70 degrees (20 degrees from dead-on) (see Figure 6-1). In principle at
this angle and coefficient of friction, the disk should not slip relative to the
fence, but should always roll. (Rolling is the same as sticking.) The COR
should not fall below the tip line, which intersects the sticking line at y =
—5.51a, where a is the disk radius of 1.25 inches (Figure 6.1).

The speed of the fence could be varied, as could the sliding surface
material. For each set of conditions, several hundred short pushes of about
I-cm length were performed, and the CORs recorded.

In Figure 6-2 the sliding surface is a sheet of 180 grade emery cloth.
The fence was moved at 2 cm/sec. A dot shows the location of each COR
observed. The vertical line is the sticking line, while the diagonal line is the
tip line. If no slipping occurs, all the dots will fall on the sticking line. But
even if some slipping does occur, all the dots should fall above the tip line.
In this case very little slipping is observed, and all the CORs do fall above
the tip line, in agreement with the analytic bounds. A histogram of the y
component of the CORs is shown horizontally.

In Figure 6-3 the speed of the fence is increased to 5 cm/sec. Since this
speed is still small compared to characteristic speeds for quasi-static sliding
(Section 6.8), we expect (and observe) no dramatic change in the distribution
of CORs.
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Figure 6-1 Experiment for studying the sticking locus. In this experiment the
fence angle @ = 70 degrees. For the coefficients of friction u, used, only sticking
should occur. (For a disk, sticking is equivalent to rolling.) So all observed CORs
should fall along the sticking line, above the tip line.

Rubberized fabric is a particularly interesting sliding surface, because
it is often used as a conveyor belt material. Results of 250 pushes on this
material (at 2 cm/sec) are shown in Figure 6-4. Five CORs fall outside the
tip line.

On a steel surface very poor agreement with calculated bounds is ob-
served. In Figure 6-5 the disk is sliding on a clean steel surface, and in
Figure 6-6 on a steel surface lubricated with silicone spray (Krylon 1325). In
both cases it was subjectively easy to detect non-Coulomb frictional forces
when sliding the disk by hand. Strangely, often the disk would resist rotat-
ing much more than it resisted translating. At higher speeds (> 20 cm/sec)
the disk would sometimes trap air beneath it, which greatly reduced fric-

&
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Figure 6-2 CORs for a brass disk sliding on emery cloth, while sticking to the
fence. With the fence velocity chosen to be 2 cm/sec, the CORs observed in
numerous repetitions of the experiment are indicated as dots. All fall on the
sticking line above the tip line, as predicted. The disk was brass, sliding on emery
cloth.

tion. The trapped air would sometimes abruptly disappear. In cases where
either the sliding surface was more rough (as with emery cloth or rubberized
fabric) or where the bottom surface of the workpiece was not flat, fewer such
problems could be expected.

6.4. COEFFICIENTS OF FRICTION

The coefficient of dynamic friction between a brass disk and several sliding
surfaces was determined by tipping the surface until the disk, once nudged
into motion, could continue to slide down the surface. The coefficient of
friction u; = tan"!(6), where 6 is the angle at which sliding first occurs.
Uncertainty in identifying the point at which sliding occurs creates an error
of .02 in u,.

Sec. 6.4 Coefficients of Friction 119

My Materials

.48 Brass on 600 grade emery cloth

.37 Brass on medium grade sandpaper

47 Brass on 320 grade emery cloth

.49 Brass on 180 grade emery cloth

54 320 grade emery cloth on 320 grade emery cloth
21 Brass on stainless steel

45 Brass on rubberized fabric

For some experiments it is necessary to know the coefficient of friction
between the aluminum fence and the brass edge of the workpiece u.. This
was found by tipping the fence at increasing angles while pushing a brass
square. When the fence angle exceeds tan~'(u.), the square should begin to
slip down the fence as it is pushed along the sliding surface.

In Figures 6-7 and 6-8 the amount of slip down the fence is plotted as a
function of fence angle, for pushing speeds of 2 cm/sec and 10 cm/sec,
respectively. The sliding surface was 180 grade emery cloth in both cases.
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Figure 6-3 Same as Figure 6-2, but speed increased to 5 cm/sec.
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Figure 6-4 CORSs for a disk sliding on rubberized fabric.

The fence angle at which slipping begins may be identified as roughly 14.5 =
2 degrees, corresponding to u, = .25 * .05.

6.5. INTERACTION OF A WORKPIECE WITH THE ENDPOINT
OF A FENCE

This experiment measured the final orientation of a brass square after it had
come into alignment with a moving fence, slid to the end of the fence, and
turned off the end. As illustrated in Figure 6-9, the calculated final orienta-
tions may vary from somewhat more than the fence angle up to 90 degrees.

At each fence angle from 25 to 65 degrees (at 5-degree intervals), the
robot performed 50 pushing operations. Sliding surfaces were rubberized
fabric (Figure 6-10), 180 grade emery cloth (Figure 6-11), and steel (Figure 6-
12). Fence speed was 2 cm/sec. In the figures, the calculated bounds on the
final angle are shown as solid curves. These bounds were computed for Mo =
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.25 as measured. A histogram of the number of times a given final angle was
observed is plotted horizontally. In all cases the final angles fall well within
the calculated bounds.

Some bimodal behavior can be observed in many of the histograms.
This probably results from the fact that the square was rotated by 90 degrees
after each operation. An oscillation of period 2 can be observed in the final
orientations when listed sequentially. (The sequence information is lost in
the histograms.) Presumably there is some difference in the surface charac-
teristics of the brass square’s orthogonal sides.

One might ask why the final orientations of this endpoint operation
obey calculated bounds even on sliding surfaces (such as steel) which gave

INCHES

STICKING
LINE

Jigure 6-5 CORs for a brass disk sliding on stainless steel.
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INCHES Figure 6-7 Amount of slipping along the fence for various fence angles, at 2 cm/
sec. To find the coefficient of contact friction p. between the aluminum fence and
the edge of a brass workpiece, the amount of slip is plotted here against the fence
angle (90 — «). The best estimate of . is the tangent of the angle at the intersec-
tion of the two linear fits.
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Figure 6-6 CORSs for a brass disk sliding on lubricated stainless steel.
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Figure 6-8 Amount of slipping along the fence for various fence angles, at 10 cm/
sec.
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MOTION OF FENCE

MOTION OF FENCE

FENCE ANGLE

LATER ...

FINAL ORIENTATION

Figure 6-9 Experiment for studying interaction of brass square with endpoint of
fence. To test the predictions of gross motion of a workpiece as it interacts with a
fence, this experiment was performed repeatedly. The fence translates horizon-
tally, and its front edge is angled at the angle 90 — o shown. The final orientation
of a square workpiece which has slid along the fence and off the end is measured
and compared with calculations.

M0~ BRASS SQUARE ON RUBBERIZED FABRIC (2 cm/sec)
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Figure 6-10 Final orientations of the square versus fence angle, on rubberized
fabric. At the fence angles 90 — o« shown (5-degree increments), the final orienta-
tion of the pushed square is plotted as a histogram horizontally. Calculated
bounds are the upper straight line and the lower curve. All the final orientations at
all fence angles lie well within the calculated bounds.
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Figure 6-11+ Final orientations of the square versus fence angle, on emery cloth.
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BRASS SQUARE ON STEEL (2 cm/sec)
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Figure 6-12 Final orientations of the square versus fence angle, on steel.

poor agreement in the sticking locus experiment (Section 6.3). Probably this
is because the much greater sliding distance in this experiment gave any
momentary violation of the bounds a chance to be averaged out.

6.6. CW VERSUS CCW ROTATION

The parts-feeders described in Section 5.4 depend on final angles after an
endpoint interaction to fall within calculated bounds as tested, and also
require workpieces to turn clockwise or counterclockwise as determined by
Mason’s rules [44] (Section 1.6.2).

In this experiment the corner of a brass square is struck by a fence at an
angle near the critical angle dividing CW rotation from CCW rotation.
Figure 6-13 shows the geometry of the experiment. The initial angle 3, of
the CM of the square with respect to the line of motion is varied in the
vicinity of 0 degrees. After pushing about 5 cm, the final angle 8, of the
square is measured to see if it has turned CW or CCW. Results are plotted in
Figure 6-14. At each initial angle of motion 8, (at 1-degree intervals) five
trials were performed. The sliding surface was rubberized fabric. As can be
seen from the figure, correct rotation can be assured only if the initial angle
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Figure 6-13 Experiment for studying CW versus CCW rotation. In this experi-
ment a fence with vertical front edge (« = 90) translates a few degrees from
horizontal. This is equivalent to varying a a few degrees from 90. The pushed
workpiece was initially oriented so that if the fence translated exactly horizon-
tally, the workpiece should rotate neither CW nor CCW. The amount the work-
piece actually did rotate after being pushed about 5 cm is measured and compared
to the angle of motion of the fence.

of motion is at least 2 degrees from the critical angle (in this case 8, = 0)
dividing CW from CCW.

In addition to the 2-degree uncertainty, there is a systematic shift of
about 1 degree in initial angle of motion 8,. At most only about half of this
can be attributed to systematic misalignment of the square. A more extreme
systematic shift is seen in Figure 6-15, in which one trial was performed at
each angle on emery cloth. The emery cloth had been used in previous
experiments, and brass dust was heavy on some areas of it, changing its
coefficient of friction. By chance the present experiment was performed on
a part of the emery cloth in which the brass dust was highly nonuniform. A
5-degree systematic shift in initial angle of motion resulted. Apparently non-
uniform u, can be a significant problem.

6.7. COR LOCUS

In Section 6.3, where the sticking locus was found, we arranged for u, to be
sufficiently high that sticking always occurred. Thus the two-dimensional
COR locus was compressed to a one-dimensional sticking locus. The other
extreme is to make u,. zero, so that the only force the fence can exert on the
workpiece is one normal to the fence surface. In this case a two-dimensional
COR locus results.
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Figure 6-14 Final angle B, versus initial angle 8, on rubberized fabric. According
to Mason’s rules for direction of rotation, the workpiece should switch from CW
rotation to CCW rotation at zero degrees on this graph, that is, the graph should
be symmetric about the y axis. In fact, correct rotation direction is only observed
reliably when the angle of motion differs by 2 degrees or more from the nominal
direction separating CW from CCW rotation.

It is difficult to obtain a fence with u. = 0. But the same effect can be
obtained by pulling on the corner of the workpiece with a string, as shown in
Figure 6-16. A string can exert no tangential forces, but only a force along
its length. In Figure 6-17 330 CORs obtained in this way are plotted, along
with the calculated bounds. The equivalent fence angle a = 77.4 degrees.
These CORs were obtained on a 180 grade emery cloth surface, with pulls of
length approximately 1 cm and speed 2 cm/sec.

As in the sticking locus experiment on the same sliding surface, the
observed CORs are considerably smaller in distribution than the bounds
would allow.

Sec. 6.8 Characteristic Speed for Quasi-static Motion 129

6.8. CHARACTERISTIC SPEED FOR QUASI-STATIC MOTION

We have assumed that the relative velocities of workpieces and their push-
ers are sufficiently small that frictional forces dominate inertial forces. Here
we find characteristic velocities for which this *‘quasi-static’” assumption is
valid. Another approach to this problem is given in [43]. The opposite ex-
treme, where inertial forces dominate frictional ones, has been treated in [67]
(see Section 7.4).

To identify a characteristic velocity, we must specify the permissible
error which neglect of inertial forces causes. For a given permissible error,
an upper bound on velocity can be found such that at all lower velocities the
permissible error is not exceeded. Permissible angular error will be denoted

25—
20 —

15—

SQUARE ROTATION (degrees)

| | | Y J |
—15 -10 -5 0 5 10 15
ANGLE OF MOTION
(degrees from dead-on)

Figure 6-15 Final angle B, versus initial angle B, on used emery cloth. On used
emery cloth, filled with brass filings from previous experiments, the coefficient of
sliding friction w, is nonuniform, violating one of our assumptions. We see that
the angle of motion dividing CW rotation from CCW rotation differs by about 5
degrees from its theoretical value of zero.

w
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Figure 6-16 Experiment equivalent to pushing with a u, = 0 fence. In this experi-
ment a workpiece is pulled by a string at a known angle, which is equivalent to
pushing it with a frictionless fence perpendicular to the fence. In either case the
applied force direction is known (it lies along the string), and a two-dimensional
distribution of CORs should result.

0, while permissible error in displacement will be denoted X. The character-
istic velocity depends on the details of the collision considered. Since we
desire only an approximate upper bound for velocities, we will consider only
a couple of typical systems.

6.8.1. Angular Error

Consider the ‘‘endpoint’’ problem (Section 5.1) in which a square turns
as it leaves the endpoint of a fence with which it was aligned. Bounds were
found on its rotation in the quasi-static limit. At nonzero velocities, how
much can it rotate due to its angular momentum?

If the relative linear velocity of the fence and workpiece is v, the
angular velocity of the workpiece after interaction is w = v/a, where a is the
radius of the workpiece (or of the disk which circumscribes it). The rota-
tional energy in the workpiece is then

lw? 6.1)

where
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is the moment of inertia of the workpiece, in this case taken to be a disk of
uniform density.
The disk will rotate an angle ¢ until the rotational energy is spent. The
energy lost to friction during this rotation is found to be
2
Efric = 3' I'LseaMg (62)

assuming a uniform pressure distribution. g is gravitational acceleration.
Equating the energies we find

yl= -§—,usag6 (6.3)

as a characteristic velocity. In the case of a workpiece with ¢ = 3.5 cm and
s = .25, errors of § = 5 degrees occur when » = 14 cm/sec.
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[ 1 | | [/—

-2.50 —-2.00 —-1.50 -1.00

—2.00

—2.50 —
FILE ALPHA 77.4 DEGREES

Figure 6-17 CORs observed for p, = 0 on emery cloth. The CORs observed are
plotted as dots. They all fall well within the calculated boundary.
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6.8.2. Translational Error

Here we find the kinetic energy and energy lost to friction in distance X
to be

Eyans = %MVZ (6.4)
Efric = Mg"LsX (65)

respectively. Equating the energies we find
v? = 2guX (6.6)

as a characteristic velocity. If permissible error X = .5 cm, we find v = 16
cm/sec. ‘

6.8.3. A Quasi-static Parameter

If we set the rotational error @ or the translational error X to values
typical of the whole rotation or translation occurring in an interaction, we
can find a characteristic velocity at which kinetic effects and quasi-static
effects have similar magnitude. We use 8 = 1 (radian) and X = «. From
either equation (6.3) or (6.6) we obtain roughly

v? = 2uag (6.7)

as a characteristic velocity. With w, = .25 and a = 3.5 cm, we have v = 40
cm/sec.

~

Suggestions
for Further Work

o /

7.1. USE IN CONJUNCTION WITH SENSORS

We have not treated the possibility of integrating the planning methods
described here with information from sensors. In Section 1.1.3 we men-
tioned three distinct forms such integration could take:

1. Sensorless manipulation can be used below the resolution limit of
sensors.

2. The mechanics of sliding and appropriate planning methods can be
used to optimize progress toward a goal state from a sensed present
state, thus making less frequent sensory measurements necessary.

3. Sensory information can be used to narrow the range of initial states
a sensorless strategy must contend with.

As an example of the third form, in designing a conveyor belt-based
parts-feeder, we might be unable to find a sequence of fences which will align
a particular workpiece. A sensor with a simple yes/no output might detect a
feature of the workpieces, and control a movable fence, making a parts-
feeder possible. (In fact, a system having such a sensor and movable fence
has been constructed by Pherson, Boothroyd, and Dewhurst [56], though no
prediction of sliding motion was used.) In terms of the configuration maps
used to plan the feeder, the presence of the sensor effectively removes some
possible initial orientations. Consequently the range of possible orientations

133
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at each node of the search tree is reduced, and some of the nodes may
become goal states (having only one possible orientation or a narrow range).
Simple sensory information can also be integrated into an otherwise
sensorless robot strategy. The integrated strategy may replace use of more
complex sensors. For instance, a grasping strategy for a robot may involve
alignment of a face of a workpiece with a gripper surface. To avoid causing
misalignment of the workpiece tangential to the gripper face, we might wish
the workpiece not to slip relative to the gripper while it is being aligned. A
slip sensor on the gripper face could control robot motion to prevent slip.

7.2. REALISTIC MODELS OF FRICTION

An important assumption used in deriving the COR loci is that of a coeffi-
cient of sliding friction w, which is uniform over the sliding surface and
velocity independent: simple Coulomb friction. Friction is rarely so well
behaved.

Velocity dependence of u, will have only moderate consequences for
the COR loci. The sense of rotation (CW or CCW) is not affected by veloc-
ity dependence, because pure translation of the workpiece is the marginal
case dividing the senses of rotation. In pure translation all parts of the
workpiece move with the same velocity, so velocity dependence of w, is
unseen by the workpiece. If u, decreases with increasing velocity (the usual
case), we can predict that CORs will lie closer to center of mass (i.e.,
rotation rates will be faster) than they would with constant u,. The side of
the workpiece toward which it turns has a lower velocity, therefore higher
M, and therefore more drag, causing the workpiece to turn still faster toward
that side.

Spatial nonuniformity of u, is more serious. In Section 1.6.2 a nonuni-
formly worn surface caused a S-degree offset in the marginal pushing direc-
tion dividing CW from CCW rotation. It would be hard to control such a
major effect analytically. Instead, sliding surfaces must be kept uniform.

When it is the surface of the sliding workpiece, rather than the surface
of the table, which is nonuniform, we may hope to find simple analytic
adjustments to the COR locus to compensate. The distinction between cen-
ter of friction (COF) and center of mass becomes important [39] [44]. If the
composition of the workpiece surface is understood and some information
about the pressure distribution is available, a COF distinct from the CM can
be calculated for the workpiece. Then the sense of rotation (at least) will be
predictable. It is not known what effect a COF distinct from the CM will
have on the COR locus.
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7.3. PUSHING ABOVE THE PLANE

We assume that the point of contact between pusher and pushed workpiece
is not far (relative to the radius of the workpiece) above the sliding surface.
In the extreme case of pushing far above the plane, the workpiece will tip
over instead of sliding. For small heights, the effect creates a center of
friction (COF) distinct from the center of mass (CM). The effect on the COR
locus is unknown.

7.4. NON-QUASI-STATIC VELOCITIES

The results of Chapters 3 and 4 depend on the quasi-static assumption,
discussed in Section 2.1.1. We assume that dissipative effects due to friction
between a workpiece and the surface it slides on overwhelm inertial effects.
In the real world both effects are present, and become of comparable impor-
tance at characteristic speeds calculated in Section 6.8 and in [43]. The
results of Chapters 3 and 4 may be considered to be the » — 0 limit.

In the opposite extreme we may neglect sliding friction altogether, and
only consider inertial effects. The motion is then independent of speed, so
we may consider this case to be the v — oo limit. The details of the contact
between the sliding workpiece and the surface it slides on (the pressure
distribution, Section 3.1.5) no longer have any effect on the motion. For
given initial conditions then, a single resulting motion can be calculated
rather than the locus of possible motion calculated for slow motions.

Drawing on the work of Routh [61], Wang [67] has calculated the
motion of a pushed workpiece in the v — o limit (the “‘impact’’ limit). The
motion is a function of the coefficient of friction between the pusher and
workpiece u. as in the quasi-static case and of the geometry of pushing, but
it also depends on the elasticity of the materials in contact. Elasticity ranges
from the plastic limit ¢ = 0 (e.g., modeling clay) to the elastic limit ¢ = 1
(e.g., spring steel).

The instantaneous motion on impact can be described by a center of
rotation (COR) somewhere in the plane. Wang finds [68] that when ¢ = 0 or
e = 0, the COR falls along the axis of symmetry of the quasi-static COR
locus derived in Chapter 3 and at a distance rj,pq from the CM given by

p?

rimpact =3

= (7.1)
o C

where p is the radius of gyration of the workpiece. Equation (7.1) is the
same as equation (3.37) (which gives the tip of the COR locus in the quasi-
static case) when the workpiece pushed is a circular rim, for which p = a.

£



136 Suggestions for Further Work Chap. 7

For all other workpieces p < a, so we may conclude that the COR for impact
lies within the COR locus for quasi-static pushing, if e = 0 or u. = 0.

If e > 0 and u. > 0, Wang finds that the sense of rotation (CW or CCW)
does not necessarily agree with Mason’s results for quasi-static motion
(summarized in Section 1.6.2). This means that in realistic cases where e > 0,
a given sliding operation which results in CW rotation of the pushed work-
piece in the quasi-static limit may change over to CCW rotation as velocity is
increased.

For fixed elasticity e and coefficients of friction u. and u,, as velocity is
increased the locus of CORs describing the motion must change continu-
ously from the quasi-static locus at » = 0 to the single point (sometimes
outside the quasi-static locus) which is Wang’s result at v = . If the COR
loci for intermediate velocities could be found or bounded, motion-planning
algorithms based on sliding friction (e.g., Chapter 5 and references [12] and
[40]) could be extended to non-quasi-static velocities.

7.5. BOUNDS ON THE COR LOCUS

The COR loci found in Chapter 3 are exact if the sliding workpiece is a disk.
Any COR in the locus could occur for some combination, of bumps on the
bottom of a disk, that is, for some pressure distribution. The COR locus for
a disk necessarily encloses the COR locus for any workpiece which could be
enclosed in that disk, with the same center of mass. The COR locus for the
inscribed workpiece may be considerably smaller than that for the disk,
especially when the area of the inscribed workpiece is considerably less than
that of the disk. The COR locus for a square, found numerically, and the
outline of the COR locus for a disk circumscribing the square are shown in
Figure 3-6.

For comparison, the line of CORs for a uniform pressure distribution
on a disk is shown in Figure 7-1. In the uniform case, for each «a (related to
the force angle) there is of course only one COR, as the pressure distribution
is completely specified. The COR for uniform pressure distribution was
found by numerical integration.

Shown in the figure is a particular o for illustration, and the COR locus
outline for all pressure distributions for that «;. The tip line for all « is
shown. The point of intersection of the &; vector through the CM and the tip
line is indicated with a dot, which is the tip of the COR locus for «;. The tip
of the COR locus for any « lies at the intersection of the @ vector through the
CM and the tip line.

Similarly, the COR for uniform pressure for «; lies at the intersection
of the a&; vector through the CM and the uniform pressure line, as indicated
by a dot. The COR for uniform pressure for any « lies at the intersection of
the & vector through the CM and the line of uniform pressure.
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m
o
5

LINE OF MOTION /w

Figure 7-1 Tip line and line of CORs for uniform pressure distribution.

Using the COR loci of disks in planning manipulation strategies for
other shapes results in unnecessarily conservative strategies. It is even pos-
sible that no strategy might be found when one exists. This problem could
be alleviated if exact COR loci for arbitrarily shaped workpieces could be
found. In finding the COR locus for a disk, we discovered two classes of
““dipods”” (pressure distributions consisting of only two points of support,
Section 3.3.5) which were responsible for the boundary of the COR locus.
For workpieces other than disks, the boundary is not described by dipods,
and finding the COR locus becomes considerably harder.

7.6. USING CONFIGURATION MAPS

In Chapter 5 configuration maps are introduced, describing elementary op-
erations on a workpiece to be manipulated. The elementary operations for
which configuration maps are actually computed are interactions of the
workpiece with a fence. These maps turn out to have a simple form, being
relations of bounded sets of orientations. We can take advantage of that
form by rectangularizing the map and encoding it symbolically (Section
5.2.1). The computation of a product of several maps (which is the map for a
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sequence of elementary operations) then becomes trivial, and searching the
space of operation sequences is greatly facilitated.

For general operations configuration maps will not be made up of rec-
tangles, so rectangularizing the configuration map will result in overly con-
servative planning. The harm may be minimized by a good covering of the
configuration maps by simple shapes. This is a problem closely related to
the representation of unoccupied areas of C-space [11] [9] [10].

7.7. POSSIBILITY AND PROBABILITY IN CONFIGURATION MAPS

COR loci and configuration maps are based on possibility, not probability.
The COR locus gives the set of all possible instantaneous motions of a
pushed workpiece, but no indication of the relative probability of each. To
calculate the relative probability of CORs within the COR locus would re-
quire a model of the pressure distribution, and therefore of the surfaces in

LINE OF MOTION OF PUSHER /

B

INCREASING PROBABILITY

STICKING LINE

Figure 7-2  Histogram of CORs along sticking line, for random tripods of support.
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contact, which is exactly what we set out to avoid since that information is
generally unavailable.

Even if we model the pressure distributions as randomly selected tri-
pods (pressure distributions having but three nonzero points, discussed in
Section 3.3.3), finding the COR for a given tripod is surprisingly difficult.
Some of the causes for the difficulty are discussed in [44]. To generate the
locus shown in Figure 3-5, we were compelled to generate each tripod from a
previous one by moving one ‘‘foot’’ a minute distance and starting the mini-
mization from the COR found for the previous tripod. Otherwise the mini-
mization technique used did not converge, and even so it did not always
converge. (A slower but more reliable method was used in [44].) While
adequate for finding the COR locus, the biased set of tripods so selected does
not randomly sample the set of all tripods.

However, if the coefficient of friction between workpiece and pusher
u. is taken to be large, the COR locus collapses onto the sticking line (Chap-
ter 4). Now the search for a COR for a given tripod can be restricted to a
one-dimensional range rather than the two-dimensional range for u, = 0 in
which minimization was difficult. A histogram of the relative probabilities of
various CORs along the sticking line, for randomly selected tripods, is
shown in Figure 7-2.

Configuration maps (Section 5.2) were taken to be mappings from two
copies of C-space (C-space X C-space) into 0 (not possible) or 1 (possible).
They could map into the interval [0, 1] instead, representing probability, if,
as just discussed, probability information is available.
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Angle, notation, 46
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Friction cone, 10, 13, 74-75
construction of, 75

Geometry, and uncertainty, 3
Grasp planning, 21-22
assembly operations, 22
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uncertainty reduction in grasping,
21-22
Grasps, 6-8
grasp stability/grasp selection, 6-8
maximum torque, 7-8
physical properties of grasps, 6
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strength/failure of, quasi-static
approximation and, 27
uncertainty reduction, 6
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Hamiltonian mechanics, 26-27
Herding strategy, 21, 23, 73
Hinge-grasp strategy, 6

Instantaneous power, 25, 29
definition of, 13
Instantaneous velocity, 30

Lagrange multipliers, 29, 32-33

Lagrangian mechanics, 26-27

Limiting radius, for localization, 100—
102

Liouville’s theorem, 9

Manipulation planning, 12-13, 22, 23
based on geometric considerations,
13
and grasp planning, 12—13
strategies, 18-19, 23
Manipulation strategies, 105-13
application to interaction with a
fence, 105-7
configuration maps, 107-9
symbolic encoding, 109
parts-feeder, automated design of,
112-13
planning operations sequences,
109-12
pruning the tree, 112
search tree, 109-12
Mason’s rules for rotation, 10-11
Maximum torque, grasps, 7-8
Mechanics, 4-5
compliant robot mechanics, 4-5
grasping, 6-8
grasp stability/grasp selection, 6—
8
uncertainty reduction, 6
sliding friction, §
Minimum power principle, 13-14, 24—
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constraints, 27-28, 38
definition of, 28-29
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straints, 32-36
one-particle systems without con-
straints, 30-32
and quasi-static mechanical sys-
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relation to other energetic princi-
ples, 26-27

Motivation, experiments, 11415
Moving constraints, definition of, 25
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88-95
disk rotation during encounter, 93—
95
maximum rotation, 93
minimum rotation, 94-95
length of encounter, 89-90
condition for sketch type i, 92-93
greatest length of encounter, 90—
92
least length of encounter, 93
Multiple-step manipulation strategies,
configuration maps and, 22

Newton’s law, 24-25, 27, 29
Non-quasi-static velocities, 135-36
n-particle systems with constraints,
27, 29, 36-38
Newtonian solution by Lagrange
multipliers, 36-38

One-particle systems with constraints,
32-36
minimum power principle:
forces for which principle is cor-
rect, 35-36
solution with constrained direc-
tions, 34-35
Newtonian solution by Lagrange
multipliers, 32-34
One-particle systems without con-
straints, 30-32
equating the solutions, 30-31
minimum power principle, 30
forces for which principle is cor-
rect, 31-32
Newton’s law, 30
Operations, 3
task of, §
Operation spaces, 8-9, 12
Opposite-sided-split elementary con-
figuration, 79
Optimal spiral, performance of, 103

Parts-feeders, 8, 23
automated design example, 112—13
design, top view, 20
uncertainty reduction and, 8

Peg-in-hole problem, 4-5
Phase space, 9
Physics:
and uncertainty, 2-3
uncertainty and, 2-3
Planar sliding, 22
Plan checker, 8
Planning, 1-4
geometry and uncertainty, 3
grasp planning, 21-22
manipulation planning, 12-13, 18—
19, 22,23
manipulation strategies, 10513
operation spaces and, 8-9
physics and uncertainty, 2-3
sensing, 3-4
state spaces and, 8-9
Point pushing a disk, COR sketch, 91
Pressure distribution, 10, 12, 15
and COR locus, 14
Principle of virtual work, 26
Prototypical sliding problem, 10
Pruning, of search tree, 19, 112
PUMA 250 robot, experiments, 115
Pure slipping elementary configura-
tion, 79
Pushed sliding piece, relevance to
grasping actions, 21-22
Push grasp, 12

Quasi-static approximation, 44
Quasi-static mechanical systems, 24
energetic principle for, 24
and the minimum power principle,
25-26
in robotics, 27
Quasi-static motion:
characteristic speed, 129-32
angular error, 130-31
quasi-static parameter, 132
translational error, 132
Quotient locus, 51, 54-55
numerical exploration of, 54-55
Quotient moment, 50

Robot:
controllers, compliant moves, 5
PUMA 250 robot, 115
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Robot (cont.)
rigidity of, quasi-static approxima-
tion and, 27

Search tree, 19, 109-12
pruning of, 19, 112
Sensing, and uncertainty, 3—4
Single three-point pressure distribu-
tion, 12
Sliding:
center of rotation (COR), 11-12
Mason’s rules for rotation, 10-11
physical effect, 9-10
physics of, 20-21
planar sliding, 22
Sliding friction, 5, 13, 44
Sliding workpiece, experiments, 115
Sliding workpiece (COR locus), 14—
16, 41-72
analytic form of COR locus, 58-61
analytic solution, 50-52
application, 69-72
ICOR| < a, 55-56, 6164
|COR| > a, 56-58
energy lost to friction with the
table, 48-49
iterative numerical solution, 49-50
minimum power principle, 46—47
motion of pusher/rotation of work-
piece, relation between, 47-48
quotient locus:
extrema of, 52-54
numerical exploration of, 54-55
range of applicability, 41-46
bounding the workpiece by a
disk, 45
center of rotation (COR), 42-43
Coulomb friction, 44
geometric parameters, 45-46
notation, 46
point of contact between work-
piece and pusher, 42
position controlled pusher, 42
pressure distribution between
workpiece and table, 43-44
quasi-static motion, 44
workpiece shape, 41
solution, 47-69
symmetries of COR locus, 68
Slipping, consistency for, 77-78
Slipping-slowest behavior, 8586, 87
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transition from sticking-slowest
behavior to, 86
Slipping zones, 76-77
Spiral localization (disk), 96—-104
analysis, 96-97
critical radius versus collision pa-
rameter, 100
fastest guaranteed spiral, computa-
tion of, 102—4
limiting radius, 100-102
pusher chasing disk around a circu-
lar path, 97-100
Squeeze grasp, 9, 12
Sticking line, 75, 76, 79
construction of, 76
Sticking locus, 77-79
experiments, 116—18
Sticking-slowest behavior, 85, 87-88
transition to slipping-slowest behav-
ior, 86
Sufficiently sensor-intensive environ-
ments, 3—4
Symbolic encoding, configuration
maps, 109

Tip line, 16, 65-68, 104
Tripods, 12, 46, 49

Uncertainty:
compliant robot mechanics, 4-56
and geometry, 3
and physics, 2-3
planning with, 1-4
sensing, 3—4

Uncertainty reduction:
in grasping, 21-22
parts-feeders and, 8

Uniform pressure distribution, on

disk, 136

Unit vector, 52
notation, 46

Up-slipping locus, 77

Up-slipping zone, 75, 79
construction of, 76

Velocity-dependent forces, 24-25
minimum power principle and, 31
Virtual work, principle of, 26

Workpiece alignment, 8
Wrapped elementary configuration,
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