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A B S T R A C T:

Suppose that before an assembly task commences we can specify at will the
manipulator's response to assembly forces, by providing a single compliance (or
damping) matrix to be used for the duration of the operation.  Can we choose the
matrix elements so that the force which characterizes every possible error condition
maps into a motion which reduces it?  If so we are assured that the operation will
evolve toward decreased errors and eventual success.    In this paper we describe a
framework and a method of synthesis of an error-corrective matrix.

1 . 1  B A C K GR O U N D  A N D  M O T I V A T I O N

It is widely recognized that for robots to perform tasks involving the contact of rigid
objects some form of compliance2, either of the robot or of the objects, is required.
Under position-control and in the absence of such compliance, the presence of even
the slightest error in the positions of the objects can produce unbounded contact
forces and therefore failure of the operation.

Depending upon the task being performed and the geometry of the objects in
contact, different forms of compliance are needed -- compliance should be specific to
the task.  Mason [Mason, 1981 #37] formalizes this idea, traces its origins in the
literature, and describes a method of creating a compliance matrix consistent with a
given task.  The term consistent is introduced here in order to contrast it with error-
corrective, below.   By consistent we mean that the compliance of the manipulator is
such that unbounded forces do not develop.  Roughly speaking, this requires that
the manipulator's stiff (position controlled) axes not be perpendicular to rigid
surfaces in the environment.  Recent work on the specification of compliance for
consistency with a task may be found in [De Schutter, 1988 #40] [Lee, 1988 #7].

1  This work was supported by NSF grant DMC-8857854 and Northwestern University.   Author's
electronic mail address is peshkin@eecs.nwu.edu

2  We use the generic meaning of the term "compliance" – the relationship of a manipulator's motion to
the forces imposed on it.  (Compliance has a specific meaning as well, namely the matrix
characterizing spring-like behavior – see section 1.5)   In this paper we are designing an accommodation
matrix, the inverse of a damping matrix.
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The compliance of a manipulator has a profound effect on the evolution of a robotic
assembly operation.  Depending upon its compliance a manipulator's response to
errors may drive the system toward or away from proper mating of the parts.   Even
if a compliance matrix consistent with a task is in use (i.e. unbounded forces do not
develop), the operation will not necessarily evolve toward decreased errors.  We
will call a form of compliance error-corrective if it causes an operation to evolve
toward decreased errors.     Figure 1 shows an example in which a compliance
consistent with a task is distinctly different from one which is both consistent and
error-corrective.
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Figure 1

y

x

Insert figure 1 here.   Caption:    A simple example of a task in which compliance
consistent with the task will indeed prevent unbounded forces from developing, but will
not cause error-reduction and eventual success of the mating operation.

In (a), a block is to be placed into a shallow depression or detent in a rigid surface.
Since the task's rigid axis is the y axis, Mason's work would suggest that we make the
manipulator soft (force controlled) along the y direction and stiff (position controlled)
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along the x axis and the θ (rotational) axis - thus consistent with the mechanical
constraints imposed by the task.

Forces due to contact as shown in (b) are in the +y direction, and there is a clockwise
torque about point q.   The compliance of the manipulator allows some "give" in the y
direction, and so the block comes to rest on the lip of the detent.  If we let the θ axis be
soft also, the outcome is (c), in which the block rests on the lip and bottom of the detent.

(d) shows the evolution if we have arranged the compliance of the manipulator for
error-reduction as well: in particular we include an off-diagonal matrix element which
maps torque into horizontal displacement.  Clockwise torque maps into +x motion, and
counterclockwise into –x motion.   Thus when the corner of the block comes into contact
with the left edge, the torque generated results in a displacement which moves the
block toward proper mating.

A compliance which maps torques into translations in the way described above may
seem counterintuitive (see also section 1.5).   Intuition tells us that sliding toward
proper mating will not occur unless the environment surface is steeply sloped toward the
detent (i.e. has chamfered edges.)   Our intuition, however, corresponds to a very
limited class of compliances.   If we allow ourselves freedom in choosing a compliance
matrix we can obtain the surprising behavior above.  This behavior in no way violates
the "friction cone" construction from classical mechanics.  Classical mechanics says that
imposed forces within the friction cone result in sticking (no motion.)   Here, in contrast,
we do not impose a force and observe the motion which occurs.  Rather we observe a
force, then compute and impose a motion.

Since Mason's work, several distinct approaches to the automated planning of
contact and assembly tasks under force control3 have developed:

In Lozano-Perez, Mason & Taylor (LMT) fine motion planning [Lozano-Perez, 1984
#45; Erdmann, 1984 #49; Buckley, 1987 #50; LaTombe, 1989 #61] the manipulator is
given a priori a particular form of compliance  (usually a generalized damper with a
diagonal damping matrix; see section 1.5).   The goal of LMT planning is to design a
nominal motion plan.   The nominal motion plan is a sequence of robot motions
(usually given as velocities) each one of which is executed until motion ceases; from
there the next motion commences.    It is sometimes possible to design a sequence of
motions which proceeds inevitably despite the initial errors to a final stopping point
at which the operation (perhaps the mating of two parts) is completed.

Error detection and recovery (EDR)  [Donald, 1986 #42; Donald, 1988 #43] shares with
LMT fine motion planning the same paradigm of a given (usually diagonal)
compliance and a synthesized (generally multi-step) nominal motion plan.   The
objective of the nominal motion plan is now broadened so that a plan which
inevitably leads either to task completion, or to termination at a recognizable failure

3  By "force control" we include all forms of control in which the response of the manipulator to forces it
encounters is intentionally controlled.  Among these are free-joints, hybrid control, compliance control,
stiffness control, impedance control, and many generalizations and extensions.
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configuration, is acceptable.  If motion terminates at other than task completion, a
secondary nominal motion plan which commences from that point is invoked.
EDR plans, like LMT plans, are fully formed off-line.

In replanning [Xiao, 1988 #44][Desai, 1988],  both the compliance and the nominal
motion plan are given a priori.  The nominal motion plan, in particular, is just the
one that would be created without any consideration of errors, and so is unlikely to
involve multiple sequential sliding motions.  If motion terminates at other than
task completion, and the resulting configuration is identifiable by force sensors or
other sensors, an on-line replanner is invoked.  The replanner computes the
motion needed to bring the workpiece back into a configuration such that the
nominal motion plan can proceed.

The above works are approaches to the planning of generic assembly tasks, as is this
paper.  One particular assembly task, peg-into-chamfered-hole, has due to its
importance been heavily studied:  Draper Lab's analysis of peg-into-hole led to
development of the RCC wrist (remote-center compliance).  RCC [Whitney, 1982
#38] can be implemented as a physical wrist, instead of a control loop involving
force sensor and computer.   In RCC a simple nominal motion is assumed, in which
errors of peg orientation are ignored.  It is the compliance of the grasped peg, and the
forces which arise due to errors, which cause the peg to self-align with the hole.

Another line of work, which results in what are sometimes described as skeleton
strategies for particular tasks, again uses multi-step motion plans, sometimes
combined with non-diagonal compliances.  Strategies for round pegs were
considered in [Inoue, 1979 #64; Simunovic, 1975 #53].   More recent work considers
strategies for non-round pegs [Strip, 1988 #63; Caine, 1985 #62].

In contrast to off-line planning of a motion plan as in the above examples, or the
off-line design of the manipulator's compliance as in this work, one might also
consider an on-line learning of the forces which characterize errors and the proper
motion response to them [Vaaler, 1987 #65][Hirzinger, 1985 #66].

1 . 2  R E L A T I O N  T O  T H I S  W O R K

Programmed compliance, the subject of this paper, differs from LMT, EDR, and
replanning in that we assume we are given a nominal motion plan, presumably a
simple (one-step) one, which takes no account of possible errors.   We then design
the compliance (here a damping matrix) so that the plan will succeed despite errors.
In LMT, EDR, and replanning it is the compliance which is given and the motion
plan which is to be designed.

Design of the compliance matrix for error-correction is the idea behind the
development of the RCC wrist, and several others have addressed this idea also, (e.g.
[Drake, 1977 #54; Simunovic, 1975 #53])   The present work is, to our knowledge, the
first attempt to describe a method of synthesis of an error-corrective compliance,
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given a description of a task.   We do not claim to solve the problem, but to pose it
and to suggest one approach to it.

We should also note at this point that this paper is limited in scope to quasistatic
assembly, i.e. to assembly speeds low enough that inertial effects of the robot and
workpiece are small compared to frictional effects.  Thus we only create a single,
dynamics-independent real-valued accommodation (inverse-damping) matrix, in
contrast to the work of Hogan on impedance control [Hogan, 1985 #20].

In the opposite (high-speed) regime the inertia matrix becomes the dominant factor
in the evolution of an operation.  There has been recent work [Asada, 1988 #41] on
achieving inertia matrices appropriate for some individual tasks, particularly high-
speed peg-in-hole insertion.

1 . 3   OB JE C T I V E  A N D  S U MMA R Y

The main points of the paper are these:

1. We observe that in many tasks it is possible for any one of several qualitatively
distinct contact configurations between grasped workpiece and environment to
arise, depending on small initial errors.   It is necessary to plan the compliance of a
manipulator so that it is consistent with every one of the contact configurations, as
we do not know in advance which ones may arise.  We seek a compliance matrix
which is to be employed for the entire duration of an assembly task; we do not here
consider changing the compliance of the manipulator during a task.  Our
requirements on the compliance matrix are therefore quite severe: it must be
simultaneously consistent with each of several possible contact configurations.

2. We suggest that it is not enough for the compliance of a manipulator to be
consistent with a contact task, in the sense of the work of Mason and others,  (i.e.
preventing the occurrence of unbounded forces.)  For many tasks, especially
assembly tasks, we need the compliance to be error-corrective as well.  We ask that
the compliance of the manipulator have the effect of converting the forces which
arise from misalignments of the workpiece into corrective motions.  In section 2 we
formalize these two desired properties of the manipulator's compliance.

3.  We develop a set of sufficient conditions for our desired properties, all of a single
mathematical form well suited to synthesis.  We demonstrate an optimization
method which efficiently finds a matrix satisfying the sufficient conditions if one
exists, and if not finds one which comes close.   In the latter case it is possible to
verify whether the original desired properties are in fact satisfied.

4.  We demonstrate the synthesis of error-corrective compliance matrices for three
example assembly tasks.   We find it encouraging that the result for the peg-into-
chamfered-hole task is consistent with the remote-center-compliance (RCC)
solution.
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1 . 4  N O T A T I O N

t scalars are in light type
A matrices are bold capital script
F, V vectors are bold capitals Roman
f unit vectors are bold lower case

Our examples are planar.  In these examples vectors have three components (x, y, θ)
where x is horizontal, y is vertical, and θ is rotation about the z axis (i.e. counter-
clockwise rotation in the plane of the paper.)

By "forces" we mean forces and torques - a six vector in a three-dimensional world,
or a three-vector in a planar world.   Similarly, by "displacements" we mean
displacements and rotations.

1 . 5  T H E  D A MP E R  MO D E L  A N D  T H E  A C C O MMO D A T I O N  MA T R I X

The function which maps the forces applied to a manipulator into the motion
which ensues due to those forces may take many forms.  For instance, the function
may state that displacement of the manipulator from some nominal position Xo
(which could be changing with time) is proportional to the applied force:

X - Xo = C F (1)

This is Hooke's law, representing the behavior of an ideal spring, where C is the
compliance matrix.

An object held by a manipulator may have six degrees of freedom: three
translational and three rotational.  For such an object, equation (1) may be
understood in vector form with X and Xo representing locations in six-dimensional
configuration space, F a six-dimensional vector of forces and torques, and C a six-by-
six matrix.

Equation (1) is often a good approximation for the natural compliance of mechanical
systems composed of solids.   We need not, however, restrict ourselves to natural
compliance.  If a manipulator is equipped with a force/torque sensor, we can
perform arbitrary computation on those measurements and arrive at a motion,
which the manipulator then executes.  Thus any compliance function may be
achieved.  This is called active compliance.   If we implement the control law given
in (1), we have simulated an ideal spring by using active compliance.

As a practical matter the control law we implement must be evaluated rapidly, so
there is a premium on simple control laws.  The one we choose in this paper is
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simple, has been studied extensively in the past, and is usually called the
generalized damper:

V  = Vo + A F (2)

Control law (2) states that in the absence of any perceived forces F, the manipulator
is to follow a nominal trajectory given by velocity Vo.  In the presence of forces, the
matrix A times the six-vector of forces F specifies a term AF which is simply added
to the nominal velocity Vo to yield the velocity V which the manipulator is to
perform4.   A is an accommodation matrix, the inverse of a damping matrix, and
characterizes a generalized damper.

We have a further reason to restrict ourselves to the design of an accommodation
matrix – i.e.  to a linear relationship of assembly force to consequent velocity.    It
may be possible to design a passive mechanical wrist which can assume any (or a
large range of) accommodation matrices.  The range of accommodation matrices
which could be assumed by such a wrist is considered in [Goswami, 1990 #97].

1 . 6   CO N T A C T  C O N F I GU R A T I O N S

Our approach to the creation of an error-corrective matrix for a given assembly
operation proceeds from the identification of a set of contact configurations  as
shown in Figure 2.  In this example the assembly operation being performed is again
the placement of a block into a shallow detent in a fixed chassis.   (Note that the RCC
wrist would not be able to perform this operation as there are no chamfers.)  The
nominal assembly trajectory of the manipulator, Vo, is straight down.   In this paper
we do not address the selection of Vo.

4  For example, to compare the motion of a manipulator under control laws (1) vs. (2), suppose that the
manipulator is moving steadily in the -z direction, and we give it a push in the +x direction.  If C (or A )
is a diagonal matrix with positive elements, in either (1) or (2) the manipulator will respond by
deflecting in the +x direction.  After we cease pushing, a manipulator following law (1) will spring back
to its original path and proceed as if it had not been disturbed.  A manipulator following law (2) will
resume its original direction of motion (-z) but will not move back to its original path: its displacement
in the +x direction is permanent.

With a diagonal matrix C (or A ) the motion of the manipulator under either (1) or (2) is intuitive: it
moves in the direction pushed.  However in selecting a matrix we have considerable freedom, and
highly non-intuitive behaviors may result.   For instance we can, by making the proper element of C (or
A) non-zero, cause forces in the +x direction to map into motions in the +y direction – or even into a
rotation about the z axis if so desired.
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contact configuration a contact configuration b

contact configuration c contact configuration d

Figure 2
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Insert figure 2 here. Caption:  Qualitatively distinct contact configurations which may
result during the block-into-detent assembly task.   The nominal assembly trajectory Vo
is -y (down, not shown). Each contact configuration corresponds to a deviation of the
movable part (the block) from its properly mated configuration.  Sections a and b show
contact configurations in which the edge of the block has come into contact with the left
or right lip of the detent.  In sections c and d the block is in contact with the left or right
inside wall of the detent.

We should note that specification of a complete set of contact configurations
depends on more geometric information than is available in a CAD model of the
parts alone.  In particular we must know how great the initial configurational errors
are.  As an extreme example, if large horizontal initial errors are possible it may
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happen that the block will miss the detent entirely.  In the selection of contact
configurations for Figure 2, we have assumed that orientational errors are negligible
and that translational errors are limited to about 2mm.

Specification of the nominal trajectory Vo and the contact configurations is our
starting point in this paper.   We do not here address the problem of extracting the
contact configurations from geometric models, nor is it clear how difficult this task
would be.   Donald's error detection and recovery regions (EDR regions) [Donald,
1986 #42; Donald, 1988 #43] and Desai & Volz' contact formations [Desai, 1988]
contain much the same information as our contact configurations.    Other related
work includes [Brooks, 1982 #56; Buckley, 1987 #50; Erdmann, 1984 #49].

2 . 1   F O R MA L  P R O P E R T I E S  O F  T H E  A C C O MMO D A T I O N  MA T R I X  F O R
E R R O R - C O R R E C T I V E  MA N I P U L A T I O N

We pose the problem of creating an appropriate error-corrective accommodation
matrix for a manipulator as that of realizing two desired properties of the
manipulator's motion during an operation.  These we will express in terms of the
contact configurations.

Property 1: "Bounded forces":

For every contact configuration, A   must be such that the contact forces which arise
between mating parts are bounded.

Property 1 is necessary to prevent damage to the manipulator and/or workpiece.
This is akin to the condition justified and studied by Mason [Mason, 1981 #37].
Mason translated the bounded force condition into requirements on an
accommodation matrix,  and showed how an accommodation matrix could be
found which guaranteed bounded forces for a given contact configuration.   Our
work differs in that we now consider several distinct contact configurations to all of
which the bounded forces condition must apply simultaneously.

For example, in figure 2a,  A F (the product of the accommodation matrix A with the
forces created by contact) must cause the lower left corner of the block to have a velocity
component in the surface-normal direction +y (upward) to avoid unbounded forces.

Property 2: "Error-reduction":

For every contact configuration, A   must be such that the magnitude of the
displacement from proper mating E is reduced.

For example, in figure 2a, AF must have a component in the +x (rightward) direction to
make progress toward proper mating.
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For the moment we leave unspecified the metric M by which the "magnitude of the
displacement from proper mating E" is to be measured.   This is a non-trivial detail
because the error vector E has both translational and orientational components (e.g.
"centimeters" and "degrees").   The L2 metric (in which we square and add the
components) has mixed units and makes no sense.   See [Lipkin, 1990 #99] for
further discussion of suitable unit- and frame-invariant metrics.

Fortunately, if there is any metric M for which we can show that an accommodation
matrix we synthesize results in decreasing |E| for all contact configurations, we are
assured that the operation must terminate at proper assembly.   Our choice of metric
is important:  if we make a poor choice we will not be able to synthesize an
accommodation matrix A for which the distance to proper mating |E| is guaranteed
to decrease.   Yet our choice of metric need not pass any formal test of non-
arbitrariness.

3 . 1  A  ME T H O D  O F  S Y N T H E S I S  A N D  O P T I MI Z A T I O N

In this section we describe a synthesis and optimization method.   It is by no means
the only one which might be used to create a matrix A satisfying the "bounded
forces" and "error reduction" properties above, and some of its shortcomings will be
discussed in section 5.

We will divide the "error reduction" property into two new conditions on A so that
the new conditions and the "bounded forces" property will have a common
mathematical form – one that is convenient for synthesis.  We will show how A
may be efficiently created so that it closely satisfies the whole set of conditions.

For each contact configuration we determine the forces which we may expect the
manipulator to perceive.   It turns out that we only need the direction, and not the
magnitude, of these characteristic forces.  The direction is  easily accessible to us
from the familiar friction-cone construction.  Given the direction of a characteristic
force fi , we can express all of the conditions in the form ui ⋅ Afi  = ti , where ui  is a
unit vector available to us from the geometry of the contact configurations (for
instance ui  may be a surface normal), and ti  is a scalar.

Generally it turns out that the number m of conditions on A:

ui ⋅ Afi  = ti         i = 1...m (3)

exceeds the number of elements5 in the matrix A.  It is therefore not generally
possible to find a accommodation matrix A which simultaneously satisfies all of the

5  Nine in two-space or thirty-six in three-space.
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conditions exactly.   All is not lost, because the values ti  are not critical.   The scalar
ti  corresponds to an inverse stiffness.  In the literature on hybrid control, for
instance, there are "soft" axes and "stiff" axes, represented by stiffnesses ksoft and
kstiff, but the exact values of ksoft and kstiff are not critical.  So too here we expect
that while typical values of the ti can be given, if it is not possible to form a
accommodation matrix with those precise values,  one with slightly different values
will also be acceptable.

We can use the freedom to adjust the inverse stiffnesses ti to allow us to form a
accommodation matrix A which almost satisfies the whole set of requirements,
even when there is none that exactly satisfies them.   We can then return to the
"bounded forces" and "error reduction" properties to check that the matrix A
synthesized does indeed satisfy them.

3 . 2  P R E D I C T I N G T H E  F O R C E S  W H I C H  C H A R A C T E R I Z E  A  C O N T A C T
C O N F I GU R A T I O N .

To design a accommodation matrix A which causes a desired motion in a particular
situation we must be able to predict the contact force F exerted on the manipulator
in that situation.  It turns out that if we know the direction of the force F, we can
calculate its magnitude, and this will be done immediately below.  In the case of
one-point contacts, we do know something about the direction of the force F,
namely that it must lie within the friction cone as shown in Figure 3.  Further, if we
know that the direction of motion of the block in Figure 3 will be to the right (+x),
we may predict that F will lie on the left extreme of the friction cone (f+) as shown.
Contacts at more than one point are considered in section 3.2.3.
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Insert figure 3 here. Caption:   Here we have added to each of the qualitatively distinct
contact configurations of figure 2 the surface normal (n), home (h), and orthogonal (o)
vectors (there is only one orthogonal vector in planar examples.)     Also shown are the
friction cones, the extremes of which are the vectors f±.

We could build our accommodation matrix A using the assumption that F will lie
on the left extreme of the friction cone in Figure 3a.  However, given the present
state of the art in implementing force control, the assumption of a monotonic +x
motion which will keep F on the left extreme seems questionable at best.  Instead we
will assume only that F lies within the friction cone, and ask that no matter where
in the friction cone F lies, the "bounded forces" and "error reduction" properties are
satisfied.  Our conservative assumption about the direction of F contributes to a
robustness of the resulting accommodation matrix A and, hopefully, relative
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insensitivity to the accuracy of a physical implementation of the control law
V = Vo + AF.

3 . 2 . 1    E X P R E S S I N G T H E  " B O U N D E D  F O R C E S "  P R O P E R T Y

Property 1 requires that the motion of the manipulator must be such that the contact
forces which arise between mating parts are bounded.  To find the implications of
this requirement for A, we evaluate the magnitude of the force F which arises in a
particular contact configuration.

First, we express F as a product of its magnitude and direction:   F = | F | f.  Let  n be
the surface normal as shown in the Figure 3.  Since the velocity of the block V can
have no component in the direction n, we have n ⋅ V = 0.   (Some care must be
taken in performing dot products among vectors of mixed distances and angles [Ball,
1900 #102; Hunt, 1978 #103])

Combining the above equations with our  control law V = Vo + AF we can solve for
the magnitude of the force

|F| =   −   
n ⋅ Vo

n  ⋅ A f
(4)

The scalar (n⋅ Af)–1 represents the stiffness of the manipulator to interactions with a
particular surface.  To guarantee that unbounded contact forces do not arise due to
velocities which bring the parts together, no matter what the source of these
velocities, it is only necessary to require a finite (non-infinite) stiffness.  Property 1
becomes

Property 1: "Bounded forces"  ⇒    n ⋅ Af ≈ t1 (5)

A reasonable value for the scalar stiffness 1/t1 depends on the task being performed,
the materials involved, the nominal velocity Vo chosen, and other factors.   We will
presume that while a user can select a typical value for t1,  he or she will not feel
very strongly about the exact value.   For the rest of this paper it is important only to
notice that t1 is positive, and its value user-selectable.

Our method for creating A (section 3.3) will take advantage of the freedom to adjust
t1.  Property 2 will result in a similar parameter (t2) being introduced.

3 . 2 . 2    E X P R E S S I N G T H E  " E R R O R  R E D U C T I O N "  P R O P E R T Y

Property 2 requires that the motion of the manipulator reduce the distance from the
manipulator's present configuration to a properly mated configuration, as measured
by some metric M.  We will use as our metric M a modified  L2 metric in which the



IEEE T. Robotics & Automation M. A. Peshkin  "Programmed compliance..." 8/22/95  1:46 PM page  14

angular components (in radians) are multiplied by a characteristic dimension of the
assembly task (e.g. the width of the grasped object) and then the components are
squared and summed6.   This metric is physically justifiable though still arbitrary.
Again, we are content with a matrix A if it satisfies property 2 for any metric so we
may indeed choose M arbitrarily.

To express property 2 in a form similar to (5) above, let us now identify a "home"
unit vector h for each contact configuration.  We choose h to be the direction
consistent with sliding constraints in which the distance from proper mating is
most steeply decreasing, as measured by our metric M.

With h and n identified, there are several7 other vectors oi orthogonal to both h and
n.  Figure 3 shows examples of h, n, and o.

We can now write sufficient conditions for property 2 (error-reduction) as:

h ⋅ V > 0,        and (7a)

oi ⋅ V  = 0    ∀ i (7b)

These conditions ask that there be motion in the h "home" direction (7a), and that
there not be motion in orthogonal directions (7b).   The required velocity at which
errors are reduced in (7a) is not critical, but for definiteness let us request that
h · V ≈ |Vo|,  i.e. we wish the manipulator to move toward proper mating at
approximately the full nominal velocity.

Using the control law V = Vo + AF,  our requirement h ⋅ V ≈ |Vo|,  and n ⋅ V = 0,
we find

h ⋅ Af ≈ (h ⋅ Vo  –  |Vo| )   
n ⋅ Af

n ⋅ Vo
(8)

Note that n ⋅ Vo is negative8.  Vo is our nominal assembly velocity and we have
already required that n ⋅ Af ≈ t1 for some user-selectable parameter t1.  The right side

6  M(x, y, z, θx, θy, θz) = (x2 + y2 + z2) + w2 (θx2 +  θx2 +  θz2),   where w is a characteristic length of the
task.

7  One in 2-d, or four in 3-d.

8  If n ⋅ Vo ≈ 0 it will be best to impose no requirement on h ⋅ Af.   In this case if  h ⋅ Vo > 0 the nominal
trajectory Vo itself causes reduction of error, and no adjustment of A  will increase or decrease the rate
much.  If  h ⋅ Vo < 0 the situation is hopeless.
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of (8) can be evaluated and we will denote it t2, another positive constant.  We may
now write property 2 as

Property 2: "Error Reduction"  ⇒ h ⋅ Af = t2,          and (9a)
oi ⋅ Af = 0    ∀ i (9b)

For example, consider contact configuration a in Figure 3.  The nominal direction
Vo = −y,  the surface normal n = y, and the home direction h = +x.   The "bounded
forces" property is thus  y ⋅ Af = t1.   In place of the "error-reduction" property,
condition (9a) gives us x ⋅ A f = t2.  Condition (9b) applies only to the one remaining
degree of freedom θ, and is θ ⋅ Af =  0, i.e. Af should have no rotational component.

3 . 2 . 3   E X T E N S I O N  T O  C O N T A C T  C O N F I GU R A T I O N S  W I T H  MO R E
T H A N  O N E  P O I N T  O F  C O N T A C T

If there are two or more points of contact between workpiece and environment, the
total force felt by the manipulator is the sum of the forces at the individual contacts.
For simplicity we will work here with only two contacts; the analysis extends
trivially to any number.   Denote these individual forces F1, F2. The motion of the
manipulator is still given by the control law V = Vo + AF, which can now be written
V = Vo + AF1 + AF2.   We can break each force into a product of its magnitude with
its direction Fi = |Fi| fi.  We also have one condition of the form V ⋅ ni = 0 for each
contact.   We can therefore construct a set of equations from which the magnitude of
the forces can be extracted:

n1 ⋅ Vo + |F1| n1 ⋅ Af1 + |F2| n1 ⋅ Af2  = 0 (10a)
n2 ⋅ Vo + |F1| n2 ⋅ Af1 + |F2| n2 ⋅ Af2  = 0

which can be written as

 



 

n1 ⋅ Af1 n1 ⋅ Af2

n2 ⋅ Af1 n2 ⋅ Af2
 
 



 

|F1|

|F2|
  = – 

 



 

n1 ⋅ Vo

n2 ⋅ Vo
 (10b)

As in section 3.2.1 we may identify the determinant of the two-by-two matrix as the
inverse stiffness of the manipulator.   Property 1 (bounded forces) therefore becomes

det 
 



 

n1 ⋅ Af1 n1 ⋅ Af2

n2 ⋅ Af1 n2 ⋅ Af2
  ≈ t1

2 (11a)

For the general case of m contacts where { n } represents the m surface normals and
{ f } represents the m force directions we may write this condition compactly (if
opaquely) as an outer product
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det ( { n } ⊗ A { f } ) ≈ t1
m (11b)

It is useful to notice that if a contact configuration with more than one point of
contact can occur, it is also possible for the points of contact to occur individually as
contact configurations.  The "bounded forces" property applied to these individual
contact configurations involve the terms ni · Afi that appear on the diagonal in
(11a).  Since we have already required that ni · Afi ≈ t1, one way to satisfy (11a) is
simply to require that ni · Afj ≈ 0 when i ≠ j, i.e. that all the off-diagonal terms be
zero.  This observation will be useful in the following section, because it allows us to
reduce all of the properties on all of the contact configurations to a single
mathematical form.

3 . 3   F O R MI N G A N  A C C O MMO D A T I O N  MA T R I X

All of our conditions on the accommodation matrix A have now been reduced to
numerous conditions of the form

    ui ⋅ Afi =  ti (14)

where fi is a force to be expected, ai is a direction vector determined from the
geometry of the contact configuration, and ti is a target value for the dot product.
For some conditions the target value t is zero.  For others t is a user-selectable
positive value whose choice depends on the task at hand, materials, etc, and indeed
is somewhat arbitrary. Selection of these ti is guided by equations (4) and (8).

Recall that f in equations of the form (14) represents any force direction which could
arise in a particular contact configuration.   f must necessarily lie within the friction
cone, but we are reluctant to presume it any better localized than that.   Let the two
extremes of the friction cone be denoted f±.  Then any force f that arises can be
written as a positive linear combination of  f+ and  f−.    It will not be possible to
design a accommodation matrix A for which u ⋅ Af+ =  u ⋅ Af− = t.   However our
target value t was not critical, and perhaps we can design a accommodation matrix A
for which u ⋅ Af+ =  t+, u ⋅ Af− = t−, with both t+ and t− acceptably close to the target
t.   If so we are assured that the value of  u ⋅ Af will be acceptably close to t for any f
which may arise.

3 . 3 . 1   L E A S T- S Q U A R E S  O P T I MI Z A T I O N

For each of several contact configurations we consider two forces f±, and for each
force we have several conditions of the form ui ⋅ Afi =  ti.   Let m be the total
number of such equations -- clearly m may be large.  The ui, fi, and ti are all given;
it is A we wish to create.  A is a matrix consisting of n real numbers.  In our two-
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dimensional examples n=9;  in three dimensions we would have n=36.   The usual
case is that there is no A which satisfies all m equations.

We describe next a way of finding the best A in the "least-squares" sense:  the A

which minimizes ∑ i=1
m  (ui ⋅ Afi – ti)2.   Solving for this A is computationally quick

even for m=200, n=36.

How are we to interpret the resulting A?  A satisfactory  A is one for which the
"bounded forces" and "error reduction" properties hold, so that motion can only
terminate at proper mating.   Our m conditions of the form ui ⋅ Afi =  ti are stronger
(sufficient) conditions, so if an A satisfies them all exactly, that A is satisfactory.

Further,  of the { ti }, some were zero  (equation 9b), and others were arbitrary
positive values (equations (5) or (9a)) .   If the A we create satisfies the (9b)-type
conditions and gets any positive values for the (5) and (9a)-type conditions, that A is
also satisfactory, but for a different choice of the arbitrary stiffnesses.    Even if the A
we create does not satisfy the  (9b)-type conditions, it may still be satisfactory,  but
then we must check the "bounded forces" and "error reduction" properties
explicitly.

We now abandon the matrix structure and meaning of A, and simply consider it to
be a set of n real-valued variables (here n=9) for which we desire a solution
satisfying m equations.   To maintain a compact notation we will form these n

variables into a n-vector Aso
, here a 9-vector. A is "strung-out" by rows and

displayed as a column vector.   Explicitly,

A = 
 



 

Axx Axy Axθ

Ayx Ayy Ayθ

Aθx Aθy Aθθ

     ⇒   Aso = 

 







 





Axx

Axy

Axθ

Ayx

Ayy

Ayθ

Aθx

Aθy

Aθθ

(17)

Having formed this unintuitive construction, an equation of the form u ⋅ Af =  t
which is explicitly
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 ( )ux uy uθ    ⋅    

 



 

Axx Axy Axθ

Ayx Ayy Ayθ

Aθx Aθy Aθθ

  
 



 

fx

fy

fθ

  = t (19)

can be written as:

( )uxfx  uxfy  uxfθ  uyfx  uyfy  uyfθ  uθfx  uθfy  uθfθ ⋅ A so
= t  (20)

Each of the m equations of form u ⋅ Af =  t  can be written as above, for i = 1 ... m, so
that we have an enormous matrix equation:

 




 


u

1
xf

1
x  u

1
xf

1
y  u

1
xf

1
θ  u

1
yf

1
x  u

1
yf

1
y  u

1
yf

1
θ  u

1
θf

1
x  u

1
θf

1
y  u

1
θf

1
θ

⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅
⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅  ⋅

u
m
xf

m
x  u

m
xf

m
y  u

m
xf

m
θ  u

m
yf

m
x  u

m
yf

m
y  u

m
yf

m
θ  u

m
θf

m
x  u

m
θf

m
y  u

m
θf

m
θ

    ⋅  Aso = 

 



 

t

1
 
⋅
⋅
t
m
 

 (21)

We will name the great m-row by n-column matrix on the left  G, and the m-high
column vector of target values t.   In these terms the problem of finding a
accommodation matrix A which satisfies our m conditions is reduced to finding a n-

vector Aso
 which satisfies

G⋅ Aso
 = t (22)

Generally there is no Aso
 which satisfies (22) exactly.  However it is easy to check that

   G⋅ Aso
 − t   2  = ∑

i=1

 m 

 ( ui ⋅ Afi − ti ) 2 (23)

The right side is exactly the sum we wish to minimize – the one that defines the

"best" A.   There is a good and fast way of finding the Aso
 which minimizes the left

side.  Using the singular value decomposition (described particularly clearly in
[Press, 1985 #39]) we can form an  n-by-m pseudo-inverse9 G* of the m-by-n matrix G
for which the value of Aso

 given by

9  There are other pseudo-inverses.  Computation of the SVD pseudo-inverse is numerically robust, and
the SVD pseudo-inverse possesses the needed least-squares property.
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Aso
 = G* t (25)

minimizes    G Aso
 − t   2  over all possible Aso

.   If (fortuitously) there is a Aso

which satisfies (22) exactly then (25) finds it.  In this case the sum-of-squares is zero.

G contains all the geometry of the contact configurations and forces which arise in
assembly.  t contains our preferences for the user-selectable parameters ti.  If we pick
a target vector of parameters t, we can easily compute the accommodation matrix A
which comes closest to achieving those parameters using  Aso

 = G* t.   Usually we

can't have that set of parameters;  the closest available set is t~ = G Aso
 =  G G* t.

To see how well A achieves our preferred parameters, we compare t to t~.   Once the
m-by-m matrix G G* has been formed, we can try  out different target vectors t with
little overhead.

As mentioned above if t~ has zeros in the same components that t has zeros, and is
positive in all other components, then A  possesses the "bounded forces" and "error
reduction" properties.   The only consequence of not satisfying all of the conditions
exactly is that the stiffnesses are not exactly as requested.

If  t~ does not match t in sign, component by component,  then to verify that A
possesses the "bounded forces" and "error reduction" properties we must compute
V = Vo + A F for every contact configuration and explicitly check that the properties
are satisfied.

4 . 1   E X A MP L E S

In this section we set up (by hand) the contact configurations and the normal, home,
and orthogonal vectors for some sample planar assembly tasks.  To create the
accommodation matrix A which achieves the desired "bounded forces" and "error-
reduction" properties we proposed in section 2, we use the stronger conditions and
the optimization procedure described in section 3.   When even the stronger
conditions can be satisfied (or satisfied for a slightly different set of stiffnesses) we are
done.  This occurs in the first two examples.  In the third example we must verify
that the desired properties are in fact satisfied for all contact configurations.

4 . 2   P L A C E  B L O C K  I N T O  C H A MF E R L E S S  D E T E N T

Here a block is to be placed into a shallow detent in a surface (Figure 1).   We wish to
create a accommodation matrix so that the torque which arises if the edge of the
block hits the lip of the detent is mapped by the accommodation matrix into a
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horizontal motion of the block towards the center of the detent.   This motion is
counterintuitive since the detent has no chamfers, but it is not impossible.

It is necessary to choose a coordinate system: an origin about which torques are
measured and rotations are performed.  The choice of origin is of absolutely no
account; in fact if we create a accommodation matrix for origin q, it is trivial to
convert it to a accommodation matrix for origin p simply by

Ap =   
 



 

1   0 qy - py

0   1 px - qx

0   0 1
   Aq  

 



 

1 0  0

0 1  0

qy - py px - qx  1
   (26)

For a given force in the real world, the accommodation matrix Ap at origin p
produces exactly the same motion of the manipulator as would accommodation
matrix Aq at origin q.  Inconsequential as it is, we must choose an origin, so we
choose it at q as shown in Figure 1.

The four possible contact configurations are shown in Figure 3.  It should be noted
that implicit in the specification of only these contact configurations is information
about the maximum possible magnitudes of the robot's initial error.  If, for instance,
the possible horizontal translational error were much greater, the block could miss
the detent altogether.  We presume, not unrealistically, that errors of orientation are
minimal.

For each of the four contact configurations there are two extremes of the friction
cone.   Translating the "bounded forces" and "error-reduction" properties into three
stronger conditions on each of the eight force-and-configuration pairs, we find a
total of 24 conditions on the accommodation matrix A to be synthesized, each of the
form ui ⋅ Afi =  ti.

For the user selectable target inverse-stiffnesses ti we have used the value 1 or 0 as
appropriate from equations (5), (9a) or (9b).   We find that it is not possible to satisfy
all the conditions exactly.  The accommodation matrix which most closely fulfills
the conditions is

Aq = 
 



 

2.91 0.00 -1.94

0.00 1.03 0.00

0.00 0.00 0.00

(27)

Evaluating t~ = G G* t,   the available set of inverse-stiffnesses ti nearest to our target
set, we find all values within 30% of target.  This is surely good enough - it would be
very strange if stiffnesses more precise than this would ever be needed.   The (9b)-
type conditions (ui ⋅ Afi =  0)  are satisfied exactly.
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For this task the accommodation matrix synthesized cannot be described as a center
of accommodation, no matter what choice of origin we use.   The result is relatively
insensitive to the coefficient of friction assumed, which we took as .25.

4 . 3  P U T  A  B L O C K  D O W N  GE N T L Y

Here a block is simply to be placed on a surface. There are only two contact
configurations, shown in Figure 4:  either corner may touch first, and we would like
the behavior of the manipulator to be such that upon contact the block rotates into
alignment with the surface, without scraping along the surface.

q

1.00

p

q

1.00

p

contact configuration a contact configuration b

Figure 4
Insert figure 4 here.  Caption:   Contact configurations for the put-block-down-gently
task.

Property 1 requires bounded forces.   Property 2 requires that the block rotate
clockwise or counterclockwise as appropriate.   The (9b)-type conditions (ui ⋅ Afi = 0)
require that there be no horizontal movement of the corner which makes contact
first:  no "skidding".    Two contact configurations, by two extremes of the friction
cone, by three conditions each, yield twelve conditions of the form ui ⋅ Afi =  ti.

Using the origin q as shown in Figure 4 (at the top center of the block), and again
using 1 or 0 as target values for all the user-selectable inverse-stiffnesses, we find
that there is an accommodation matrix which satisfies all the conditions exactly:
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Aq = 

 



 

2.06 0.00 -2.06

0.00 0.52 0.00

-2.06 0.00 2.06

(28)

It can easily be verified from equation (26)  that this accommodation matrix is
equivalent to a diagonal matrix at the bottom center of the block, meaning that our
synthesis has suggested that in this case a "center of compliance" description is
appropriate – with center of accommodation at the bottom center of the block (point
p).

The equivalent accommodation matrix there is

Ap = 

 



 

0.00 0.00 0.00

0.00 0.52 0.00

0.00 0.00 2.06

(29)

It is relatively easy to imagine the operation of an accommodation matrix which is
diagonal, and the reader may check that a center of accommodation at p will give
the proper response to contact at either corner.

4 . 4  P E G I N T O  C H A MF E R E D  H O L E  R E V I S I T E D

Here we find 10 contact configurations, some of which are two-point contacts.   Five
of these are shown in figure 5, and the other five are reflections about a vertical axis.



IEEE T. Robotics & Automation M. A. Peshkin  "Programmed compliance..." 8/22/95  1:46 PM page  23

A B

C

D E

l2

Figure 5
Insert figure 5 here.  Caption:   Contact configurations for the peg-into-chamfered-hole
task.   We consider these contact configurations shown, and five (not shown) which are
these reflected about a vertical axis.   The nominal assembly trajectory Vo is straight
down ("south").  One of the configurations (E) involves two points of contact; the rest
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are single point contact configurations.  To avoid confusion the normal (n), home (h), and
orthogonal (oi) directions are not shown in the figure.  In configuration A, n is northeast
h is southeast, and o is rotation.  In configurations B, C, and D, n is east and o is rotation.
The h direction is not needed because south is colinear with Vo.  In configuration E, h is
counterclockwise rotation.

It turns out that there is no accommodation matrix A which simultaneously gives
the desired stiffnesses in every contact configuration.   In fact there is no way to
satisfy all the (9b)-type conditions  ui ⋅ Afi = 0 even if we allow any positive value
for ti in the (5) and (9a)-type conditions ui ⋅ Afi =  ti.

The accommodation matrix which comes closest in the least-squares sense is

Aq = 

 



 

0.66 0.00 0.19

0.00 1.57 0.00

0.20 0.00 0.35

(30)

based on an origin at q as shown in figure 5.

Interestingly, we find that Aq is in agreement with [Whitney, 1982 #38] results which
are incorporated in the RCC device.  Specifically, if (following [Whitney, 1982 #38])
we let l2 be the insertion depth at which two point (jamming) contact may first
occur, the accommodation matrix A which our optimization produces can be
described as a center of accommodation at a point p a distance l2/2 above the tip of
the peg, on-axis.  Rewriting A for origin at point p we have

Ap = 

 



 

0.55 0.00 0.01

0.00 1.57 0.00

0.02 0.00 0.35

(31)

which is (almost) diagonal.

DI S C U S S I O N

In our view the main contribution of this paper is to pose the problem of
synthesizing an error-corrective compliance for an entire task.   To the best of our
knowledge this is the first attempt at a method of synthesis.

The underlying idea (common to other works in this field) is that the forces which
arise during an assembly task often contain enough information to figure out how
the operation has gone wrong.  Forces characterize the errors in assembly tasks in a
more direct way than other sensors, (e.g. vision).  The question then becomes how
best to interpret and act on this force information.  Others researchers have
(implicitly or explicitly) interpreted this information too, and a summary of those
ideas in given in section 1.
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Our approach may be distinguished from Mason's in that Mason synthesizes a
accommodation matrix consistent with a task, where we synthesize one which is
also error-corrective (terms defined in section 1.1).   It may be conceptually
contrasted with most other fine motion planning work in that we assume the
nominal motion plan to be given, and synthesize the accommodation matrix of the
manipulator so that assembly proceeds to completion.   Most other workers have
assumed the compliance of the manipulator to be given, and have synthesized a
motion plan.  We draw inspiration from error-corrective compliances which have
been created by others for a few particular tasks, most notably the RCC.  Our work
differs from these in that we attempt a method of synthesis, not a solution for an
individual task.

This work has several major limitations:

1. We have assumed that a finite and complete set of qualitatively distinct contact
configurations has been (and can be) generated and presented to us.  These
configurations, together with a nominal assembly trajectory which would succeed in
the absence of error, are the starting point of our synthesis.   While finding these
configurations does not seem to be difficult to do by hand for simple examples, we
do not know of a formal definition of "qualitatively distinct" or of a method of
generating such configurations.

2.  Our "error-reduction" property (section 2.1) requires strictly decreasing errors for
all contact configurations as measured by any metric.   We have chosen a particular
metric, and therefore might not recognize as valid an accommodation matrix which
decreases errors according to some other metric10.  Further, one might imagine
compliances which do guarantee eventual success, but do not achieve it
monotonically by any metric.

3.  The optimization method described in section 3 does not directly use even the
one particular metric we have chosen (and by which we verify the resulting A
matrix).   Rather it optimizes adherence to a set of stronger conditions which, if they
are all satisfied, would also guarantee strictly decreasing errors.   These stronger
conditions are not always satisfied, so we do not necessarily find an accommodation
matrix which guarantees strictly decreasing errors by our metric even when one
exists – we are optimizing not quite the right thing.

Though our examples were two dimensional, most of the development applies
immediately to three dimensions.  An exception is our bounding of the friction
cone by two vectors (section 3.3).  It is possible to generalize the friction cone to three
dimensions [Goyal, 1990 #101; Erdmann, 1984 #49].   It might also be that providing a
set of qualitatively distinct contact configurations (the input to the method of

10  Much work in C-space seems to be dogged by the current lack of sensible metrics.



IEEE T. Robotics & Automation M. A. Peshkin  "Programmed compliance..." 8/22/95  1:46 PM page  26

synthesis described here) may be much more difficult in three dimensions than in
two.

A C K N O W L E D GME N T S

The author wishes to acknowledge helpful discussion with Bruce Donald (Cornell),
Joe Schimmels (Northwestern), Ambarish Goswami (Northwestern), Harvey Lipkin
(Georgia Tech),  Matt Mason (Carnegie-Mellon), and useful comments from the
reviewers. [Editor - please leave the acknowledgment of the reviewers as written.  Thank you.]

R E F E R E N C E S




