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The Motion of a Pushed, Sliding Workpiece

MICHAEL A. PESHKIN, MeMmBER, IEeg, AND ARTHUR C. SANDERSON, SEnIOR MEMBER, IEEE

Abstract—It occurs frequently in robotic applications that a robot
manipulates a workpiece which is free to slide on a work surface. Because
the pressure distribution supporting the workpiece on the work surface
cannot in general be known, the motion of the workpiece cannot be
calculated uniquely. Yet despite this indeterminacy, several researchers
have shown that sliding motions can be employed to accurately align
workpieces without visual or other feedback.

Here we find the locus of centers of rotation of a workpiece for all
possible pressure distributions. The results allow a quantitative under-
standing of open-loop robot motions which guarantee the alignment of a
workpiece. Several sample problems are solved using the results,
including the distance thai a flat ““fence’’ or robot finger must push a
polygonal workpiece to assure that a facet of the workpiece comes into
alignment with the fence.

I. MOTIVATION

LIDING OPERATIONS are encountered frequently in

robotics. It is almost inevitable that when the position of a
workpiece that is to be acquired by a robot is not perfectly
known, a sliding phase will occur before the robot can acquire
the workpiece. Mason [10] was the first to identify sliding
operations as fundarnental to manipulation, and especially to
grasping.

The sliding phase need not be considered an undesirable but
unavoidable fact of life. In the examples which follow sliding
operations are used constructively to manipulate and acquire
workpieces, without sensing, and despite uncertainty in the
initial orientation and position of the workpiece. Yet in each
example quantitative information about the motion of the
workpiece, which would be needed to guarantee the success of
the operation, is lacking. It is the objective of this paper to
solve completely for the motion of a sliding workpiece, thus
allowing proof of the success of operations which rely on
sliding, and facilitating the design of such operations.

A. Automatic Feeders

Sliding oceurs when a workpiece on a moving belt interacts
with a fence across the belt. (An equivalent interaction occurs
when the workpiece is stationary on a work surface, and a
fence or gripper under control of a robot pushes it.) And
similar interactions occur in bowl feeders, as parts interact
with fences as the parts move along a ramp.
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One of the many possible behaviors of the workpiece when
it hits a fence is to rotate until a flat edge is flush against the
fence, and then to slide along the fence (if the fence is
sufficiently slanted). Another behavior is to roll along the
fence instead of shiding. Or the workpiece may stop rotating
and simply stick to the fence.

To design feeders the behavior of the workpiece must be
understood. This problem has been considered explicitly by
Mani and Wilson [9]} and also by Brost {2]. (Related work
includes {4], [7], and [14].) Mani and Wilson developed
strategies for manipulation which can orient a workpiece on a
table by a carefully planned sequence of pushes with a fence.
Each push aligns a facet of the workpiece with the fence, until
an initially randomly oriented workpiece is reduced to a
unique final orientation.

In the case of Mani and Wilson's fence-pushing aligner, the
quantitative information needed is the distance a polygonal
workpiece must be pushed to align a given facet with the
pushing fence. Sometimes a workpiece may have to be pushed
a great distance before it will align with the fence pushing it.
To make Mani and Wilson’s manipulation strategies into
guaranteed strategies we need an upper bound on the distance
a workpiece must be pushed to align.

B. Grasping Strategies

In a typical grasping operation, the robot opens a two-jaw
gripper wide enough to accommodate both the workpiece to be
grasped and any uncertainty in the workpiece’s position. Then
the gripper begins to close. Generally the workpiece will be
closer initially to one jaw than to the other, and the closer jaw
will make contact first.

There follows a sliding phase until the second jaw makes
contact. During the sliding phase, the warkpiece is likely to
rotate, especially if the face of the jaw is in contact with a
corner of the workpiece rather than a flat facet. The behavior
of the workpiece during grasping is discussed by Brost [2],
who finds grasp strategies which bring the workpiece into a
unique orientation in the gripper. despite substantial uncer-
tainty in its initial orientation and position.

To fully characterize the configuration of the workpiece in
the gripper when a grasping operation is complete, we need
more complete information about the motion of the workpiece
than was available to Brost. Bounds can be obtained for the
translation of the workpiece (perpendicular to the direction it
is pushed by the gripper) as well as for its rotation as it is
pushed.

Paul invented [ 16}, and Mason later analyzed [10], a clever
grasping sequence on a hinge plate (Fig. 1). The strategy
makes use of sliding to simultaneously reduce the uncertainty
of a hinge plate’s configuration to zero, and then to grasp it.
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Fig. 1. Hinge grasp strategy (Paul [16] and Mason {10}). The robot fingers
follow the trajectory indicated by the dotted lines, closing as they translate.
On contact with the hinge plate the trajectory causes the plate to rotate into
alignment with the gripper and then to self-center. This open-loop strategy
requires no sensing and succeeds despite some uncertainty in the initial
configuration of the plate.

The hinge grasp works only for a certain range of initial
hinge orientations. For orientations outside of this range, the
jaws will be closing too fast for the hinge plate to complete its
rotation into alignment, before the jaws close. To find the
range of orientations for which this grasp will work, for a
given convergence angle of the jaws, we need to know the
slowest possible rotation rate of the hinge plate as it is pushed.

C. Grasp Strength

Barber er al. [1] have analyzed the resistance of a two-
fingered robot grasp of a workpiece to applied torques and
forces. A grasped workpiece slides relative to the gripper
fingers as the grasp fails, and the resistance of a grasp to this
failure can be used as a measure of the quality of the grasp in
autormnated grasp selection algorithms.

In order te determine the force or torque which is needed to
cause a grasp to slip, Barber ef af. assumed a linear variation
of pressure over the grasped surface of the workpiece. The
utility of this measure of grasp quality could be extended if the
assumption of linear pressure variation could be removed,
since jn general the pressure distribution is unknown.

D. Statement of ““The Sliding Problem”’

The prototypical sliding problem is to solve for the motion
of a workpiece on a planar surface with friction, when a force
is applied to it at 2 known point. This is a problem in classical
mechanics, indeed in quasi-static mechanics. It was recog-
nized but never solved in the heyday of classical mechanics
[6], [8], [17]. although the answers turn out to be simple and
of analytical form. The sliding probtem is difficult because the
pressure distribution beneath the workpiece is in general
unknown. The 19th and early 20th century classical mechani-
cians (cited above) assumed a particular form of the pressure
distribution, either uniform or with linear variation over the
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Line of motion of fence

Fig. 2. The edge of an advancing fence pushing a corner of a sliding
workpiece. The motion of the workpiece depends on the angle (o) of the
front edge of the fence, measured relative to its line of motion, which in this
case is horizontal.

bottom surface of the workpiece, and solved the difficult
mechanics problem which resulted.

Mason realized the only useful result would be one which
applied for all pressure distributions, as the pressure distribu-
tion is unknown. Mason was able to find the direction
(clockwise or counterclockwise) of rotation of a pushed,
sliding workpiece, when the pressure distribution is unknown
[10]. His result is remarkable in that the direction turns out {0
be independent of the pressure distribution. Mason’s results
are used extensively in Mani and Wilson’s work [9], Brost’s
work [2], and also here.

Our work solves the ““other half’’ of the sliding problem.
We determine the motion of the sliding workpiece completely.
The motion is most conveniently expressed as a center of
rotation (COR) of the sliding workpiece. (The COR lies
somewhere in the plane of sliding.) Unlike Mason’s sense of
rotation result, the COR does depend on the pressure
distribution supporting the workpiece, and that pressure
distribution is in general unknown. But we are able to find the
locus of centers of rotation (that is, the set of all possible
motions} for all pressure distributions.

Using our results, manipulation and grasping strategies can
be designed which are guaranteed to succeed [14], because all
the possible motions of the pushed workpiece are predictable.

II. RANGE OF APPLICABILITY
A. Workpiece Shape

In this paper we will treat the workpiece as a two-
dimensional rigid body, since we are only concerned with the
interaction of the workpiece with the table on which it is
sliding. All pushing forces will be restricted to lie in the plane
of the table. The results may be applied to three-dimensional
workpieces, so long as the vertical component of the pushing
force is negligible, and so long as the point of contact is near
the table.

B. Point of Contact Between Workpiece and Pusher

In the general case, when a workpiece is being pushed,
there is only one point of contact between the workpiece and
the pusher. The contact may be where the flat edge of a
pushing fence or robot finger touches a corner of the
workpiece (Fig. 2), or it may be where a pushing point touches
an edge of the workpiece (Fig. 3). In most of this paper we
will assume that the pusher is a point in contact with a flat facet
of the workpiece, but the analysis applies equally well if the
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hne of mauan of pusher

Fig. 3. A corner of an advancing pusher pushing an edge of a sliding
workpiece. The motion of the workpiece depends on the angle (a) of the
edge being pushed, measured relative to the line of motion of the pusher,
which in this case is horizontal, Compare to the meaning of o in Fig. 2. The
analysis done in this paper applies equally well to either figure.

pusher is a flat surface in contact with a corner of the
workpiece.

Motion of a workpiece when there are two or more points of
contact between pusher and workpiece has been considered by
Brost [2] and by Mani and Wilson [9].

C. Position Controlled Pusher

1t is assumed the pusher will move along a predetermined
path in the plane, i.e.. it is under position control. Equiva-
lently, the surface on which the workpiece slides may move,
carrying the workpiece relative to a fixed pusher; for example,
on a conveyor belt. The workpiece has two degrees of
freedom, with the third degree of freedom of its motion fixed
by the contact maintained between the pusher and the
workpiece. Our results may be easily converted to the case
where the pusher exerts a known force on the workpiece rather
than following a known path.

D. Center of Rotation (COR)

The two degrees of freedom of the workpiece are most
conveniently expressed as the coordinates of a point in the
plane called the center of rotation (COR). Any infinitesimal
motion of the workpiece can be expressed as a rotation 58
about some COR, chosen so that the infinitesimal motion of
each point W of the workpiece is perpendicular to the vector
from the COR to the point #. If the workpiece is a disc, and
the motion it performs is pure rotation in place, the COR is at
the center of the disc. Motions we might describe as *‘mostly
translation’’. correspond to COR’s far from the point of
contact. In the extreme case, pure translation occurs when the
COR s at infinity,

All kinematic results can be obtained once the COR is
found.

E. Pressure Distribution Berween Workpiece and Table

The weight of a workpiece is supported by a collection of
contact points between the workpiece and the table. The
pressure distribution may change as the workpiece moves
relative to the table. Finding the COR is complicated by the
fact that changes in the pressure distribution under the
workpiece substantially atfect the motion, i.e., such changes
affect the location of the COR. Intuitively, if pressure is
concentrated near the center of mass (CM}), the workpiece will
tend to rotate more and translate less than if the pressure is
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uniformly distributed over the entire bottom surface of the
workpiece.

The pressure distribution may be changed dramatically by
tiny deviations from flatness in the workpiece’s bottom surface
(or of the surface it is sliding on). Indeed, if the workpiece and
the table are sufficiently rigid and not perfectly flat, they may
be expected to make contact at only three points. The three
points may be located anywhere on the workpiece's bottom
surface, but like the legs of a three-legged stool, the triangle
formed by the points of support always encloses the projection
of the CM onto the surface.

Since any assumption we could make about the form of the
pressure distribution (for instance, that it is uniform under the
workpiece as in [17]) would not be justified in practice, our
goal is to find the locus of COR’s under aff possible pressure
distributions.

Let the CM be at the origin, and W be a point in the plane.
All that is known about the pressure distribution P{ W) is that

* P(w) is zero outside the workpiece. The workpiece can
be entirely contained within a circle of radius @ centered
at the CM;

¢ P(#®) = 0 everywhere;

» the total pressure

SP(f'v)dﬁ?:Mg

the weight of the workpiece, and
¢ the first moment of the distribution,

jP(fv’)w’ dw=0.

This means that the centroid of the distribution is at the
CM of the workpiece, which is at the origin.

F. Coulomb Friction

It turns out that the coefficient of friction of the workpiece
with the supporting surface (called p, for “‘sliding friction’’)
does not affect the motion of the workpiece if we use a simple
model of friction. We assume that u, is constant over the work
surface, that it is independent of normal force magnitude and
tangential force magnitude and direction (isotropic), and that it
is velocity-independent. In short, we assume Coulomb fric-
tion.

There is another coefficient of friction in the problem, u,
(for *‘contact friction’"), at the point of contact between the
edge of the workpiece and pusher. This is distinct from the
coefficient . between workpiece and table, discussed above.
Initially we consider only g, = 0. This assumption is relaxed
in Section VI.

G. Quasi-Static Motion

It is assumed that all motions are slow. This quasi-static
approximation requires that frictional forces on the work-
piece (due to the coefficient of friction with the surface )
quickly dissipate any kinetic energy of the workpiece

2 < < Xep, (1)
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Fig. 4. Parameters of the pushing problem. Important geometric parameters
are the angle « of the edge being pushed relative to the line of motion of the
pusher, the vector £ from the center of mass (CM) to the point of contact
between pusher and workpiece, and the radius a of the disc which
circumscribes the workpiece. When these parameters are given the locus of
centers of rotation for all possible pressure distributions can be found.

where v is the velocity of the workpiece, g is the acceleration
due to gravity, and X is the precision with which it is desired
to calculate distances. The high-speed limit is discussed in
Section XII-C. Characteristic speeds for quasi-static motion
are discussed in {15] and [11].

H. Bounding the Workpiece by a Disc

We will take the workpiece being pushed to be a disc with
its CM at the center. Given another workpiece of interest we
can consider a disc centered at the CM of the workpiece, big
enough to enclose it. The radius @ of the disc is the maximum
distance (from the CM) of the workpiece to any point of the
workpiece. Since any pressure distribution on the workpiece
could also be a pressure distribution on the disc, the COR
locus of the disc must enclose the COR locus of the workpiece.
The locus for the disc provides useful bounds on the locus for
the real workpiece.

I. Geometric Parameters

Geometric parameters of the problem are the point of
contact & between the pusher and the workpiece, and the angle
o between the edge being pushed and the line of pushing, as
shown in Fig. 4. The values of « and ¢ shown are useful in
considering the motion of the five-sided workpiece shown
inscribed in the disc. We do not require the point of contact to
be on the perimeter of the disc, as this would eliminate
applicability of the results to workpieces inscribed in the disc.
Indeed, for generality we do not even require the point of
contact to be within the disc. Similarly, we will not require o
to be such that the edge being pushed is perpendicular to
vector €, as it would be if the workpiece were truly a disc. The
disc (with radius a), «, &, and the CM, are shown in Fig. 4.

III. OvErvIEW

In this paper we wish to find not the sense of rotation (CW
or CCW) as Mason did, but the motion itself, expressed as a
COR somewhere in the plane.

First we approach the problem numerically. A formulation
of Newton's laws of motion which we call *‘minimum power
mechanics’” [21] suggests that for a given pressure distribution
P(#)and advance of the pusher dx, the COR is at that point
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Fig. 5. COR locus for a disc found by iterative minimization (dots). The disc
shown encloses the workpiece of interest. The pusher moves horizontally
along the line indicated, and contacts the edge of the workpiece at the
arrowhead. (In reality this point of contact would always fall within the dis¢
bounding the workpicce, but numerical convergence is simplified for this
unrealistic case.) The angle « of the edge which the pusher contacts is
indicated. Dots indicate the locations of the center of rotation for 500 000
randomly chosen pressure distributions supporting the workpiece.

&,
e

line of motion 24

Fig. 6. COR locus for a square found by iterative minimization. Now the
workpiece is taken to be a square rather than a disc. (Again we
unrealistically choose a point of contact not on the perimeter of the
workpiece.) Note that the locus of possible COR's (dots) can be entirely
contained within the locus calculated for a disc (Fig. 5).

which minimizes the energy lost to sliding friction. Figs. 5 and
6 show the COR’s so found for hundreds of thousands of
randomly selected pressure distributions, for a pushed disc and
a pushed square, respectively. In these figures the point of
contact between pusher and workpiece is unphysically chosen
to be outside the perimeter of the workpiece to ease problems
of numerical convergence.

Note that if the centers of mass of the disc and the square are
superimposed, the COR locus for the disc will entirely cover
the COR locus for the square. As discussed in Section II-H,
this is because the disc entirely covers the square, so any
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motion of fence

COR locus boundary

Fig. 7. A typical pushing problem and the boundary of the COR locus
found. A point pusher is advancing horizontally, and is pushing the edge of
a workpiece. The circle represents the circumscribing disc for which the
center of rotation locus can be found. The bold outline is the boundary of
the COR locus for this pushing operation; regardless of the actual pressure
distribution supporting the workpiece the center of rotation will lie
somewhere in this boundary. Any kinematic result can be obtained once the
COR locus has been found.

pressure distribution on the square could be a pressure
distribution on the disc. The COR which results from any
pressure distribution on the square therefore must also be a
possible COR for the disc. To bound the COR locus for any
workpiece it is therefore only necessary to find the COR locus
for a disc which circumscribes the workpiece of interest.

Next we approach the problem analytically. We express the
energy lost (o sliding friction for a fixed advance of the pusher
dx as an integral of the pressure distribution P(#). The disc
will seek that COR which minimizes the energy lost to sliding
friction. Minimizing this energy with respect to the location of
the COR, we find an intrinsic solution for the COR in terms of
two moments of the unknown pressure distribution P(#). The
COR is related to the ratio of these moments. When the pushed
workpiece is a disc, we are able to identify two classes of
pressure distributions which are responsible for extremal
values of the moment ratio, and therefore also are responsible
for extremal values of the COR. These special pressure
distributions are simply dipods: pressure distributions consist-
ing of just two points of support. In one class of dipods, one
point of support is anywhere on the perimeter of the disc and
the other diametrically opposite it. The second class is only
slightly more complicated. By solving for the COR analyti-
cally for these special classes of pressure distributions, the
boundary of the COR locus is found.

In Fig. 7 we show a typical pushing problem and the
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Fig. 8.

Fiplod) versus o, and construction of the tip line. The most useful
point on the COR locus boundary seems to be the tip, as this is the COR for
which rotation of the workpiece is slowest. The distance to the tip (from the
CM) is given by the simple formula r,, = */&-C. As the angle of the
pushed edge « is varied, the tip of the COR locus sweeps out a straight line
called the tip line.

boundary of the locus of all possible centers of rotation of the
pushed workpiece.

Note that the COR locus is symmetric about the angle of the
pushed edge «, which is shown as a line « in Fig. 8. The
farthest point of the COR locus from the CM falls on . For
most applications this “‘tip™ of the COR locus is of particular
importance, as it specifies the slowest possible rotation of the
workpiece as it is pushed, regardless of the pressure distribu-
tion. The distance r;, from the center of the disc to the tip of
the COR locus has a simple relation to the parameters of the
problem

a?

Fip 5.7 2
This formula has an interesting geometric interpretation. As
the edge angle « is varied, the tip of the COR locus traces outa
straight line called the *‘tip line,”” and shown in Fig. 8. The tip
line is perpendicular to € and a distance @*/c from the CM.
Simple formulas exist for the curvature of the boundary of the
COR locus at the tip {and at the interior end as well), and for
the points of intersection of the boundary of the COR locus
with the perimeter of the disc. For most purposes, the
formulas for these points of the COR locus suffice, and it is
unnecessary to find the entire locus.

As an application of the results so far, we can calculate the
maximum distance it is necessary to push a polygonal
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Fig. 9 Constructivn of the COR sketch. When the coefficient of friction

between pusher and edge of workpiece u. > 0, the locus of possible COR’s
can be censtructed from two of the simpler COR loci which we calculated
for p, = 0. The two u. = 0 loci are shown in outline, while the COR
“‘sketch’” for a nonzero g, is shown shaded. Depending on where the COR
falls in the COR sketch, slipping of the workpiece {either up or down)
relative to the pusher, or sticking, may be predicted.

workpiece with a frictionless fence, in order to guarantee
alignment of an edge of the workpiece with the fence,
regardless of the pressure distribution beneath the workpiece
[see equation (42)].

As noted, the COR loci discussed above apply only when
K, the coefficient of ‘“contact friction’ between the pusher
and the pushed workpiece, is zero. In Section VI we generalize
t0 u. > 0. The COR locus for . > 0 turns out to be a
combination of two of the COR loci calculated for g, = 0. The
two COR loci used are those with *‘effective’” edge angles
o + tan~’ u,. Part of each of these two loci, plus a linear
segment just above the tip line, constitute all the possible
centers of rotation for g, > 0. In Fig. 9, the shaded and bold
sections are the resulting COR locus for p. > 0. (Similar
“*effective angles”” were shown in Mason and Brost’s figure 5
[12].)

As examples of the g, > 0 results we find the distance a
polygonal workpiece must be pushed by a fence to assure
alignment of an edge of the workpiece with the fence, now
with p, > 0. We also analyze the motion of a sliding disc as it
is pushed aside by the corner of a2 workpiece in linear motion.
Finally, we study the effectiveness of an open-loop manipula-
tion strategy based on *‘herding’’ a disc toward a central goal
by moving a pusher in a decreasing spiral about the goal.

A. Minimum Power Mechanics

Suppose that the geometry of a pushing operation is
specified; that is, the radius ¢ of the disc enclosing the
workpiece, the point ¢ at which the workpiece is being pushed,
and the angle « of the flat surface involved in the push. If we
suppose further that a single pressure distribution is specified,
then a unique COR at a single point must be the result.
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Our system is constrained because the pusher and the
workpiece are in contact, the pusher is advancing a distance éx
in a given instant, and the workpiece must slide enough to
accomodate the advance of the pusher. The COR could be at
almost any point in the plane, and still allow the workpiece to
accomodate the advance of the pusher. However, some of
these locations will require a greater rotation of the workpiece
{about the COR) to accomodate the advance of the pusher than
do others.

To solve for the COR we use a formulation of Newton's
laws for constrained motions which we call minimum power
mechanics [21]. Minimum power mechanics expresses the
intuitively appealing idea that the motion a system makes
{e.g., the COR about which the workpiece actually does
choose to rotate) will be the one for which the energy
dissipated to sliding friction is minimized.

We have proven that minimum power mechanics is correct
under some fairly restrictive conditions [21]: slow (quasi-
static}) motion is required, and the only dissipative forces
which may occur in the system are (slightly generalized)
analogues of Coulomb friction. The present system qualifies.
(Minimum power mechanics should not be confused with the
principle of virtual work, which applies to static systems
without dissipation, and sets energy to zero rather than
minimizing it.) Recently, Goyal and Ruina have done further
work on minimization principles in quasi-static mechanics [5].

B. Notation

* Vectors are indicated by an arrow, e.g., 7.

¢ 7 is the vector from the CM to the COR. r is the
magnitude of that vector, i.c., the distance from the CM
to the COR.

* A Greek letter is used to represent both an angle and a
unit vector which makes that angle with respect to the x-
axis (measured CCW). An arrow is used to indicate the
unit vector: & = (cos o, sin «).

* We indicate functional dependence with subscripts, E, is
a function of 7 (the COR).

* All integrals are over the area of the disc.

¢ Curly brackets indicate a locus of values of a quantity.

IV. SoruTion For THE COR Locus

In this section we compute the energy that is dissipated due
to friction when the pusher advances a distance dx, as a
function of the center of rotation 7, and for a given pressure
distribution P(#). We will then minimize the energy with
respect to 7 to find the COR about which the workpiece
actually does choose to rotate.

It may help to imagine the disc “‘pinned’” at the COR, This
is not difficult to imagine if the COR happens to fall inside the
perimeter of the disc, and one’s intuition can be extended to
include the case where the COR is outside the perimeter.
Either way, the disc is free to rotate only about the COR, and
the COR itself stays stationary.

Given the COR, the motion of the disc is fully determined
when we apply our constraint: the edge being pushed (at &)
must move out of the way of the advancing pusher, but stay in
contact,
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Fig. 10. Relation between advance of pusher (5x) and rotation about the
COR (58). For fixed COR the pusher may advance a distance 6x while the
workpiece rotates an angle df about the COR. &x consists of two parts:
movement of the workpiece edge (5x/), and slipping of the pusher along the
edge (6x3).

A. Relation Between Motion of the Pusher and Rotation
of the Workpiece

In order to accommodate the advance éx of the pusher, the
disc will rotate an amount 6 about the center of rotation 7. A
rotation of 86 allows an advance of the pusher dx consisting of
two parts, as shown in Fig. 10.

dx,=0868|T—7F| cos 8=066(c,—r,)

tan @
6X2 = 6x1 =40
tan o tan o

Cx— 1Ty

3

Note that dx, corresponds to slipping of the point of contact
along the workpiece edge.

Defining the unit vector & = (cos o, sin o) we can write

5x=6x1+6x2=.5—9&'- (c-7r). 4)

sin &
To avoid proliferation of absolute value signs, henceforth
a-(C ~ 7) will be taken to be positive. Considerations of
symmetry will atlow application of the results to cases where
& (¢ — T) is negative. Physically, &-(¢ — 7} > 0
corresponds to clockwise rotation of the workpiece as it is
pushed.

B. Energy Lost to Friction with the Table
An area element of the disc at # suppotts a force P(#) dWw
normal to the table. The element will slide a distance

50| #—F|

&)
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due to the rotation 68 about the center of rotation ¥, and in the
process will dissipate an amount of energy

dE,=p, P(#W) dW 80 | w—T|. (6)
Integrating over the area of the disc, the total energy dissipated
due to rotation 48 is

E—5 3u§£P(W)|W—?1 dw %)
where we write E, to remind ourselves that the energy is a
function of the presumed location of the center of rotation 7.
Substituting for 66, we have

_ Oxpssina

E=2P 2 A p(w) |97l aw. (8)
& (T-T7)

The system will find a location for ¥ which minimizes £,. At

this minimum, the derivatives of £, with respect to both F, and

7, must be zero. Evaluating the derivative of E, with respect to

7 and setting it equal to zero we find

(d,&—7, & (T-T)
- i —0
VE =8x p; sin o FREtE L )]
where
d= g P(W) |%—F| d# (10)

a scalar, can be physically interpreted as the weighted
distance from the COR to the pressure distribution, and

w—r
dw

(11}

v=| Pim) ——
|W—F

a vector, can be interpreted as the weighted direcrion from the
COR to the pressure distribution.

C. A Digression: Iterative Numerical Solution

Minimization of E, can be carried out in an iterative manner
to find the COR for a given pressure distribution P(W). Fig. 5
shows the locus of COR’s obtained in this manner. Each point
is the COR for a randomly chosen three-point pressure
distribution. Only pressure distributions consisting of three
points (a tripod) need be considered since according to
Mason’s theorem 5 [10] three points are sufficient. Weights
were computed for the three points in such a way as to satisfy
the constraint that the CM be at the center of the disc. (If this
required any of the weights to be negative, the tripod was
discarded.) An initial guess was made for the location of the
center of rotation 7, and VE, evaluated at that point.

The minimization technique used requires computation of
V(VE,), the second derivative of E, (a two-by-two muatrix),
which can be obtained analytically. A new guess for 7 is then
made by adding to the old guess

~VE,

AF=— "
V(VE,)

(12)

This method usually converged quickly if the initial guess was
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sufficiently close to the correct answer. By moving only one
leg of the tripod at a time, and by only a small amount, the
value of 7 found for one tripod could be used as an initial guess
for the next. Fig. 5 represents 590 000 tripods, taking 4 CPU
hours on a VAX-780. Similar figures done with four points of
support instead of tripods are identical, numerically validating
Mason’s theorem 5 {10].

D. Analyvtic Solution

Resuming our analytical discussion from Section IV-B, we
set VE, = 0 in (9). The constant terms drop out leaving

rrta=g,la - (t-7)] (13)

where we define the quotient moment, a vector, as
g=r*— (14)

with 7, and o, given in (10) and (11). , is a function of the
COR 7 and the pressure distribution P(#), and has units of
distance. In this section we hold the center of rotation F
fixed, and analyze the quotient moment for all pressure
distributions P(#).

The quotient focus {§,} is the set of g, for all possible
choices of the pressure distribution P{ W) consistent with the
requirements listed in Section II-E. It is still a function of ¥,
but the dependence on P{ W) has been removed. Unfortunately
we have been unable to develop any physical intuition about
the meaning of the quotient locus. We regard it merely as an
intermediate mathematical construction, more tractable than
the COR locus to which it is related.

We will always plot the quotient locus displaced by F, i.e.,
based at the COR. { 7,} may be plotted as a region of space, if
we remember that a given § € { g, } is a vector with its tail at
the COR and its head anywhere in that region,

We will find the boundary of the quotient locus. The resuits
will allow us to find the boundary of the COR locus in Section
IV-I.

To simplify discussion, we take the total weight of the
workpiece Mg = 1, that is

Mg=5P(fv’)dW’=1. (15)

Since multiplying the pressure distribution P by a constant
factor changes both numerator and denominator of g, by that
same factor, the assumption is harmless. Physically, the mass
of the disc has no effect on the motion, so we can choose it
arbitrarily.

E. Extrema of the Quotient Locus

Since ¥, (11) can be interpreted as a weighted average of
unit vectors from the COR to the pressure distribution, the
greatest magnitude U, can have will be 1, and will be attained
when the pressure distribution is concentrated at the CM. In all
other cases, the direction to elements of the pressure distribu-
tion varies, and so some cancellation is inevitable. When the
magnitude of U, is maximal, it must be directed from the COR
to the CM.

COR

Fig. 11. Dipod responsible for the smallest vaiue of 7, for r > a. We study
extrema of the moments i, and d, of the pressure distribution to find
extrema of the ‘‘quotient moment’” §, = 0,/d,. We study extrema of the
quotient moment g, to obtain bounds on the COR to which it is related. 7, is
the weighted unit vector from the COR ( F'} to the pressure distribution. It is
maximized when the pressurc distribution supporting the workpiece is
concentrated at the CM. When r > a, 5, is minimized by the pressure
distribution shown here: half the weight of the workpiece is concentrated at
each of the two points of support ), and #,, which are chosen to provide as
little agreement in direction frem the COR as possible.

W,

Fig. 12. Dipod responsible for a negative value of o, for r < a. If the COR
is within the disc (r < ), it is even possible to arrange for 7, to point from 7
away from the CM, by choosing the pressure distribution to be a dipod such
as this one. As w, is closer to the CM than w, it bears more than half of the
weight of the disc.

The smallest magnitude T, can achieve depends on whether
the COR is inside or outside the disc, i.e., on whether r > gor
r < a, where « is the radius of the disc. In either case we wish
to achieve the maximum amount of cancellation of direction
possible, If r > a, this occurs when the pressure distribution
consists of two points at opposite edges of the disc, providing
the minimum possible agreement on direction between the two
vectors, as shown in Fig. 1}

If r < a, we can arrange for v, to be zero. Indeed, we can
arrange for v, to point from the COR maximally away from
the CM by making a two-point pressure distribution as shown
in Fig. 12. (In the figure the distance from w, to the COR is
infinitesimal.) The two vectors W, and W, point in opposite
directions. To maintain the centroid of the pressure distribu-
tion at the CM, we find the weights of W, and W, are

Pi=— (16)

and
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a
Y = ——

Cr+a’
Therefore, W, is more heavily weighted than w,, and

a-r
v,= P+ Pyt = (P~ P p=— 13 (17
a+r

points from the COR away from CM.

Now consider 4, (10). Clearly, if the pressure distribution is
concentrated at the CM, the weighted distance from the COR
to the pressure distribution is just r. In fact, r is the smallest
value which d, can attain. In the configuration shown in Fig.
12

d=P -(a+r)+P, 0=r. (18)
d, takes on its maximum value when the pressure distribution
consists of two points as in Fig. 11. That value is

d.=(r*+a%)'2 (19
Since g, is the quotient of 7, and d,, extreme values of | g, |
occur when v, is maximal and ¢, minimal, and when ¥, is
minimal and d, maximal. Figs. Il and 12 illustrate the
pressure distributions which (simultaneously) minimize v, and
maximize d,, for r > a and r < a, respectively.

F. Numerical Exploration of the Quotient Locus

We can find the locus of all possible quotients numerically.
1t is much easier to find the { 7.} locus (for a given value of 7)
than it is to find the COR locus. No iteration is required; for a
given tripod, the moments ¥, and d, can be calculated
immediately. Figs. 13 and 14 show typical { &} loci forr < &
and r > @, respectively. The dots are values of g, found
numerically, while the solid curve is the empirical boundary of
the locus as described below.

The dots in Figs. 13 and 14 represent over 3 000 000 and
500 000 randomly chosen tripods, respectively. The solid
curves which appear to bound the dots are generated by two
classes of dipods, discussed below. On the basis of numerical
studies such as shown in these figures, we believe that no value
of G, generated by a tripod or any other pressure distribution
falls outside the dipod curve. Therefore, the dipod curve is the
exact boundary of {Z,}. We have not been able to prove
analytically that no value of g, falls outside the dipod curve, so
the boundaries should be considered empirically justified only.

G. Boundary for |COR| < a

We observe that for r < a the boundary of the locus is a
circle. This empirical boundary can be generated by two-point
pressure distributions (dipods) of the type shown in Fig. 15,
where the angle w can vary. These dipods are a generalization
of the one shown in Fig. 12. (The distance from 7 to W, is
infinitesimal.) We can then calculate a parametric form for the
boundary in terms of w

r

G =3 — (a5-F)
r+a

(20)
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Fig. 13, Quotient locus { &, } (dots), and empirical boundary (solid), for r <
a. Hundreds of thousands of randomly selected pressure distributions were
chosen, and for each the quotient moment was evaluated and plotted (dots).
All the observed values of the quotient moment fall within the boundary
(solid curve) generated by quotient moments of special pressure distribu-
tions consisting of just two points of support: dipods. In fact, the boundary
turns out to be a circle, the radius of which can be determined analytically.

Fig. 14. Quotient locus { §,} (dots), and empirical boundary {solid), for r >
a. As in Fig. 13, the guotient moments for randomly generated pressure
distributions all fall within the boundary generated by quotient moments of
a special group of dipods. Here r > a, and the bean-shaped boundary does
not have a simply named shape such as the circle we found for r < a.
However, it is still described by analytic formulas.

where & = (cos w, sin w). This generates a circle of radius

p=2 Q1)
r+a
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Fig. 15. Dipods contributing to the boundary of { .}, forr < a. Whenr <
a, i.e., when the COR turns cut to be within the disc. these are the pressure
distributions which are responsible for the boundary of the quotient locus,
and thus also are responsible for the boundary of the COR locus. They are
simply dipods, in which one point of contact between workpiece and sliding
surface is at the periphery of the disc, and the other point is internal to the
disc, near what turns out to be the COR. More than half the weight s
supported by the internal contact, as it is nearer 10 the CM. It is not
surprising that the workpiece rotates about a COR essentially coincident
with a point supporting most of the weight of the workpiece [5]. As the
internal point of support is moved in an infinitesimal circle parametrized by
angle w, the corresponding COR traces out the boundary of the COR locus
inside the disc.

H. Boundary for |COR| > a

For r > a, the empirical boundary of the locus {7, } is
generated by dipods of the type shown in Fig. 16, where o is
allowed to vary. These dipods are a generalization of the dipod
shown in Fig. 11. Again, the boundary can be calculated
parametrically from w (viz intermediate terms d*, d=, v+,
and vy} as

t=(rl+a’+2ar cos w)'?

cos y* =(l -sin? y*}!7?

- siny*' —-siny~ cosyt+4cosy”
U= ,
’ 2 2
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Fig. 16. Dipods contributing to the boundary of { .}, for r > a. When r >
a,i.e., when the COR turns out to be outside the disc, these are the pressure
distributions which arc responsible for the boundary of the quotient locus,
and thus also are responsible for the boundary of the COR locus. Again they
are simply dipods, but now in each dipod both points of contact with the
sliding surface are at the periphery of the disc, and so each supports half the
weight of the workpiece. As the dipod system rotates around the CM
(parametrized by angle w), the corresponding COR traces out the boundary
of the COR locus outside the disc.

godrd
2
v,
g,=r’—. (22)
g=r_

It is the boundaries of { §,} that will be used (in Section IV-I)
to determine the boundaries of the COR locus. Therefore, the
boundaries of the COR locus, too, can be found by considering
only dipods. This is a stronger statement than Mason’s
theorern 5, which requires tripods. Additionally, we have
found the two points constituting the dipods. However, it
should be noted that the sufficiency of tripods holds for any
workpiece, whereas dipods are sufficient only for a disc.
Figs. 13 and 14 demonstrate that the two classes of dipods
considered above, and illustrated in Figs. 15 and 16, generate
extremal quotient moments. In other words, the locus { g, } of
values of g, for all pressure distributions P( W) satisfying the
conditions of Section II-E fall inside the empirical boundary
generated by the above dipods. The boundaries themselves
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Fig. 17. Boundaries of quotient loci { g, } for various 7. As F'is changed, the
boundary of the quotient locus changes continuously. Sweeping F around
the CM causes a corresponding rotation of the quotient locus boundary.
Changing the distance of 7 from the CM changes the shape and size of the
quotient locus boundary.

are, of course, part of { Z,} since the boundaries are generated
by acceptable pressure distributions.

1. Analytic Form of the COR Locus

Having found a parametric representation of the { &, } locus,
we can find the COR locus. Recall the requirement for
minimizing the energy lost to friction (13)
(-7 (23)

ria=g.[a -

The COR locus is the set of all 7 for which there exists a §, €
{d,} satisfying (23).

Equation (23) is a vector equation. The left side obtains its
direction from . The right side obtains its direction from g,,
since & - (T — T is a scalar. To satisfy the vector equation g,
must have direction & We can rewrite (23) in scalar form,
retaining the direction constraint on &, separately

S ANCRN G (24)
where §, € {g,} and 7, || &.

We wish to find the locus of F for all distributions P(#w). It
is best to imagine 7 to be an independent variable. Each value
of 7 yields a locus {&,}, with one element §. € {g.,}
corresponding to each acceptable pressure distribution P(#).
For some values of 7 the value of §, required to satisty (24) is
in { 7, }; for other values it is not. The former values constitute
the COR locus.

It is confusing, but unavoidable, that the locus { &, } shifts as
we consider different locations of the center of rotation 7. In
Fig. 17 we have plotted several { ,} loci for different values
of 7. Note that varying the magnitude of ¥ continuously
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Fig. 18.

Variables of (24) for a value of 7 not in the COR locus. Is a
proposed value of F the COR of the workpiece for some pressure
distribution? First generate the quotient locus boundary for the proposed 7.
In this case it is a circle, because 7 falls within the disc. Now compute the
value of g, which would be required to satisfy energy minimization (24).
Plot it too. If §, falls within the quotient locus boundary (which it does not
here), then 7 is the COR of the workpiece for some pressure distribution.

changes the shape or size of the {§,} loci. But changing the
direction of Tonly causes a corresponding rotation of the { 7, }
locus.

The variables of (24) are shown geometrically in Figs. 18-
20. In each figure we have plotted a value of 7 and the locus
{g,} for that 7. We then calculate and plot the value of g,
required to satisfy {24). In Fig. 18, the value of g, required
does not fall in { g}, so the value of 7shown is not in the COR
locus. In Fig. 19, the value of &, required does fall in { g, }, so
the value of Fshown is in the COR locus. In Fig. 20, the value
of g, required to satisfy (24) happens to be on the boundary of
the {§,} locus. The boundary of the COR locus is generated
by such cases. Interior points of the COR locus are generated
when the §, required is interior to the { .} locus, as in Fig.
19. Since we are interested only in the boundary of the COR
locus, we will consider only values of §, which are on the
boundary of the { &} locus, as shown in Fig. 20.

J. Solution for the {COR| < a Part of the COR Locus

It will be convenient to represent the COR by its polar
coordinates (r, €), and to define the relative angle 5. Both
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Fig. 19. Variables of (24) for a value of F'in the COR locus. Here &, does
fall within the quotient locus boundary, so the COR is at 7 for some pressure
distribution.

angles are shown in Fig. 20. We have
Ee=Tt+a—1.

(25)

If r < a, the boundary of { g} is a circle. The condition that
g, lie on the circle can be expressed as
[|g |\ @+ (r-b)E|=b (26)

where b is the radius of the circle, from (21). Equation {26)
can be expressed in terms of the angle n as

(||~ (r—b) cos 9)*+{(r—b) sin n)*=6%  (27)
Solving this quadratic equation for | §,| we find
|G| ={(r—b) cos n£ (b2 ((r~b) sin 9)*)"2. (28)

Inserting this value of | g, | into (24) and eliminating the square
root we obtain

r? 2
(_.—"i.—..‘—(?’"b) cos n) =b2—((r—b) sin n)*.
(¢-r)

&

(29)
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a

Fig. 20. Variables of (24) for a value of Fon the boundary of the COR locus.
Here 7, falls on the boundary of the quotient locus, so Fis on the boundary
of the COR locus. We could test all values of F to see if they fall on the
boundary in this way. Instead, we generate the boundary of the quotient
locus (parametrized by an angle w in the dipods) and solve for the value of F
which gives rise 10 a §, satisfying this figure.

Substituting b from (21) and simplifying we find

ri{a+r)+(r—a)la& - (€-M)?

=2r¥& - (E-F)lcos =0 (30)
where [&(C — F)] = & T + rcosy.

Equation (30) is cubic in r and quadratic in cos 5. The
solution for cos # is

ri{r+a)’+(ad - W) —a(& - 0)

cos =
rir+a)

(31

The other quadratic root is invalid. Since 7 is related by (25) to
the polar angle ¢, (31) describes the boundary of the COR
locus in the polar coordinates r, €, for r < a. A typical COR
locus boundary generated using (31) is shown in Fig. 21.

1) Extremal Radius of the COR Locus Boundary for
| COR| < a: The minimum radius of the COR locus boundary
occurs at € = «, which corresponds to 4 = 7. From (30) we
find
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a(d - )

T2a+(@-0) 32

Fmin

Note that ry, is not the minimum distance from the CM to an
element of the COR locus; that distance is zero. ry, is the
minimum distance from the CM to the boundary of the COR
locus. ry, is indicated in Fig. 2t.

It will also be useful to have the angles at which the COR
locus boundary intersects the disc boundary. From (31) we
obtain

)iE+4a)2—(d - T)
2a

((a -

COS Ny=a= (33)

From (30) we can find the radius of curvature of the COR
locus boundary at ry;, to be

a{d - EW(& - ¢)+24a)?
5= — . (34
(& - T +4a(& - T)+8a¥(d * T)+4a’

K. Solution for the |COR| > a Part of the COR Locus

If r > @, we cannot find a simple equation analogous to (26)
constraining §, to the boundary of {Z}. An effective
approach is to parametrize the boundary of the { g} locus by
the angle w of (22), and solve for both e and r by binary
search.

For each w the following procedure is used: We guess a
value of r, in the range @ < r < 1y, where rg, is an upper
bound to be found in Section IV-J1. Equation (22} is then used
to calculate a value of §,. Angle 7 is related to the terms of (22)
by

-

5 = arctan

(35)

e

Yy

and so can be computed from . Equation (24) can be written
in terms of the angle 4 as

ri=|g (& T+rcosy) (36)
which is easily tested. If it is satisfied, we have found angle
and magnitude 7 describing a point on the boundary of the
COR locus. ¢ is then obtained from # using (25).

If the left-hand side of (36) is greater (respectively, less)
than the right-hand side, we increase (respectively, decrease)
the value of r guessed above. In this way we perform a binary
search, quickly converging on a solution for r and e.

Fig. 22 shows the boundary of the COR locus for various ¢
and o. The part of the boundary inside the dis¢ was computed
using (31), while the part outside the disc was found by binary
scarch as outlined here. Calculation of each locus required
about 2 CPU seconds on a VAX-780.

1) Tip Line: We can calculate the extremum of the COR
locus analytically. For many purposes this may be all that is
required. Additionally, it gives us a range within which to
conduct the binary search discussed in Section 1V-K. By
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Fig.21. COR locus boundary for r < @. Shown is the part of the COR locus
boundary internal to the disc. The pressure distributions which give rise to
COR’s on the bold boundary are dipods, with one point of support at the
COR and the other on the periphery of the disc as far as possible from the
COR. r.;, is the minimum distance from the CM to the boundary of the
COR locus. Note that £, is not the minimum distance from the CM to an
element of the COR locus; that distance is zero.

symmetry, r takes on an extremal value when n = 0. In Fig.
16 this corresponds to v, = 0, which in turn occurs only when
w=0o0rw = w2

The extremum at = 0 has no apparent meaning, At w =
w2 we find from (22)

3
7=d ;- 37
At this value (24) yields
a?
Np==—= - (38)
&-C

This is the greatest distance 7 may be from the CM, and it
occurs at polar angle e = 7 + «. In Fig. 8 we plot ry, versus
contact angle «, for a given value of €. As « is varied, the tip
of the COR locus at distance sy, from the CM traces out
a straight line, the tip line.

The use of this graphical construction is illustrated in Fig. 8.
For a given value of a, as shown, ry, is at the intersection of
the tip line described above with a ray from the CM at angle
T + «.

An interesting case occurs when & becomes perpendicular
tc . (Note that this does not require o« = 7/2.) As&@ T~ 0,
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Fig. 22. Boundaries of COR loci for various T and a. The pressure
distributions which give rise to COR’s on the boundary of the COR locus
external to the disc are dipods, with both points of support on the periphery
of the disc diametrically opposite each other. The boundary is generated as
the angle « parametrizing the dipods is varied (Fig. 16). In the figures the
point at which the workpiece is being pushed is indicated by an arrowhead,
and the angle (o) of the edge being pushed is indicated by the line the
arrowhead contacts. (In several cases the arrowhead is outside the disc; this
is unrealistic.)

we have ry, — o0. The COR at infinity corresponds to pure
translation perpendicular to @. In Fig. 22, sketch (C) shows a
case in which & is almost perpendicular to . Note that ry,
o does not mean that pure translation is assured; only that it is
possible. The COR may fall at any distance less than ry,.

The radius of curvature of the COR locus boundary at the
tip can be found analytically to be

gt (39)
1T
2 at

L. Symmetries of the COR Locus

We now have the ability to quickly compute the COR locus
for any T and «.

The COR locus is a function of four parameters: the disc
radius a, the edge angle o (which may be the angle of the
pushing fence or of the workpiece edge pushed, measured with
respect to the line of motion of the pusher), and the two
components of the point of contact & between pusher and
pushed workpiece. However, the COR locus is really much
simpler in functional dependence than the existence of four
parameters would seem to imply.

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL_ 4, NG. 6, DECEMBER 1988

The most obvious symmetry is one of total size: if both &
and @ are changed by a factor of y, the COR locus will be
scaled by a factor of y as well.

Note that the COR locus has an axis of symmetry through
the CM at angle &. The “‘tip’’ of the locus falls on this axis of
symmetry, and the tip line construction {Section IV-K1 and
Fig. B) makes use of this symmetry.

The shape of the COR locus depends o7y on the distance of
the tip of the locus from the CM, @%/ & - €, as a multiple of the
disc radius @. If COR loci for various tip distances are
precomputed, we need only select the appropriate one, scale it
by the disc radius @, and tilt it at the appropriate angle c.

Finally, the COR locus can depend only on the force and
torque applied by the pusher. Displacing the point of contact ¢
perpendicular to the edge angle « (i.e., along the line of action
of the applied force) changes neither force nor torque, and
therefore cannot change the COR locus. In Fig. 22, the COR
loci in sections A and B are identical because the point of
contact & has been displaced perpendicular to the edge.

M. Summary

We have found the houndary of the COR locus for any
choice of € and «. Within the disc, the boundary is given by a
simple formula relating r and e, the polar coordinates of the
boundary (31). Outside of the disc, the polar coordinates of the
boundary are found by binary search as outlined in Section IV-
K. For most applications it is not necessary to find the entire
COR locus boundary, as simple formulas exist for several
important points on the boundary. Most important of these is
the tip-line construction described in Section IV-K1.

Slightly more discussion of the boundaries of the quotient
locus (Section IV-G) is in order. The quotient locus is an
intermediate mathematical construction whose boundaries are
transformed directly into the boundaries of the COR locus.
The boundaries of the quotient locus were found by making an
informed guess as to the pressure distributions which give
rise to the boundaries. This guess was tested by extensive
computer simulation of random pressure distributions. These
numerical results suggest that the analytic quotient locus
boundaries were indeed correct: no randomly generated
pressure distribution ever appeared which landed outside the
analytic boundary of the quotient locus. Because of the
empirical justification of the boundaries of the quotient locus,
however, our derivation of the analytic boundaries of the COR
locus is not rigorous. It may well be that it was this step
(requiring computer testing) which prevented analytic selution
for the COR locus long ago (6], (8], [17].

V. APPLICATION

A useful application of the results found above is to the
problem of aligning a workpiece by pushing it. In Fig. 2 a
misoriented rectangle is being pushed by a fence. The fence is
moving in a direction perpendicular to its front edge.
Evidently the rectangle will rotate CW as the fence advances
[10], and will cease to rotate when the edge of the rectangle
comes into contact with the front edge of the fence [2]. The
problem is to find how far the fence must advance to assure
that the CW motion is complete.
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Fig. 23. Initial configuration of workpiece and fence, and resulting COR
locus. The fence travels horizontally and contacts the shaded workpiece as
shown. As the fence advances the workpiece rotates clockwise at a rate
which depends upon the location of the COR, The workpiece is circum-
scribed by a disc of radius @, since this is the only shape for which we can
find exact COR locus boundaries. The ice-cream-cone shaped COR locus
boundary is shown. The minimum rate of rotation occurs when the COR is
at the tip of the locus.

The geometry of this problem differs from the geometry
used in previous sections. Previously, a point pusher made
contact with a straight workpiece edge. Here, the siraight edge
of the pusher makes contact with a point (corner) of the
workpiece. But since the coefficient of friction between the
pusher and the edge of the workpiece (u.) is zero, we know
that in either case the force exerted by the pusher on the
workpiece is normal to the edge, regardless of whether the
edge is that of the pusher or that of the workpiece. Since the
motion of the workpiece can depend only on the force applied
to it, the angle of the fence takes the place of the angle of the
workpiece edge (), and all the results derived above remain
unchanged.

In this section we will generalize the problem slightly,
relative to the problem illustrated in Fig. 2:

® The workpiece pushed is arbitrary, not a rectangle.
* The motion of the fence is not necessarily perpendicular
to its face,

First we circumscribe a disc of radius @ about the workpiece.
The disc is centered at the CM of the workpiece (Fig. 23).
Note that the contact point need not be on the perimeter of
the circumscribed disc.
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Fig. 24, Final configuration of workpiece and fence, and reselting COR
locus. Finally, the workpiece has rotated into alignment with the fence. At
the moment before alignment the COR locus boundary is as shown, We
want to determine the maximum advance of the fence which could possibly
be required to get from the orientation shown n Fig. 23 to the one shown
here. So we assume that the COR is always at the tip of the locus, which is
the point for which the workpiece rotates most siowly as the fence
advances.

We know [10] that the workpiece will rotate CW, and will
cease to rotate when the final configuration shown in Fig. 24 is
reached.

We now ask the rate of rotation of the workpiece about the
COR, with unit advance of the pusher. Let the angle of the CM
from the direction of motion of the pusher be 8. This is also
the angle between the tip line and the perpendicular to the line
of motion. (Both angles are indicated in Fig. 23.) From (4) we
have

as _

bx=-———a - (¢-TF)
Sin o

(40)

where 7 is the distance from the CM to the COR. The rate of
rotation per advance of the pusher, d3/dx, depends on where
the COR F falls within the COR locus. Since we wish to find
the longest push which could possibly be necessary to achieve
a certain amount of rotation, we need to know for which 7 in
the COR locus dB/dx is minimized, i.e., we consider the
worst case location for 7. This occurs when Fis at the tip of the
COR locus. Therefore we have

dg

sin o

6x=

& (T~Tip)- (41)
Using ry, from (38), this can be integrated to yield the
indefinite integral

_ —csin (a+,6’)_ a?

x= - - log
sin o 2¢ sin o

I +sin (a+8)
1—sin (e +8)| "

(42)
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To find the maximum pushing distance Ax, required to cause

the workpiece to rotate from its initial configuration shown in

Fig. 23 to its final configuration shown in Fig. 24, we simply

substitute the initial and final! values of 3 into (42), and take the

difference Xpna — Xiniia-

VI. Sorution For THE COR Locus IncLuping ContacT
FriCcTION

Up to now we have assumed that the coefficient of friction
between the pusher and the edge of the pushed workpiece was
zero, i.e., g = 0. The pushing force was therefore normal to
the edge being pushed. Since the motion of the workpiece can
depend only on the force applied to it, we will designate the
locus we found {COR}, to indicate its dependence on the
force angle, which is perpendicular to &.

We know how to generate the COR locus for a given angle
of applied force. Unfortunately, when g. > 0, it is not
possible to tell what the force angle will be. We will describe
angular /Jimits on the force angle in Section VI-A, but within
those limits the force angle depends on the pressure distribu-
tion, which is not known. If we already knew that the COR
would be at a certain point, however, it would then be possible
to find the force angle.

Our approach to this problem is to seek COR’s which are
consistent with the force angle which gives rise to them. For
each force angle ¢ within the angular limits, we generate
{COR},. For each COR in {COR}, we find the force angle
implied. If the force angle implied matches ¢, that COR is a
possible one for the workpiece. This formulation seems to
threaten a great deal of computation, which in fact is not
required.

We will refer to the set of consistent COR’s as the COR
sketch, to distinguish it from the elementary COR loci
{COR}, produced for known force angles. Two elementary
COR loci will be used in the construction of the COR sketch.
in the figures, these COR loci will be left visible in outline,
while the actual COR sketch—the consistent COR’s—will be
shown shaded.

A. Contact Friction and the Friction Cone

Let u, be the coefficient of friction between the pusher and
the workpiece. If u. > 0, two distinct modes of behavior of
the system are possible: sticking and slipping. In Fig. 2,
sticking means that the element of the fence in contact with the
corner of the workpiece remains invariant as the pusher’s
motion proceeds. Referring to Fig. 3, sticking means the
element of the workpiece edge which is in contact with the
pushing point remains invariant as the pusher’s motion
proceeds. Slipping is simply the case in which either the
element of the pusher or the element of the workpiece, which
are in contact with each other, changes as the motion
proceeds.

Define
(43)

v=tan~! ..

In Fig. 25 we construct a friction cone, of half angle », at the
point of contact ¢. The cone is centered on the edge normal, at
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o

maotion of pusher

{riction cone

Fig. 25. Construction of the friction cone. The force which the pusher
applies to the workpiece edge must lie within the friction cone shown. If we
attempt to apply a force at an angle falling outside the friction cone, friction
cannot support the component of force tangential to the workpiece edge.
The pusher will then slip along the workpiece edge, and the actual force
applied will lic along one extreme of the friction cone. If we apply a force
which lies within the friction cone, the pusher witl not slip relative to the
workpiece edge.

angle o« — 7/2 relative to horizontal. Note that the edge may
be either that of a fence, where it contacts a corner of the
workpiece (as in Fig. 2), or an edge of the workpiece, where it
is touched by a corner of the pusher (as in Fig. 3). The friction
cone is a well-known construction in classical mechanics.
(Recently, Erdmann [3] has extended the friction cone to
configuration space.)

The component of the applied pushing force tangential to
the edge, F|. is supported by friction. Its magnitude cannot
exceed p F, , where F, is the component of force normal to
the edge. Therefore, the total applied force vector must lie
within the friction cone.

If we attempt to apply a force to the workpiece edge at an
angle outside of the friction cone, friction cannot support the
tangential component of force. The result is slipping along the
edge, and the actual applied force is directed along one
extreme of the friction cone. If we apply a force within the
friction cone, friction is sufficient to support the tangential
component of force, and slipping will not occur: we have
sticking.

In short, slipping is only consistent with a force vector at
one extreme of the friction cone, while sticking is only
consistent with a force vector within the friction cone. It is not
usually possible to tell if slipping or sticking will occur: often,
depending on the pressure distribution, either may occur.

B. Sticking and Slipping Zones

In this section we presume that the COR is known: a single
point is the COR for the workpiece. We divide the plane into
three zones, called the sticking line, the up-slipping zone,
and the down-slipping zone (Fig. 26). The up-slipping and
down-slipping zones are regions of the plane with positive
areas, while the sticking line is merely a line, but all three will
be collectively designated *‘sticking and slipping zones.’” The
motion of the workpiece is qualitatively different for the COR
falling in each of the three zones.

The sticking line is the line perpendicular to the pusher’s
line of motion, intersecting the point of contact between
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down

slipping
Zone

Fig. 26. Construction of zones: up-slipping, down-slipping, and sticking
line. The location of the COR has implications for slipping or sticking of the
pusher with respect to the workpiece edge. If the COR lies on the sticking
line shown, pusher and workpiece edge move along (horizontally) together
and there is no slipping of one refative to the other. If the COR falls in the
up- or down-slipping zones to either side of the sticking line, then the
workpiece has a vertical component of motion and so must slip relative to
the pusher (which moves horizontally).

pusher and workpiece (i.e., € lies on the sticking line). Since
we choose to draw the pusher’s line of motion horizontally,
the sticking line is vertical. The sticking line divides the down-
slipping zone, on its left, from the up-slipping zone, on its
right. Also shown in Fig. 26 is the edge normal line. Above
this line, the up-slipping and down-slipping designations are
reversed. The area above the edge normal will be unimportant,
however.

1) Sticking Line: First consider the workpiece’s motion
when the COR is on the sticking line. Recall that the motion of
any point of the workpiece is perpendicular to the vector from
the COR to that point. If the COR lies on the sticking line, the
workpiece’s motion at the point of contact is perpendicular to
the sticking line, and is therefore parallel to the pusher’s line
of motion.

Since the pusher’s line of motion and the workpiece’s
motion at the point of contact are parallel, the pusher and the
workpiece, at the point of contact, travel along together. There
is no need for one to slip relative to the other; the workpiece
and the pusher are sticking at the point of contact.

2} Slipping Zones: Now suppose that the COR is in the
down-slipping zone. The workpiece’s motion at the point of
contact has a downward component, relative to the pusher’s
line of motion. The pusher-wotrkpiece contact must be
slipping, with the workpiece moving down relative to the
pusher.

Similarly, if the COR is in the up-slipping zone, the
workpiece at the point of contact moves up relative to the
pusher as the pusher advances.

C. Consistency for Slipping

If we know that the workpiece is slipping relative to the
pusher (and whether up or down), then the force angle is
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known: it is at one extreme of the friction cone, perpendicular
toa + ».

If the COR lies in the down-slipping zone, the workpiece
moves down as the pusher advances. Therefore, the force
angle must be along the upper extreme of the friction cone, at
angle « + » — =/2. Similarly, if the COR lies in the up-
slipping zone, the workpiece moves up as the pusher
advances, and the force angle must be along the lower extreme
of the friction cone, at angle o« — » — #/2.

Combining the above observations, we see that if slipping
occurs, the COR must be either in {COR}, ., and the down-
slipping zone, or in {COR},_, and the up-slipping zone.
These two intersection regions are called the down-slipping
locus and the up-slipping locus. A very similar construction
was used by Mason and Brost in [12, figure 5].

The down-slipping and up-slipping loci are two components
of the COR sketch, because every COR in either locus is
consistent with the force angle that was used to generate it. We
construct the down-slipping locus of the COR sketch by
intersecting the down-slipping zone (left of the sticking line)
with {COR},,,. We construct the up-slipping locus of the
COR sketch by intersecting the up-slipping zone (right of the
sticking line) with {COR},,_,.

In Fig. 9, {COR}, ., and {COR},_, are shown in outline.
The down-slipping and up-slipping loci are the shaded areas
left and right of the sticking line, respectively.

D. The Sticking Locus

The third set of consistent COR’s belong to the sticking
focus. The sticking locus, together with the up-slipping and
down-slipping loci whose construction was described above,
are all the COR’s consistent with the force angle they
presume. The three consistent loci constitute the COR sketch.

If the COR lies on the sticking line, sticking occurs. The
force angle can be anywhere in the friction cone, i.e., between
o — v — w2 and &« + » — w/2. The sticking locus is
therefore the intersection of the sticking line with the union,
over all ¢ perpendicular to a force angle within the friction
cone, of {COR},. The sticking locus is shown as a bold
section of the sticking line in Fig. 9.

As discussed above, the two slipping loci are {COR},.. .,
possibly cut off by the sticking line. In calculating either
slipping locus, the force angle is known: itis o + » — x/2.
But in calculating the sticking locus (which is just a simple line
segment), the force angle is not known, except that it lies
within the friction cone. To find the endpoints of the sticking
locus exactly, we could form every locus {COR},, fora — »
< ¢ < « + v, and intersect each locus with the sticking line.
The union of these intersections is the sticking locus. This is
not an efficient method.

The lower endpoint of the sticking locus is of particular
interest. It is possible to approximate it by using the tip-line
construction described in Section IV-K1. The procedure for
finding the sticking locus described above is to form every
locus {COR},, fora — v < ¢ < o + », and intersect each
locus with the sticking line. As we vary ¢, {COR}, varies
continuously from {COR},_,, which is outlined in Fig. 9, to
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Fig. 27. Possible elementary configurations of the COR locus. (a) Pure
slipping. (b) Same-sided split. (c) Oposite-sided split. (d) Wrapped. As the
angle « of the pushed edge varies, the COR locus may intersect the three
zones in different ways, called distinct *“elementary configurations.”” The
entire locus may fall in the down-slipping zone (a). the locus may intersect
both slipping zones and the sticking line with the tip of the locus on one side
or the other (b) and {c), or the locus may **wrap” through infinity as shown
in (d).

{CORY}., ., also shown outlined. The tips of the extreme loci,
as well as of all intermediate loci, fall on the tip line. The tip
line is shown dotted in Fig. 9.

Were it not for the fact that each { COR} locus drawn dips
slightly below the tip line, the lower endpoint of the sticking
locus would be exactly at the tip line. We will use this
approximation. The small error so introduced can be bounded
{151, and is usually negligible.

Using the tip line to approximate the lower endpoint of the
sticking locus in this way depends on an unstated assumption:
that the tip of {COR}._, lies to the left of the sticking line
while the tip of {COR} 4, lies to the right of the sticking line.
This assumption is necessary so that the tip of some
intermediate locus { COR} will intersect the sticking line. In
Section VI-F, we will deal methodically with this problem.

The shaded slipping loci and the bold sticking locus of Fig.
9 contain all the possible locations of the COR.

E. Possible Configurations of an Elementary COR
Locus

The down-slipping, up-slipping, and sticking Joci play an
important part in the rest of this work. It is worth describing
the qualitatively different ways in which an elementary COR
locus {CORY}, can intersect the three zones {down-slipping,
up-slipping, and sticking line) in order to form the loci. These
qualitatively different types of intersections will be called
distinct elementary configurations. Later we will describe
the qualitatively different COR sketches which can occur; the
latter will be called distinct sketches. Two COR loci are used
in the construction of a COR sketch, so there are more distinct
sketches than distinct elementary configurations.
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(c) (d

Fig. 28. Possible elementary configurations with sticking line to the right of
the CM. The same four elementary configurations can be defined when the
sticking line is to the right of the CM. (a) Pure slipping. (b) Same-sided
split. (c) Oposite-sided split. (d} Wrapped.

For a given contact point &, changing « yields four distinct
elementary configurations of the resulting COR loci. In Fig.
27(a), the pure slipping elementary configuration, the entire
COR locus falls in the up-slipping zone. In Fig. 27(b), the
COR intersects all three zones, but the tip of the locus falls on
the same side of the sticking line as the CM. This is the same-
sided-split elementary configuration. As e is further de-
creased, the tip of the COR locus crosses the sticking line,
entering the opposite-sided-split elementary configuration, as
shown in Fig. 27(c). Finally, when « decreases to the point
where the edge normal at T intersects the CM, the COR locus
goes to infinity [10]. The COR at infinity implies pure
translation (with no rotation) of the workpiece as the pusher
advances. Beyond this point, the workpiece's sense of rotation
switches from clockwise to counterclockwise. For our pur-
poses in constructing a COR sketch, counterclockwise rotation
is unphysical [10], and so we will class this, and pure
translation as one elementary configuration, the wrapped
elementary configuration, as shown in Fig. 27(d). No partof a
““wrapped’’ locus will ever contribute to the COR sketch, yet
we will continue to draw its outline as shown in the figure.

The same four elementary configurations can be definec
(now with increasing «) when the sticking line is to the right o
the CM (Fig. 28).

F. Possible Distinct COR Sketches

Depending on o and g, each of the two elementary COF
loci {CORY, ., used in constructing the COR sketch may bt
any of the four elementary configurations described in Sectiot
VI-E (pure slipping, same-sided split, opposite-sided split, 0
wrapped). There are nine possible distinct sketches compose
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Fig. 29. Nine distinct COR sketches with respect to the sticking line.
Depending on the angle o of the pushed edge (not labeled here) and the
coefficient of friction u, (which determines the width of the friction cones
shown), the two elementary COR loci which contribute to a COR sketch
may intersect the slipping and sticking zones in nine Jifferent ways. Look
closely at each distinct sketch to understand the origin of the sticking locus
{the bold section of the sticking line}. The sticking locus is the intersection
of { COR}, with the sticking line, as ¢ is swept from o + vtoa — v. The
sweeping is always clockwise. In sketch (G), sweeping clockwise means
sweeping trom the pure slipping locus, clockwise, to the wrapped locus.
The intermediate loci therefore do intersect the sticking line, even though
neither locus {CORY, ., does.

of two elementary configurations, as shown in Fig. 29, (Of the
4% combinations, 6 are eliminated because the tip of
{COR},., cannot be left of the tip of {COR}, ,. The one
sketch in which both {COR},,, are “‘wrapped’’ elementary
configurations is inconsistent with clockwise rotation of the
workpiece.)

[t is worth looking carefully at each sketch, in particular to
understand the construction of the sticking locus. The sticking
locus is the intersection of { COR},, with the sticking line, as ¢
is swept from o + » to @ — ». The sweeping i1s always
clockwise. In sketch ((G), sweeping clockwise means sweep-
ing from the pure slipping locus, clockwise, to the wrapped
locus. The intermediate loci therefore do intersect the sticking
line, even though neither locus { COR}, ., does. Unless this is
understood the origin of the sticking locus in sketches (G) and
(H) will remain mysterious.

Several of the sketches shown in Fig. 29 have interesting
properties. In sketch (A4}, the workpiece must slip up relative
to the pusher. In sketches (B} and (D), the workpiece must
stick or slip up. In sketch (G), the workpiece must stick to the
pusher. In sketches (H) and (7), the workpiece must stick or
slip down. In the remaining sketches (C}, (£), and (F), either
mode of slipping, or sticking, is possible, depending on the
pressure distribution.

Analogous qualitative results are possible when the point of
contact € is to the right of the CM. The distinct COR sketches
for this case can be obtained from those shown in Fig. 29 by
reflecting about a vertical axis. (The pusher’s motion should
still be considered left-to-right, however.) The distinct
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sketches for counterclockwise rotation of the workpiece may
be obtained by retlecting about a horizontal axis.

VII. FroM INsTanTANEOUS MoTION 1O GROSS MOTION

We have shown how to find all possible instantaneous
motions of a pushed sliding workpiece, given only the
parameters ¢, €, and a. In some cases it is possible to say with
certainly that a particular kind of motion, such as sticking, can
or cannot occur. The set of possible COR’s, as found by
constructing the COR sketch, describes completely the possi-
ble instantaneous motions of the workpiece as long as those
parameters remain in effect. Usually however, the instantane-
ous motion which results changes the parameters {except the
radius a), so that a new COR sketch must be constructed.

Often we wish to calculate not the bounds on the instantane-
ous direction of motion, as above, but bounds on a gross
motion of the workpiece which can occur concurrently with
some other gross motion of known magnitude. (For instance,
we may wish to find bounds on the displacement of the pusher
which occurs while the workpiece rotates 15°.) Our approach
to dealing with gross motion follows a definite strategy, which
will be illustrated in the sample problems solved in Sections
VIII-X.

Suppose we wish to find the greatest possible change in a
quantity x, while quantity 3 changes from Siqiia 10 Bgina. From
the geometry of the problem we find an equation of motion
relating the instantaneous motions dx and 4. We then
construct the COR sketch for each value of 3. In each sketch
we locate the possible COR which maximizes dx/df3. Using
that COR, we integrate the equation of motion from Bigiia to
Brnal, ielding an upper bound for the quantity x.

Sometimes the possible COR which maximizes dx/d@3 can
be found analytically, or at least approximated analytically,
and sometimes it must be found numerically. When an
analytical solution is found, it may or may not be possible to
integrate the equation of motion in closed form using that
analytical solution. The examples which follow illustrate all of
these situations.

VIII. EXaMPLE: ALIGNING A WORKPIECE BY PUSHING WITH A
FENCE

In this example, we wish to find the maximum distance a
fence must advance after first contacting a workpiece, in order
to assure that an edge of the pushed workpiece has rotated into
contact with the fence. A typical initial configuration is shown
in Fig. 30, with the workpiece shown shaded. (Note that the
fence does not advance perpendicular to its front edge.) The
final configuration is shown in Fig. 31. (In Section V we have
solved this problem for the case where g, = 0.)

Also shown in Fig. 30 is the COR sketch for the initial
configuration, and the angle § between the line of motion and
the line from the point of contact to the CM. 3 is also the angle
between the tip line and the sticking line. Angle 8 changes
from 45° initially in Fig. 30 to 80° in the final configuration,
Fig. 31. Note that a 1° rotation of the workpiece about the
COR will produce a 1° change in 3 as well. We wish to find
the advance x of the pusher (fence) required to change 3 by
35°.
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The workpiece’s rate of rotation about the COR d8, for
advance of the pusher dx, is given by

g _ . .
dy = — a - (-7 (44)
Sin o
@, To find the maximum required pushing distance, we must find

the maximum value of & - ¥ for any possible COR Fin the COR
sketch. This will be the slowest COR; the one for which the
rotation of the workpiece with advance of the pusher is
slowest.

Reviewing the nine distinct COR sketches in Fig. 29. we sec
that the slowest COR 1s at the lower endpoint of the sticking
locus in skeiches (D), (E), (G), and (A}, We will call this
behavior sticking-stowest. It occurs when the tips of the two
loci {COR},., fall on opposite sides of the sticking linc.

In sketches (A), (B), (C), (F), and (I), the slowest COR is
an element of one of the slipping loci {COR},, ... We will call
this behavior stipping-slowest. It occurs when the tips of the
Fig. 30 Initial orientation of the fence and pushed workpiece. As the fence WO loci {CORY}, ., fall on the same side of the sticking line.

advances harizontally the four-sided workpiece rotates clockwise. The  (For the purposes of the rule given here, the ““wrapped™ loci

COR sketch is the shaded portion. plus the bold section of the sticking line . ketches (G). (H d havi heir ti h

called the sticking locus, The two elementary (p = 0} COR loci which in sketches ( ')- ( )’_ and (/) count as having their tip _to the

were used to generate the COR sketch are shown in outline. We need to find left of the sticking line.} In fact, the slowesl COR in the
the COR responsible for slowest rotation of the workpiece. This turns outto  glipping-slowest regime is very nearly the COR at the tip of

be at the lowest point of the sticking locus (marked **B""}, not at the tip of f the loci {COR Iti v b he angl f

one of the . = 0 loci as in the frictionless case considered in Section V. one of the loci { ] }“"—”" t 15 only _ecz?use the angie 0

symmetry o + v differs from « that the tip is nof the slowest

COR. We will use the tip of one of the loct {COR},, ., as an

| approximation to the slowest COR. The error introduced by

' o this approximation can be bounded [15] in terms of the radius

of curvature of the tip of the COR loci, but for practical
purposcs is negligible.

It is possible to have a transition from slipping-slowest
behavior to sticking-slowest behavior within a pushing opera-
tion, as 8 increases. Such a transition occurs when the tip of
one of the loci {COR} .. . passes through the sticking line. In
Fig. 32, for example, it is {COR}, ., which passes through
the sticking line. We may derive the condition for intersection

atl+ct=—altan S8 tan (et v+ 3). (45)

The tip of locus {COR},., is on the same side of the sticking
et line as the CM when the left side of (45) is less than the the
right side. The value of 8 at which the tip crosses the sticking

line may be found by solving (45) for 3

tan Bll"dll.‘-lll()ﬂ
¢ tan (et r)+{c* an® (a+v) —4a* (@’ + N7
= 2a? .

{46)

Eig. 3. Final (aligned) orientation of the lence and pushed workpiece. Here The pushing distances required to advance S from its initial
we show the COR sketch at the moment before the conclusion of the  value to the transison, and from the transition to the final

workpiece s clnclfwn-.c rotalion into ah_gnmem with the ‘fcnct.:. By this time value, must be evaluated scparately. In our example, the locus
the COR responsible for slowest rotation of the workpiece is no longer at

the bottom of the sticking locus but rather at the point marked " B™" which is {COR},., is type same-sided split initially, but changes to
the tip of onc of the elementary (g, = 0) COR loc type opposite-sided split. Using (46) we find Bransiion = 69.4°,
as shown in Fig. 32,
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MOTION OF FENCE

Fig. 32.  Transition from sticking-slowest to slipping-slowest behavior. This
is the moment of *‘transition”” from the COR responsible for slowest
possible rotation of the workpiece being at the bottom of the sticking locus
as in Fig. 30 to being at the tip of one of the elementary (. = 0) COR loci
as in Fig. 31.

A, Slipping-Slowest Regime

If the slowest COR is at the tip of one of the loci {COR},.,
we have

o 9B
X = . — .
sina (€=Tip) “47)
where
al
r(ip=

(@axv) ¢
which can be integrated to yield the indefinite integral

—csin (axr+pB) a?

sin o 2¢ sin o

I+sin (e+v+3)
1—sin (etpr+8)|

(48)

Since, in the example being considered, the motion from
Beransition = 69.4° until Bg,y = 80° falls in the slipping-slowest
behavior regime, we simply evaluate x at these two angles and
subtract. Here the ““—"" sign in “‘w + »’" is used. The
distance Ax obtained is one component of the maximum
required pushing distance to align the workpiece.
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B. Sticking-Slowest Regime

In Fig. 30 the slowest COR is the lowest point of the
sticking locus, labeled **B."” When the COR is at point “*‘B"
¢ — T may be easily approximated as

ct+a?

le-7|= (49)

csinf8’

(If the radius of curvature of the tip of the COR locus
boundary were zero this approximation would be exact. As it
is not zero, the bottom of the sticking locus drops slightly
below the tip line. This is a negligible effect, bounded in [15].
We will neglect it here.)

Note the absence of any dependence on the friction cone
angle ». This is because when the pusher and workpiece are
already sticking, further increase in u. has no physical effect.
To find the maximum required pushing distance it is only
necessary to integrate (47) with © — 7 as given here. We
obtain the indefinite integral

cl+a? 1—cos 8
x= . (50)
2c 1+cos 3
In our example, motion from S ia = 45° until Buansiion =

69.4° falls in the sticking-slowest behavior regime, so we
simply evaluate x at these two angles and subtract. The
distance Ax obtained is the second component of the maximum
required pushing distance to align the workpiece. The total
required pushing distance to align the workpiece is the sum of
the two partial results obtained from (48) and (50).

IX. ExampLE: MoviNG PoINT PUSHING ASIDE A Disc

In this example we consider a disc being pushed not by a
fence, but by a point moving in a straight line. The point may
be a corner of a polygonal pusher, as long as it is only a corner
of the pusher that touches the disc, and not an edge.

In all cases the outcome of the collision is the same: the disc
is pushed aside by the pusher, and contact is broken. The disc
ceases (o move at the instant the pusher loses contact with it
(we assume slow motion), so the disc will be lefi tangent to the
pusher’s path when contact is broken. The initial and final
configurations of the disc are shown in Fig. 33. We wish to
calculate the minimum and maximum length of the encounter,
Xencounter» 10 terms of the collision parameter, 3, as indicated
in Fig. 33. We might also wish to know the minimum and
maximum angles through which the disc may rotate during the
collision.

A. Length of the Encouhter

In Fig. 34, the variables of interest are x, which parame-
trizes the advance of the pusher along its path, and 3, which
completely characterizes the collision. 8 will vary from 8.,
its value at first contact, to 85, = #/2 when contact is broken.
Xencouner 18 the corresponding change in x, as 3 changes from
Binitial to 7/2.

If the instantaneous COR is known, the direction of motion
of the CM of the disc is known: it makes an angie # with the
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Fiz. 33. Configuration of the disc and the path of the pusher, before and
afier collision. A point pusher in linear motion encounters a disc. The
collision is characterized by an initial value of the *‘collision parameter’
B, After the pusher has translated a distance Xeocoumers the disc has
become tangent to the path of the pusher and the two break contact, ending
the collision. Bru is /2. During the collision the disc rotates an angle £.
We wish to place bounds on Xeneumer and o0 £

— = 3x

LINE OF MOTION lx)
OF PUSHER

%
Y

COR

STICKING LINE

Fig. 3. Finding equation of motion (51). If the COR were known, we could
find relations among: a) the motion of the CM of the disk Al, b) the change
in the collision parameter §3, and c) the advance of the pusher Ax.

horizontal, as shown in Fig. 34. If the CM of the disc moves a
distance Al along its line of motion, we can find the resulting
values of AS and Ax, and thereby relate AZ and Ax to each
other.

The pusher advances a distance

Ax=Alcos 8+ Alsin 6 tan 3 (51)
due to Al. At all times 3 can be found from
asin B=y+Alsin 0 (52)

where (x, ¥) are the coordinates of the point of contact.
Substituting A/ from (51), and evaluating the change insin g
due to Af, we find

Ax sin 6

A(si = .
ad(sin £) cos 0 +sin 6 tan 3

(53)
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Fig. 35. COR sketch for a point pushing a disc. The COR sketch for the
collision between pusher and disc. The angle of the cdge being pushed, ¢, is
the tangent to the disc at the point of contact ¢. Therefore one of the two
elementary COR loci which compose the COR sketch is **wrapped’” (Fig.
27). The COR sketch consists of only a down-slipping locus (left of the
sticking Fine) and a sticking locus. This is reasonable: it would be surprising
if the disc should slip up relative to the pusher.

For infinitesimal motions, A8 and Ax become d3 and dx.
Using d{sin 8) = cos 3dB, we find an equaticn of motion

dx=adp (sin ,6‘+Cos 6) .
tan #

(54)

Since it will turn out that tan # > 0, the largest and smallest
values of dx/dB will result when 6 assumes its smallest and
largest values, respectively.

Now we construct the COR sketch, shown in Fig. 35. Since
the edge normal at T passes through the CM, the extremes of
the friction cone pass to either side of the CM, for any p. > 0.
{COR},., is a “‘wrapped”” locus (as described in Section VI-
E), so the COR sketch must be that of Fig. 29 sketch (G),
(H), or (I). In any case there must be a sticking locus, there
cannot be an up-slipping locus, and there may or may not bea
down-slipping locus. In Fig. 35 we have shown a down-
slipping locus.

In Fig. 35 (and in general when the COR sketch is any one
of distinct types (G), (H) or (), the smallest and largest
values of 8 (Fig. 34) occur when the COR is at the lower or
upper endpoints, respectively, of the the sticking locus. For
sketches (G) and (H) the lower endpoint of the sticking locus
is well approximated by the intersection of the sticking line
with the tip line, and we will use this approximation
(neglecting the small effect of the curvature of the tip, though
this could be included). For the lower endpoint of the sticking
locus in sketch (7), and for the top of the sticking locus in all
three sketches, numerical methods would have to be used. We
will not find these numerical results here.

1) Greatest Length of Encounter: As in Section VIII-B,
we will neglect the slight dip of the sticking locus below the tip
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{Xeor, Yeor)

STICKING ms\

Fig. 36. Finding the smallest # (55). The length of the encounter between
pusher and disc is greatest if the COR is at such a location that # is minimal.
In most cases the bottom of the sticking locus is the location of the COR
which minimizes 8. Using the tip line construction we can find the minimum
value of f as shown here.

line, which results from the nonzero radius of curvature of the
tip of the COR locus boundary. We will also assume that the
COR sketch is of type (G) or (H), not (I), so that the lower
endpoint of the sticking locus can be approximated by the
intersection of the sticking line with the tip line. This
assumption will be addressed in Section IX-A2 below.

If the COR is at the intersection of the sticking line with the
tip line, we find from Fig. 36

X,
tan § = <COR

Ycor
Xcor= —a cos 8 (55)

and
sin? 3-2
Yeor=& —/——
sin 3

where ycog is found from the construction of Fig. 36. Using
¢ = a, (55) can be simplified to

cos 3 sin 8

tan @ .
l1+cos?2 g

(56)

Using this value of tan 6 in the equation of motion (54) results
in

1+cos? g
dx=ga df(sin §)+ ———— 57)
sin 3
which, integrated, yields the indefinite integral
l—cos 8
Xencounter = @ (ln m) . (58)

The maximum value of X,ycouner Can be obtained by evaluating
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(58) at Binisiy and B = w/2, and subtracting. The value at
/2 is zero.

2) Condition for Sketch Type (I): The above derivation of
Maximum Xe,coumer assumed that the lower endpoint of the
sticking locus is at the tip line. This is not true when the COR
sketch is of type (), in Fig. 29.

The COR sketch is of type (f) when the tip of {COR}...,
is left of the sticking line. Simplifying (45) for @ = ¢ and
o + 3 = wx/2, we find the condition for sketch (I} to be

tan 3>2 tan v=2p,. (59)
This means that the COR sketch will always become type (J)
as 3 — w/2, unless p, = oo. (u, = oo can occur, for example,
in pushing a gear, if a tooth is engaged by the pusher.) In every
case of pushing aside a disc, sketch (/) is entered eventually.

By using the tip line as the lower endpoint of the sticking
locus, despite the fact that this is a poor approximation in
sketch (I), we find 100 low a value for the minimum 6. Our
calculated maximum for Xecouer (58) is unnecessarily high.
We could in principle refine the upper bound by finding the
lower endpoint of the sticking locus more accurately by
murmerical methods,

As mentioned above, we are also neglecting the slight dip of
the sticking locus below the tip line (in sketches (G) and (H)),
which causes us to underestimate the maximum possible value
of Xencouner- Here too we could refine Xencounter DY numerical
methods.

Neglect of sketch (f), and neglect of the dip due to tip
Curvature, cause errors of opposite sign in calculating the
Maximum Xencouner- The latter is a smaller error. Neither error
will be addressed here.

3) Least Length of Encounter: The minimum possible
value of Xencouner OCCUTS when the COR is at the top of the
sticking Iocus. We do not have an analytical method of finding
or approximating the upper endpoint of the sticking locus, as
we have for the lower endpoint. The lower endpoint is
similarly hard to analyze if the COR sketch is of type () in
Fig. 29. In these cases it is necessary to find the endpoints
numerically for all 8 in the range of interest, calculate § for
each 3, and then integrate (54) numerically to find X.,couner-

B. Rotation of the Pushed Disc During Encounter

1) Maximum Rotation: In Section IX-A both the largest
and smallest possible values of Xeqcoumer resulted from COR’s
on the sticking line. If the COR remains on the sticking line,
the pusher does not slip relative to the surface of the disc, and
so evaluation of the rotation of the disc during the encounter,
Eencounter» 18 trivial, We have

& eacounter = @ {m/2 — Binitial)- (60

Since only up-slipping of the pusher is possible, {60) is an
exact upper bound for £.;couners any slipping will only serve to
reduce the rotation of the disc.

Maximal slipping is obtained if 4. = 0. The pushing force is
directed through the CM of the disc, so the disc can only
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COR

Fig. 37. Finding equation of motion (61). If the location of the COR is
known, the rotation of the disc £ can be related to the advance of the pusher
Ax.

translate and not rotate [10]. So if g = 0, we have £.pcoumer =
0 as both maximum and minimum rotation.

2) Minimum Rotation: We found in Section IX-A that
extreme values of dx/dB occur when # takes on extreme
values. Having constructed the COR sketch, we found that the
extreme values of 8 for possible COR’s are assumed when the
COR falls at the top or bottom of the locus. In this section we
will not be able to find a single geometric variable, analogous
to 6, whose extremes correspond 1o extremes of the rate of
rotation.

Rotation of the disc will be measured by the angle £,
measured at the COR, as shown in Fig. 37. We can relate AZ
to advance of the pusher Ax

Ax=/sin tdE. (61)

Combining (61) with (54) which relates A to Ax, we find

( ) Ccos B)

adf | sin B+ ——

Axe tan @ a8
Isin £ )

(62)

We can eliminate @ and { sin £ in favor of the coordinates of the
COR

Xcor
tan f=——
Ycor
IsinEf=asimf-y (63}
yielding
dEt a cos B+ Xcog Si
_E, {Vcor B+ xcor sin 8) ‘ (64)

ds Xcor (@ sin 8- Ycor)

This has no simple geometric interpretation. Contours of
constant d&/d3 are plotted in Fig. 38 for § = 45°. Minimum
rotation cccurs at minimum d&/dB. The COR sketch for g =
45° is superimposed on Fig. 38. The possible value of the
COR which is responsible for minimum rate of rotation is the
point of the COR locus which intersects the slowest valued
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Fig. 38. Contours of constant d£/d3, and the COR sketch. To find the
minimum possible rotation of the disc £ during its encounter with the pusher
we seek that location of the COR which minimizes £ for unit increase in the
collision parameter §, i.e., which minimizes 5£/58. Plotted are contours of
constant 5£/63. We must find numerically the point in the COR locus which
intersects the least contour. For the COR locus plotied, the least contour
intersected is about 0.46, and the COR which intersects it is, once again,
very near the tip of the COR locus.

contour line, indicated in the figure as point 4 (in this case
very close to the tip). Having obtained numerically the
minimum possible value of d£/df, as a function of 8, we can
numerically find the indefinite integral

ds
frn= | (d—6>mm (8) dB.

Minimum rotation in a given collision can then be evaluated by
subtracting i (Biniiar) rOM Enin(Brinat = 7/2).

(65)

X. ExamPLE: SPIRAL LOCALIZATION OF a DiscC

In this example we analyze an unusual robot motion by
which the position of a disc (a washer, say), free to slide on a
tabletop, can be localized without sensing. If the disc is known
initially to be located in some bounded area of radius b, we
begin by moving a point-like pusher in a circle of radius b,.
Then we reduce the pusher’s radius of turning by an amount
Ab with each revolution, so that the pusher’s motion describes
a spiral. Eventually the spiral will intersect the disc (of radius
@), bumping it. We wish the disc to be bumped toward the
center of the spiral, so that it will be bumped again on the
pusher’s next revolution. If the spiral is shrinking too fast,
however, the disc may be bumped out of the spiral instead of
toward its center, and so the disc will be lost and not localized.

We wish to find the maximum shrinkage parameter Ab
consistent with guaranteeing that the disc is bumped into the
spiral, and not out. (Ab will be a function of the present spiral
radius.) We also wish to find the number of revolutions that
will be required to localize the disc to some radius &, with @ <
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Fig. 39.

Geometry at the moment of the second collision of pusher and disc. A point pusher describes a decreasing spiral about a

region of radius &, within which a disc of radius @ is known to be. As the spiral decreases in radius the disc is pushed towards the
center of the spiral. We wish to find the fastest shrinking spiral which will guarantee that the disc is always pushed in towards the
center and never out of the spiral. It turns out there is a limiting radius of the spiral below whick further confinement of the disc
cannot be guaranteed, no matter how slowly the spiral decreases in radius. In this figure the disc was first struck by the pusher when
it was at radius b,, and was pushed towards the interior of the spiral, The disc was left tangent to the path of the pusher, and is about
to be struck again by the pusher, which is now at radius by. Ab = by — by is the shrinkage rate of the spiral. Notice the collision

parameter 3 which results,

b < b, and the limiting value of b, called b.,, below which it
will not be possible to guarantee localization, regardless of
number of revolutions.

A. Analysis

Suppose the pushing point has just made contact with the
disc. Since the previous revolution had radius only Ab greater
than the current revolution, the pusher must contact the disc at
a distance at most Ab from the edge of the disc, as shown in
Fig. 39. We will consider only the worst case, where the
distance of the pusher from the edge is the full Ab.

We know that if Ab < g the disc will move downward [10].
This is not sufficient to assure that the disc will be pushed into
the spiral (rather than out of the spiral), because the pushing
point will also move down, as it continues along its path (Fig.
39). To guarantee that the disc will be pushed into the spiral,
we must make sure that it moves down faster than does the
pushing point.

Note that we will continue to draw the pusher’s motion as
horizontal, even though the pusher must turn as it follows the
spiral. This is done to maintain the convention for COR
sketches used in previous sections. At every moment we
simply choose to view the system from such an angle that the
pusher’s motion is horizontal.

One way of comparing rates of moving down is by
considering the increase or decrease in the angle 3, called the
collision parameter in Fig. 39. If, as the pusher’s motion
along its spiral progresses, 3 increases, then the disc is being
pushed into the spiral; localization is succeeding. When 3
reaches 7/2, the pusher grazes the disc and leaves it behind.
The disc is then left tangent to the spiral. If, as the pusher’s
motion progresses, 3 decreases, the disc is being pushed out
of the spiral; localization is failing.

B. Critical Case: Pusher Chasing the Disc Around a
Circular Path

In the critical case the angle 8 does not change with advance
of the pusher. The pusher “‘chases’’ the disc around the spiral,

i ;
i CRITCAL PA’IH\ 1
|

PATH OF

Fig. 40. Critical case: pusher “*chasing”” disc around a circular path. It the
shrinkage of the spiral 4 is too great, the disc can be pushed our of the
spiral. To find the critical value of Ab below which the disc is guaranteed to
be pushed into the spiral, we consider the marginal case where it is possible
for the pusher to **chase’™” the disc, with the collision parameter 3 neither
increasing {meaning the disc is going towards the interior of the spiral) nor
decreasing (meaning that the disc is going towards the exterior of the
spiral).

neither pushing it in nor out. In this section we will take the
spiral to be a circle (i.e., Ab = 0), to simplify analysis. The
critical case, shown in Fig. 40, is highly unstable.” The
pusher’s motion is shown as an arc of a circle, labeled path of
pusher. (Underlined names refer to elements of Fig. 40). The
center of that circle is labeled PC (for pusher-center). Point PC
is directly below the point of contact, in keeping with our
convention of drawing the pusher’s line of motion horizontal.

To maintain the critical case, the path followed by the CM
of the disc (labeled critical path of CM) must be as shown in
the figure: an arc of a circle, concentric with the arc path of
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Fig. 41. COR sketch for critical case, and solution for location of PC. We
wish to find a condition on the radius of the pusher circle which guarantees
that the disc will always be pushed into the circle. We will construct the
COR sketch, and then find positions for PC such that all possible COR’s are
10 the left of the critical line. To make sure that the whole COR locus falls to
the left of critical line, we need only place the center of the pusher motion
(PC) below the lower endpoint of the sticking locus.

pusher. Instantaneously, the direction of motion of the CM
must be along the line labeled motion of CM, tangent to the
critical path of CM. The critical line, drawn through PC and
CM is by construction perpendicular to motion of CM. The
COR of the disc must fall on the critical line, in order that the
instantaneous motion along the line motion of CM be tangent
to the critical path of CM. T

We have just seen that the COR of the disc must fall on
critical line for the instantancous motion of the CM to be
consistent with the CM following the critical path of CM. If
the COR falls to the left of the critical line, the CM diverges
from the critical path of CM by moving inside the arc.
Therefore, 3 will increase with advance of the pusher, and
localization is succeeding. If the COR falls to the right of the
critical line, the CM diverges from the critical path of CM by
moving outside the arc. Therefore, 3 will “decrease with
advance of the pusher, and localization is failing. The critical
line divides the plane into two zones: if the COR falls in the
left zone, the disc is pushed into the pusher circle, while if the
COR falls in the right zone, the disc is pushed out of the pusher
circle.

We wish to find a condition on the radius of the pusher
circle which guarantees that the disc will always be pushed
into the circle. We will construct the COR sketch, and then
find positions for PC such that all possible COR’s are to the
left of the critical line.

In Fig. 41 we have constructed the COR sketch with
collision parameter 3. Since the edge normal at T passes
through the CM, the extremes of the friction cone pass to
either side of the CM, for any u. > 0. {COR},_, is a
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Fig. 42. Radius r*(8) of the critical circle as a function of collision

parameter 3. For every collision parameter 8 (here plotted as Bi7), there is
a tightest radius r* which the pusher can describe still maintaining the
guarantee that the disc can be chased or pushed inward, but never be pushed
outward. For a variety of coefficients of friction u. we plot here the inverse
of that tightest (critical) radius, a/r*.

“wrapped’” locus (Section VI-E), and the COR sketch must be
that of Fig. 29 (G), (), or (). In any case, there must be a
sticking locus, there cannot be an up-slipping locus, and there
may or may not be a down-slipping locus. In Fig. 41 we have
shown a down-slipping locus.

To make sure that the whole COR locus falls to the left of
critical line, we need only place the center of the pusher
motion (PC) below the lower endpoint of the sticking locus.
(Point PC is required to have the same x coordinate as the
point of contact, in keeping with our convention of drawing
the pusher’s line of motion horizontal.)

C. Critical Radius versus Collision Parameter

For every value of 8 {the collision parameter), we compute
the distance from the pusher’s line of motion to the lower
endpoint of the sticking locus. This defines a critical radius
r*(3). For each collision parameter 3, r*(3) is the radius the
tightest circle that the pusher can describe with the guarantee
that the disc will be pushed into the circle, or at worst be
*‘chased’” around the circle indefinitely, but not be pushed out
of the circle. In Fig. 42, 1/r*(8) is plotted as a function of
collision parameter § for each of several values of u.. (The
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discontinuity in slope results from the discontinuity in slope of
the COR locus boundary at r = a.)

The inverse of the function r*(8) will be denoted g*(r),
representing the smallest value of 3 for which a pusher motion
of radius # still results in guaranteed localization. In terms of
the pusher’s distance from the top edge of the disc, ¢ (Fig.
41), we can use the relationship

a(l —sin g8Y=d (66)
to define the critical distance from grazing d*(r) as a
function of r. d*(r) is the largest distance of the pusher from
the top edge of the disc for which a pusher motion of radius »
still results in guaranteed localization.

D. Limiting Radius for Localization

If there is a limiting radius b, of the spiral motion below
which localization cannot be guaranteed, then as the spiral
approaches radius b, the motion must become circular. Ab —
0 as b, is approached, so collisions become grazing collisions,
and we have the distance from grazing d — 0. (In terms of the
collision parameter 3, we have 8 — #/2.) The COR sketch for
8 = w/2 is shown in Fig. 43, If the disc is not to be bumped
out of the spiral, we must have b, = r*¥(8 = #/2). b, is
indicated in the figure, and can be shown analytically to be

b =a(u.+1), for p.=1

b, =2a, for u.=1. (67)
Only at g = 0 can a disc be localized completely, i.e.,
localized to within a circle the same radius as the disc.
Otherwise, the tightest circle within which the disc can be

locatized is given by (67).

E. Computing the Fastest Guaranteed Spiral

Let b, be the radius of the nth revolution of the pusher, so
that we have initially radius &, and b, is the limiting radjus as
n — o, (In specifying but a single radius for each revolution
of the spiral, we will not truly specify the spiral completely,
but this will be sufficient to characterize the number of
revolutions required to achieve a desired degree of localiza-
tion.)

To excellent approximation we can define the fastest spiral
recursively by

by=b,_ 1 —d*(b,). (68)
The difference between the radii of consecutive turns of the
spiral # — 1 and n is therefore Ab = d*(b,). Equation (68)
thus enforces the condition that on the nth revolution, the
value of d is exactly the critical value for circular pushing
motion of radius b,. At worst, the disc is pushed neither in nor
out of the spiral. A slightly slower spiral would guarantee that
the disc cannot be chased in this way for long, but is pushed
into the spiral. However, the difference between our spiral and
the “‘slightly slower’ one is so slight that it is not worth
dealing with here [15].
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Fig. 43. COR sketch at the limiting radius, showing b... There is a limiting
radius of the spiral b, below which we cannot guarantee that the disc will
be pushed inward, no matter how slowly the spiral is decreasing in radius,
i.e., no matter how small Ab. As the spiral approaches this radius it must
more and more accurately approximate a circle, since it cannot go below
radius #,. Thus the collision parameter 8 becomes /2 as radius b is
approached, and all collisions become grazing collisions. Drawing the COR
sketch for a grazing collision we find that b, = a{p. + 1), a general
kinematic limitation on the success this herding strategy can achieve.

Fig. 44 shows the fractional deviation of spiral radius &,
above b, versus number of turns #, on logarithmic and on
linear scales. We start (arbitrarily) with &, = 100a. The spiral
radius was computed numerically for x. = 0.25, using the
results for 3*(r) shown in Fig. 42 and (63).

Fig. 44 shows that when the spiral radius is large compared
to the disk radius @ (which is taken to be 1 in the figure), we
can reduce the radius of the spiral by almost @ with gach
revolution. As the limiting radius is approached, the spiral
reduces its radius more and more slowly, approaching the
limiting radius b, as about #~'%, where n is the number of
revolutions. Fig. 44 demonstrates the best performance that
the “‘herding’’ strategy can achieve.

XI. CONCLUSION

We have solved for the possible instantaneous motions of a
sliding workpiece as it is pushed, in the presence of unknown
frictional forces between workpiece and table, and between
workpiece and pusher. We have characterized the qualitatively
different kinds of sliding motion which are possible, and found
the conditions under which each can occur. Using these results
it is possible to find bounds for gross motions of a pushed
workpiece as well. This is done by integrating the possible
instantaneous motions.

As an example, we have found the maximum distance a
polygonal sliding workpiece must be pushed by a fence in
order to guarantee that a side of the workpiece has aligned
itself with the fence. Using the useful tip line construction
described here, approximate results are obtained both for the
alignment problem and several others. Strict upper bounds for
the maximum required pushing distance are found by using
slightly more sophisticated methods, but the difference be-
tween the upper bounds and the approximate results are so
stight that the effort seems hardly justified.

In a second example, we have taken the pushed workpiece
to be a disc, and the pusher to be a point, or the corner of a
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Fig. 44. Performance of the optimal spiral. For p. = 0.25 we plot

the optimal spiral. This is the fastest decreasing spiral which still

guarantces that the disc is pushed into the spiral and cannot be pushed out. i.c., tocalizes the disc as quickly as possible. We found
that the spiral cannot decrease below a radius b, while maintaining the guarantee, so that value has been subtracted from the vertical
(spiral radius) axis, leaving only the difference between the spiral radius and its limiting value. In the lincar plot, we can see that the

radius of the optimal spiral decreases swiftly by almost the disc’

s radius @ with each revolution until quite close to the limiting

radius. Tt is then more instructive to look at the log-log plot to sece how the spirai radius approaches the limiting radius.

polygon, moving in a straight line. We have found the
maximum distance that the pusher and the disc may be in
contact, before the disc is ‘‘pushed aside’” by the moving
workpiece. Bounds on the rotation of the disc during its
interaction with the pusher are also found.

Finally, we have analyzed an unusual robot maneuver, in
which a disc known to be within a certain circular area can be
“lpcalized’’ to a much smaller circular area by a pusher
which, perhaps under robot control, describes a decreasing
spiral around the disc. Thus the disc can be located by a robot
without sensors. We found the ultimate limiting radius below
which the disc cannot be localized further, no matter how
slowly the spiral decreases in radius. We also found (to within
tight bounds) the ‘‘optimal spiral’": the spiral which localizes
the disc with the fewest number of revolutions, while
guaranteeing that the disc is not lost from the spiral.

XII. SuGGesTIONS FOR FURTHER WORK
A. Other Models of Friction

An important assumption used in deriving the COR loci is
that of a coefficient of sliding friction g, which is uniform over
the sliding surface and velocity-independent: simple Coulomb
friction. Friction is rarely so well behaved.

Velocity dependence of p, will have only moderate conse-

quences for the COR loci. The sense of rotation (CW or CCW)
is not affected by velocity dependence, because pure transla-
tion of the workpiece is the marginal case dividing the senses
of rotation. Tn pure translation, all parts of the workpiece
move with the same velocity, so velocity dependence of u; is
unseen by the workpicce. If p, decreases with increasing
velocity (the usual case), we can predict that COR’s will lie
closer to center of mass (i.c., rotation rates will be faster) than
they would with constant g, The side of the workpiece
towards which it turns has a lower velocity, therefore higher
s, and therefore more drag, causing the workpiece to turn still
faster towards that side.

Spatial nonuniformity of p, is more serious. In our
experimental work [15] a nonuniformly worn surface caused a
5° offset in the marginal pushing direction dividing CW from
CCW rotation. It would be hard to control such a major effect
analytically. Instead, sliding surfaces must be kept uniform.

When it is the surface of the sliding part, rather than the
surface of the table, which is nonuniform, we may hope to find
simple analytic adjustments to the COR locus to compensate.
The distinction between center of friction (COF) and center
of mass becomes important [8], [10]. If the composition of the
part surface is understood and some information about the
pressure distribution is available, a COF distinct from the CM
can be calculated for the part. Then the sense of rotation (at
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least) will be predictable. It is not known what effect a COF
distinct from the CM will have on the COR locus.

B. Pushing Above the Plane

We assumed that the point of contact between pusher and
pushed workpiece is not far (relative to the radius of the
workpiece) above the sliding surface. In the extreme case of
pushing far above the plane, the workpiece will tip over
instead of sliding. For small heights, the effect creates a center
of friction (COF) distinct from the center of mass (CM). The
effect on the COR locus is unknown.

C. Non-Quasi-Siatic Velocities

The resuits of Sections V and VI depend on the quasi-static
assumption, discussed in Section II. We assume that dissipa-
tive effects due to friction between a workpiece and the surface
it slides on overwhelm inertial effects. In the real world, both
effects are present, and become of comparable importance at
characteristic speeds considered in Section I here, and in [15]
and [11]. The results of Sections V and VI may be considered
to be the v = O limit,

In the opposite extreme, we may ncglect sliding friction
altogether, and only consider inertial effects. The motion is
then independent of speed, so we may consider this case to be
the v — oo limit. The details of the contact between the sliding
workpiece and the surface it slides on (the pressure distribu-
tion, Section II-E) no longer have any effect on the motion.
For given initial conditions then, a single resulting motion can
be calculated, rather than the /ocus of possible motion
calculated for slow motions.

Drawing on the work of Routh [18], Wang [19] has
calculated the motion of a pushed workpiece in the v = o
limit (the ““impact” limit). The motion is a function of the
coefficient of friction between the pusher and workpiece g, as
in the quasi-static case, and of the geometry of pushing, but it
also depends on the elasticity of the materials in contact.
Elasticity ranges from the plastic limit e = 0 (e.g., modeling
clay) to the elastic limit e = 1 (e.g., spring steel).

The instantaneous motion on impact can be described by a
center of rotation (COR) somewhere in the plane. Wang finds
[20] that when & = 0 or . = 0, the COR falls along the axis
of symmetry of the quasi-static COR locus derived in Section
V, and at a distance Fimpact from the CM given by

2
p
Fimpact = g“—g (69)

where p is the radius of gyration of the workpiece. Equation
(69) is the same as (38) (which gives the tip of the COR locus
in the quasi-static case) when the workpiece pushed is
a circular rim, for which p = a. For all other workpieces,
p < a, so we may conclude that the COR for impact lies
within the COR locus for quasi-static pushing ife = Oor g, =
0.

If e > 0and p. > 0, Wang finds that the sense of rotation
(CW or CCW) does not necessarily agree with Mason’s results
for quasi-static motion [10], This means that in realistic cases
where e > 0, a given sliding operation which results in CW

&
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Fig. 45. Tip line and line of COR’s for uniform pressure distribution.
Shown is the tip line for all cv. This s the curve traced out by the tip of the
COR locus as « is changed. The tip is the farthest the COR can fall from the
CM. no matter what pressure distribution exists beneath the disc. If we
assume a urtiform pressure distribution beneath the disc, then rather than a
locus of COR’s a single COR must be the result. For comparison with the
tip line, we also plot here the curve traced out by the COR for uniform
pressure distribution, as « is changed. For a given « such as the one shown,
the COR locus is shown, the tip of the COR locus falls at the intersection of
the vector & with the tip line, and the COR for uniform pressure distribution
lies at the intersection of the vector & with the *‘unifarm support ine."

rotation of the pushed workpiece in the quasi-static limit may
change over to CCW rotation as velocity is increased.

For fixed elasticity e and coefficients of friction u, and y,, as
velocity is increased the locus of COR’s describing the motion
must change continuously from the quasi-static locus at v = (
to the single point (sometimes outside the quasi-static locus)
which is Wang's result at v = oo, If the COR loci for
intermediate velocities could be found or bounded, motion
planning algorithms based on sliding friction (e.g., [14], [2],
{9]) could be extended to non-quasi-static velocities.

D. Bounds on the COR Locus for Other than Discs

The COR loci found in Section V are exact if the sliding
workpiece is a disc. Any COR in the locus could occur for
some combination of bumps on the bottom of a disc, i.c., for
some pressure distribution. The COR locus for a disc
necessarily encloses the COR locus for any workpiece which
could be enclosed in that disc, with the same center of mass.
The COR locus for the inscribed workpiece may be considera-
bly smaller than that for the disc, especially when the area of
the inscribed workpiece is considerably less than that of the
disc. The COR locus for a square, found numerically is shown
in Fig. 6.

For comparison, the line of COR’s for a uniform pressure
distribution on a disk is shown in Fig. 45. In the uniform case,
for each « (related to the force angle), there is of course only
one COR, as the pressure distribution is completely specified.
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Shown in the figure is a particular « for illustration, and the
COR locus outline for all pressure distributions for that «r. The
tip line for all « is shown. The point of intersection of the &
vector through the CM and the tip linc is the COR locus for .
The tip of the COR locus for any « lies at the intersection of
the & vector through the CM and the tip line. Similarly, the
COR for uniform pressure for « lies at the intersection of the &
vector through the CM and the uniform pressure line, as
indicated by a dot. The COR for uniform pressure for any o
lies at the intersection of the & vector through the CM and the
line of uniform pressure.

Using the COR tloci of discs in planning manipulation
strategies for other shapes results in unnecessarily conserva-
tive strategies. It is even possible that no strategy might be
found when one exists. This problem could be alleviated if
exact COR loci for arbitrarily shaped workpieces could be
found. In finding the COR locus for a disc we discovered two
classes of **dipods’” (pressure distributions consisting of only
two points of support, Section IV-E) which were responsible
for the boundary of the COR locus. For workpieces other than
discs, the boundary is not described by dipods, and finding the
COR locus becomes considerably harder.

ACKNOWLEDGMENT

The authors wish to acknowledge useful discussions with R.
Brost and M. Mason, both of whom also contributed many
helpful suggestions for improving this paper. Several equa-
tions were obtained or simplified using MACSYMA.

REFERENCES

11} J. Barber, R. A. Volz, R. Desai, R. Rubinfeld, B. Schipper, and J.
Wolter, ‘*Automatic two-fingered grip selection,”’ presented at the
IEEE 1986 Int. Conf. on Robotics and Automation, Apr. 1986.

[2] R. Brost, **Automatic grasp planning in the presence of uncertainty,”
Int. J. Robotics Res., vol. 7, no. 1, 1988.

[3] M. A. Erdmann, “‘On motion planning with uncertainty,”
thesis, Mass. Inst. Technol., 1984, Tech. Rep. AI-TR-810.

{41 M. A. Erdmann and M. T. Mason, ‘“‘An exploration of sensorless
manipulation,” this issue, pp. 000-000.

{51 S. Goya! and A. Ruina, “*The load-motion relation for rigid bhodies
sliding on planar surfaces with dry friction,”” draft.

Master

IEEE JOURNAL OF ROROTICS AND AUTOMATION, VOL. 4, NO. 6, DECEMBER 1988

6] 1. H. Jelet, A Treatise on the Theory of Friction. London, UK:
MacMillan, 1872.

171 T. Lozano-Pércz, **Motion planring and the design of orienting devices
for vibratory parts feeders.” to be published.

[8] W. D. MacMillan, Dynamics of Rigid Bodies.
Dover, 1936.

[9] M. Maniand W.R. D. Wilson, “*A programmable orienting system for

flat parts,”” in Proc. NAMRIH XTII, 1985,

M. T. Mason, “*Mechanics and planning of manipulator planning

operations,”” fnt. J. Robotics Res., vol. 5, no. 3, 1986. Also in Robot

Hands and the Mechanics of Manipulation. Cambridge, MA: MIT

Press, 1985.

““On the scope of quasi-static pushing,’
Symp on Robotics Res., Oct. 1985.

M. T. Muson and R. Brost, **Automatic grasp planning: An operation
space approach,’” in Proc. 6th Symp. on the Theory and Practice of
Robots and Manipulators (Cracow, Poland, Sept. 1986).

M. A. Peshkin and A. C. Sanderson, ‘‘Manipulation of a sliding
object,” in Proc. IEEE 1986 Int. Conf. on Robotics and Automa-
tion (Apr. 1986). pp. 233-239.

. “*Planning robotic manipulation strategics lor sliding objects,””
presemed at the IEEE 1987 Imt. Conf. on Robotics and Automation,
Raleigh, NC, Apr. 1987; submitted to JEEE J. Roborics Automar.
M. A. Peshkin, ‘‘Planning robotic manipulation strategies for sliding
objects,”” Ph.D. dissertation, Physics Dep., Carncgie-Mellon Univ.,
Oct. 1986.

K. Pingle, R. Paul, and R. Bolles, *‘Programmable Assembly, Three
Short Examples,” Film, Stanford Al Lab., 1974,
J. Prescoit, Mechanics of Particles and Rigid Bodies.
Longmans, Green and Co., 1923,
E. 1. Routh, Dynamics of a System of Rigid Bodies, Tth ed.
York, NY: Dover, 1960,
Y. Wang and M. T. Mason, ‘*Modeling impact dynamics for robotic
operations,”” in Proc, 1987 IEEE Int. Conf. on Robotics and
Automation (Raleigh, NC), pp. 678-685.

. personal communication,
M. A. Peshkin and A. C. Sanderson, ‘*Minimization of energy in
quasislatic maripulation,” in Proc. [EEE [988 Int Conf. on
Robotics and Automation (Philadelphia; PA); submitted to IEEE J.
Robotics Automat.

New York, NY:

[10]

+

in Proc. 3rd Ini.

{1
112]

[13]

114]

f15]

[16]
[17] London, UK:
[18] New
[19]

[20]
(21]

Michael A . Peshkin (5'86-M'86), for a photograph and biography please sce
page 531 of the October 1988 issue of this JOURNAL.

Arthur C. Sanderson (5’66-M'68-M'74-SM'86), for a photograph and
biography please see page 531 of the October 1988 issue of this JOURNAL.



The Motion of a Pushed, Sliding Workpiece

M. A. Peshkin® and A. C. Sanderson*
Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

ABSTRACT: It occurs frequently in robotic applications that a robot manipulates a workpiece which is
free to slide on a work surface. Because the pressure distribution supporting the workpiece on the work
surface cannot in general be known, the motion of the workpiece cannot be calculated uniquely. Yet
despite this indeterminacy, several researchers have shown that sliding motions can be employed to

accurately align workpieces without visual or other feedback.

Here we find the locus of centers of rotation of a workpiece for all possible pressure distributions. The
results allow a quantitative understanding of open-loop robot motions which guarantee the alignment of a
workpiece. Several sample problems are solved using the results, including the distance that a flat
"fence" or robot finger must push a polygonal workpiece to assure that a facet of the workpiece comes

into alignment with the fence.
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1. Motivation

Sliding operations are encountered frequently in robotics. It is almost inevitable that when the position of

a workpiece that is to be acquired by a robot is not perfectly known, a sliding phase will occur before the

robot can acquire the workpiece. Mason [10] was the first to identify sliding operations as fundamental to

manipulation, and especially to grasping.

The sliding phase need not be considered an undesirable but unavoidable fact of life. In the examples

which follow sliding operations are used constructively to manipulate and acquire workpieces, without

sensing, and despite uncertainty in the initial orientation and position of the workpiece. Yet in each

example quantitative information about the motion of the workpiece, which would be needed to guarantee

the success of the operation, is lacking. It is the objective of this paper to solve completely for the motion

of a sliding workpiece, thus allowing proof of the success of operations which rely on sliding, and

facilitating the design of such operations.

1.1. Automatic Feeders

Sliding occurs when a workpiece on a moving belt interacts with a fence across the belt. (An equivalent

interaction occurs when the workpiece is stationary on a work surface, and a fence or gripper under

control of a robot pushes it.) And similar interactions occur in bowl feeders, as parts interact with fences

as the parts move along a ramp.

One of the many possible behaviors of the workpiece when it hits a fence is to rotate until a flat edge is

flush against the fence, and then to slide along the fence (if the fence is sufficiently slanted.) Another

behavior is to roll along the fence instead of sliding. Or the workpiece may stop rotating and simply stick

to the fence.



To design feeders the behavior of the workpiece must be understood. This problem has been considered
explicitly by Mani and Wilson [9] and also by Brost [2]. (Related work includes [7] and [4].) Mani and
Wilson developed strategies for manipulation which can orient a workpiece on a table by a carefully
planned sequence of pushes with a fence. Each push aligns a facet of the workpiece with the fence, until

an initially randomly oriented workpiece is reduced to a unique final orientation.

In the case of Mani and Wilson’s fence-pushing aligner, the quantitative information needed is the
distance a polygonal workpiece must be pushed to align a given facet with the pushing fence.
Sometimes a workpiece may have to be pushed a great distance before it will align with the fence
pushing it. To make Mani and Wilson's manipulation strategies into guaranteed strategies we need an

upper bound on the distance a workpiece must be pushed to align.

1.2. Grasping Strategies

In a typical grasping operation, the robot opens a two-jaw gripper wide enough to accommodate both the
workpiece to be grasped, and any uncertainty in the workpiece’s position. Then the gripper begins to
close. Generally the workpiece will be closer initially to one jaw than to the other, and the closer jaw will

make contact first.

There follows a sliding phase until the second jaw makes contact. During the sliding phase the workpiece
is likely to rotate, especially if the face of the jaw is in contact with a corner of the workpiece rather than a
flat facet. The behavior of the workpiece during grasping is discussed by Brost [2], who finds grasp
strategies which bring the workpiece into a unique orientation in the gripper, despite substantial

uncertainty in its initial orientation and position.



To fully characterize the configuration of the workpiece in the gripper when a grasping operation is
complete, we need more complete information about the motion of the workpiece than was available to
Brost. Bounds can be obtained for the translation of the workpiece (perpendicular to the direction it is

pushed by the gripper) as well as for its rotation as it is pushed.

R. P. Paul invented [16], and Mason later analyzed [10], a clever grasping sequence on a hinge plate.
(Figure 1-1.) The strategy makes use of sliding to simultaneously reduce the uncertainty of a hinge

plate’s configuration to zero, and then to grasp it.

The hinge grasp works only for a certain range of initial hinge orientations. For orientations outside of this
range, the jaws will be closing too fast for the hinge plate to complete its clockwise rotation into alignment,
before the jaws close. To find the range of orientations for which this grasp will work, for a given
convergence angle of the jaws, we need to know the slowest possible rotation rate of the hinge plate as it

is pushed.

1.3. Grasp Strength

Barber et. al. [1] have analyzed the resistance of a two-fingered robot grasp of a workpiece to applied
torques and forces. A grasped workpiece slides relative to the gripper fingers as the grasp fails, and the
resistance of a grasp to this failure can be used as a measure of the quality of the grasp in automated

grasp selection algorithms.

In order to determine the force or torque which is needed to cause a grasp to slip, Barber et. al. assumed
a linear variation of pressure over the grasped surface of the workpiece. The utility of this measure of

grasp quality could be extended if the assumption of linear pressure variation could be removed, since in



Figure 1-1: Hinge grasp strategy (Paul [16] and Mason [10])

The robot fingers follow the trajectory indicated by the dotted lines, closing as they translate. On contact
with the hinge-plate the trajectory causes the plate to rotate into alignment with the gripper and then to
self-center. This open-loop strategy requires no sensing and succeeds despite some uncertainty in the
initial configuration of the plate.



general the pressure distribution is unknown.

1.4. Statement of "The Sliding Problem”

The prototypical sliding problem is to solve for the motion of a workpiece on a planar surface with friction,
when a force is applied to it at a known point. This is a problem in classical mechanics, indeed in
guasistatic mechanics. It was recognized but never solved in the heyday of classical mechanics
[6][8] [17], although the answers turn out to be simple and of analytical form. The sliding problem is
difficult because the pressure distribution beneath the workpiece is in general unknown. The 19th and
early 20th century classical mechanicians (cited above) assumed a particular form of the pressure
distribution, either uniform or with linear variation over the bottom surface of the workpiece, and solved

the difficult mechanics problem which resulted.

Mason realized the only useful result would be one which applied for all pressure distributions, as the
pressure distribution is unknown. Mason was able to find the direction (clockwise or counterclockwise) of
rotation of a pushed, sliding workpiece, when the pressure distribution is unknown [10]. His result is
remarkable in that the direction turns out to be independent of the pressure distribution. Mason’s results

are used extensively in Mani and Wilson’s work [9], Brost’s work [2], and also here.

Our work solves the "other half" of the sliding problem. We determine the motion of the sliding workpiece
completely. The motion is most conveniently expressed as a center of rotation (COR) of the sliding
workpiece. (The COR lies somewhere in the plane of sliding.) Unlike Mason’s sense of rotation result,
the COR does depend on the pressure distribution supporting the workpiece, and that pressure
distribution is in general unknown. But we are able to find the locus of centers of rotation (that is, the set

of all possible motions) for all pressure distributions.



Using our results manipulation and grasping strategies can be designed which are guaranteed to

succeed [13], because all the possible motions of the pushed workpiece are predictable.

2. Range of Applicability

2.1. Workpiece shape

In this paper we will treat the workpiece as a two-dimensional rigid body, since we are only concerned
with the interaction of the workpiece with the table on which it is sliding. All pushing forces will be
restricted to lie in the plane of the table. The results may be applied to three-dimensional workpieces, so
long as the vertical component of the pushing force is negligible, and so long as the point of contact is

near the table.

2.2. Point of contact between workpiece and pusher

In the general case, when a workpiece is being pushed there is only one point of contact between the
workpiece and the pusher. The contact may be where the flat edge of a pushing fence or robot finger
touches a corner of the workpiece (figure 2-1), or it may be where a pushing point touches an edge of the
workpiece (figure 2-2). In most of this paper we will assume that the pusher is a point in contact with a
flat facet of the workpiece, but the analysis applies equally well if the pusher is a flat surface in contact

with a corner of the workpiece.

Motion of a workpiece when there are two or more points of contact between pusher and workpiece has

been considered by Brost [2] and by Mani and Wilson [9].



Figure 2-1: The edge of an advancing fence pushing a corner of a sliding workpiece

The motion of the workpiece depends on the angle (a) of the front edge of the fence, measured relative to
its line of motion, which in this case is horizontal.



Figure 2-2: A corner of an advancing pusher pushing an edge of a sliding workpiece

The motion of the workpiece depends on the angle (a) of the edge being pushed, measured relative to
the line of motion of the pusher, which in this case is horizontal. Compare to the meaning of a in figure 2-1.
The analysis done in this paper applies equally well to either figure.
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2.3. Position controlled pusher

It is assumed the pusher will move along a predetermined path in the plane, i.e., it is under position
control. Equivalently, the surface on which the workpiece slides may move, carrying the workpiece
relative to a fixed pusher, for example on a conveyor belt. The workpiece has two degrees of freedom,
with the third degree of freedom of its motion fixed by the contact maintained between the pusher and the
workpiece. Our results may be easily converted to the case where the pusher exerts a known force on

the workpiece rather than following a known path.

2.4. Center of rotation (COR)

The two degrees of freedom of the workpiece are most conveniently expressed as the coordinates of a
point in the plane called the center of rotation (COR). Any infinitesimal motion of the workpiece can be
expressed as a rotation 80 about some COR, chosen so that the infinitesimal motion of each point w of
the workpiece is perpendicular to the vector from the COR to the point w. If the workpiece is a disk, and
the motion it performs is pure rotation in place, the COR is at the center of the disk. Motions we might
describe as "mostly translation" correspond to CORs far from the point of contact. In the extreme case,

pure translation occurs when the COR is at infinity.

All kinematic results can be obtained once the COR is found.

2.5. Pressure distribution between workpiece and table

The weight of a workpiece is supported by a collection of contact points between the workpiece and the
table. The pressure distribution may change as the workpiece moves relative to the table. Finding the
COR is complicated by the fact that changes in the pressure distribution under the workpiece substantially

affect the motion, i.e., such changes affect the location of the COR. Intuitively, if pressure is concentrated
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near the center of mass (CM), the workpiece will tend to rotate more and translate less than if the

pressure is uniformly distributed over the entire bottom surface of the workpiece.

The pressure distribution may be changed dramatically by tiny deviations from flatness in the workpiece’s
bottom surface (or of the surface it is sliding on.) Indeed, if the workpiece and the table are sufficiently
rigid and not perfectly flat, they may be expected to make contact at only three points. The three points
may be located anywhere on the workpiece’s bottom surface, but like the legs of a three-legged stool, the

triangle formed by the points of support always encloses the projection of the CM onto the surface.

Since any assumption we could make about the form of the pressure distribution (for instance that it is
uniform under the workpiece as in [17]) would not be justified in practice, our goal is to find the locus of

CORs under all possible pressure distributions.

Let the CM be at the origin, and w be a point in the plane. All that is known about the pressure distribution

P(w) is that

* P(w) is zero outside the workpiece. The workpiece can be entirely contained within a
circle of radius a centered at the CM.

*  P(W) =0 everywhere,
 the total pressureJ’ P(w)dw = Mg, the weight of the workpiece, and

« the first moment of the distribution, I P(w) wdw = 0. This means that the centroid of the
distribution is at the CM of the workpiece, which is at the origin.
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2.6. Coulomb friction

It turns out that the coefficient of friction of the workpiece with the supporting surface (called p for "sliding
friction") does not affect the motion of the workpiece if we use a simple model of friction. We assume that
H is constant over the work surface, that it is independent of normal force magnitude and tangential force
magnitude and direction (isotropic), and that it is velocity independent. In short, we assume Coulomb

friction.

There is another coefficient of friction in the problem, . (for "contact friction"), at the point of contact
between the edge of the workpiece and pusher. This is distinct from the coefficient p between workpiece

and table, discussed above. Initially we consider only p=0. This assumption is relaxed in section 6.

2.7. Quasi-static motion
It is assumed that all motions are slow. This quasi-static approximation requires that frictional forces on
the workpiece (due to the coefficient of friction with the surface ) quickly dissipate any kinetic energy of
the workpiece:

V<< X g ey
where v is the velocity of the workpiece, g is the acceleration due to gravity, and X is the precision with
which it is desired to calculate distances. The high-speed limit is discussed in section 12.3.

Characteristic speeds for quasistatic motion are discussed in [15] and [11].
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2.8. Bounding the workpiece by a disk

We will take the workpiece being pushed to be a disk with its CM at the center. Given another workpiece
of interest we can consider a disk centered at the CM of the workpiece, big enough to enclose it. The
radius a of the disk is the maximum distance (from the CM) of the workpiece to any point of the
workpiece. Since any pressure distribution on the workpiece could also be a pressure distribution on the
disk, the COR locus of the disk must enclose the COR locus of the workpiece. The locus for the disk

provides useful bounds on the locus for the real workpiece.

2.9. Geometric parameters

Geometric parameters of the problem are the point of contact ¢ between the pusher and the workpiece,
and the angle a between the edge being pushed and the line of pushing, as shown in figure 2-3. The
values of a and ¢ shown are useful in considering the motion of the five-sided workpiece shown inscribed
in the disk. We do not require the point of contact to be on the perimeter of the disk, as this would
eliminate applicability of the results to workpieces inscribed in the disk. Indeed, for generality we do not
even require the point of contact to be within the disk. Similarly, we will not require a to be such that the
edge being pushed is perpendicular to vector c, as it would be if the workpiece were truly a disk. The
disk (with radius a), a, c, and the CM, are shown in figure 2-3. A particularly simple pressure distribution
P(w), in which the support is concentrated at just a "tripod" of points (w;, w,, W) is indicated, along with the

COR which might result for that pressure distribution.
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Figure 2-3: Parameters of the pushing problem

Important geometric parameters are the angle a of the edge being pushed relative to the line of motion of
the pusher, the vector ¢ from the center of mass (CM) to the point of contact between pusher and
workpiece, and the radius a of the disk which circumscribes the workpiece. When these parameters are
given the locus of centers of rotation for all possible pressure distributions can be found.
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3. Overview

In this paper we wish to find not the sense of rotation (CW or CCW) as Mason did, but the motion itself,

expressed as a COR somewhere in the plane.

First we approach the problem numerically. A formulation of Newton’s laws of motion which we call

"minimum power mechanics" suggests that for a given pressure distribution P(w) and advance of the

pusher dx, the COR is at that point which minimizes the energy lost to sliding friction. Figures 3-1 and 3-2

show the CORs so found for hundreds of thousands of randomly selected pressure distributions, for a

pushed disk and a pushed square respectively. In these figures the point of contact between pusher and

workpiece is unphysically chosen to be outside the perimeter of the workpiece to ease problems of

numerical convergence.

Note that if the centers of mass of the disk and the square are superimposed the COR locus for the disk

will entirely cover the COR locus for the square. As discussed in section 2.8, this is because the disk

entirely covers the square, so any pressure distribution on the square could be a pressure distribution on

the disk. The COR which results from any pressure distribution on the square therefore must also be a

possible COR for the disk. To bound the COR locus for any workpiece it is therefore only necessary to

find the COR locus for a disk which circumscibes the workpiece of interest.

Next we approach the problem analytically. We express the energy lost to sliding friction for a fixed

advance of the pusher dx as an integral of the pressure distribution P(w). The disk will seek that COR

which minimizes the energy lost to sliding friction. Minimizing this energy with respect to the location of

the COR, we find an intrinsic solution for the COR in terms of two moments of the unknown pressure
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Figure 3-1: COR locus for a disk found by iterative minimization (dots)

The disk shown encloses the workpiece of interest. The pusher moves horizontally along the line
indicated, and contacts the edge of the workpiece at the arrowhead. (In reality this point of contact would
always fall within the disk bounding the workpiece, but numerical convergence is simplified for this
unrealistic case.) The angle a of the edge which the pusher contacts is indicated. Dots indicate the
locations of the center of rotation for 500,000 randomly chosen pressure distributions supporting the
workpiece.
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Figure 3-2: COR locus for a square found by iterative minimization.

Now the workpiece is taken to be a square rather than a disk. (Again we unrealistically choose a point of
contact not on the perimeter of the workpiece.) Note that the locus of possible CORs (dots) can be entirely
contained within the locus calculated for a disk (figure 3-1).
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distribution P(w). The COR is related to the ratio of these moments. When the pushed workpiece is a
disk, we are able to identify two classes of pressure distributions which are responsible for extremal
values of the moment ratio, and therefore also are responsible for extremal values of the COR. These
special pressure distributions are simply dipods: pressure distributions consisting of just two points of
support. In one class of dipods, one point of support is anywhere on the perimeter of the disk and the
other diametrically opposite it. The second class is only slightly more complicated. By solving for the
COR analytically for these special classes of pressure distributions, the boundary of the COR locus is

found.

In figure 3-3 we show a typical pushing problem and the boundary of the locus of all possible centers of

rotation of the pushed workpiece.

Note that the COR locus is symmetric about the angle of the pushed edge a, which is drawn as a vector a
in figure 3-4. The farthest point of the COR locus from the CM falls on a. For most applications this "tip"
of the COR locus is of particular importance, as it specifies the slowest possible rotation of the workpiece
as it is pushed, regardless of the pressure distribution. The distance tip from the center of the disk to the

tip of the COR locus has a simple relation to the parameters of the problem:

2

a
roo= 2
tp = o 2

This formula has an interesting geometric interpretation. As the edge angle a is varied, the tip of the
COR locus traces out a straight line called the "tip line", and shown in figure 3-4. The tip line is
perpendicular to ¢ and a distance a?/c from the CM. Simple formulae exist for the curvature of the
boundary of the COR locus at the tip (and at the interior end as well), and for the points of intersection of

the boundary of the COR locus with the perimeter of the disk. For most purposes the formulae for these
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Figure 3-3: A typical pushing problem and the boundary of the COR locus found.

A point pusher is advancing horizontally, and is pushing the edge of a workpiece. The circle represents
the circumscribing disk for which the center of rotation locus can be found. The bold outline is the boundary
of the COR locus for this pushing operation; regardless of the actual pressure distribution supporting the
workpiece the center of rotation will lie somewhere in this boundary. Any kinematic result can be obtained
once the COR locus has been found.
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points of the COR locus suffice, and it is unnecessary to find the entire locus.

As an application of the results so far, we can calculate the maximum distance it is necessary to push a
polygonal workpiece with a frictionless fence, in order to guarantee alignment of an edge of the workpiece

with the fence, regardless of the pressure distribution beneath the workpiece (equation 42.)

As noted, the COR loci discussed above apply only when ., the coefficient of "contact friction" between
the pusher and the pushed workpiece, is zero. In section 6 we generalize to u.>0. The COR locus for
H.>0 turns out to be a combination of two of the COR loci calculated for u.=0. The two COR loci used
are those with "effective” edge angles a + tan ‘1uc. Part of each of these two loci, plus a linear segment
just above the tip line, constitute all the possible centers of rotation for p1.>0. In figure 3-5 the shaded and
bold sections are the resulting COR locus for pu.>0. (Similar "effective angles” were shown in Mason and

Brost's figure 5 [12].)

As examples of the p >0 results we find the distance a polygonal workpiece must be pushed by a fence
to assure alignment of an edge of the workpiece with the fence, now with u.>0. We also analyze the
motion of a sliding disk as it is pushed aside by the corner of a workpiece in linear motion. Finally, we
study the effectiveness of an open-loop manipulation strategy based on "herding" a disk toward a central

goal by moving a pusher in a decreasing spiral about the goal.

3.1. Minimum power mechanics
Suppose that the geometry of a pushing operation is specified; that is, the radius a of the disk enclosing
the workpiece, the point ¢ at which the workpiece is being pushed, and the angle a of the flat surface

involved in the push. If we suppose further that a single pressure distribution is specified, then a unique
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Figure 3-4: (o) vs. a, and construction of the tip line

Ir,.
tip
The most useful point on the COR locus boundary seems to be the tip, as this is the COR for which

rotation of the workpiece is slowest. The distance to the tip (from the CM) is given by the simple formula

Mip = a?/al@. As the angle of the pushed edge a is varied, the tip of the COR locus sweeps out a straight

line called the tip line.
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Figure 3-5: Construction of the COR sketch

When the coefficient of friction between pusher and edge of workpiece u >0, the locus of possible CORs
can be constructed from two of the simpler COR loci which we calculated for pu =0. The two p =0 loci are
shown in outline, while the COR "sketch” for a non-zero |, is shown shaded. Depending on where the
COR falls in the COR sketch, slipping of the workpiece (either up or down) relative to the pusher, or
sticking, may be predicted.
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COR at a single point must be the result.

Our system is constrained because the pusher and the workpiece are in contact, the pusher is advancing
a distance dx in a given instant, and the workpiece must slide enough to accomodate the advance of the
pusher. The COR could be at almost any point in the plane, and still allow the workpiece to accomodate
the advance of the pusher. However, some of these locations will require a greater rotation of the

workpiece (about the COR) to accomodate the advance of the pusher than do others.

To solve for the COR we use a formulation of Newton’s laws for constrained motions which we call
minimum power mechanics [15]. Minimum power mechanics expresses the intuitively appealing idea that
the motion a system makes (e.g. the COR about which the workpiece actually does choose to rotate) will

be the one for which the energy dissipated to sliding friction is minimized.

We have proven that minimum power mechanics is correct under some fairly restrictive conditions [15]:
slow (quasistatic) motion is required, and the only dissipative forces which may occur in the system are
(slightly generalized) analogues of Coulomb friction. The present system qualifies. (Minimum power
mechanics should not be confused with the principle of virtual work, which applies to static systems
without dissipation, and sets energy to zero rather than minimizing it.) Recently Goyal and Ruina have

done further work on minimization principles in quasistatic mechanics [5].

3.2. Notation
« Vectors are indicated by an arrow, e.g., v.

* 1 is the vector from the CM to the COR. r is the magnitude of that vector, i.e., the distance
from the CM to the COR.

» A Greek letter is used to represent both an angle and a unit vector which makes that angle
with respect to the x-axis (measured CCW). An arrow is used to indicate the unit vector:
a = (cosa, sina).

 We indicate functional dependence with subscripts. E, is a function of r (the COR).
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* All integrals are over the area of the disk.

* Curly brackets indicate a locus of values of a quantity.

4. Solution for the COR locus

In this section we compute the energy that is dissipated due to friction when the pusher advances a
distance ox, as a function of the center of rotation r, and for a given pressure distribution P(w). We will
then minimize the energy with respect to r to find the COR about which the workpiece actually does

choose to rotate.

It may help to imagine the disk "pinned" at the COR. This is not difficult to imagine if the COR happens to
fall inside the perimeter of the disk, and one’s intuition can be extended to include the case where the
COR is outside the perimeter. Either way, the disk is free to rotate only about the COR, and the COR

itself stays stationary.

Given the COR, the motion of the disk is fully determined when we apply our constraint: the edge being

pushed (at ¢ ) must move out of the way of the advancing pusher, but stay in contact.

4.1. Relation between motion of the pusher and rotation of the workpiece
In order to accommodate the advance ox of the pusher, the disk will rotate an amount 80 about the center
of rotation r. A rotation of &0 allows an advance of the pusher dx consisting of two parts, as shown in

figure 4-1.
6x1=69|c—r|cose=59(cy—ry) 3

tan 6 _ BGCX_ I

OX, = OX =
2 lana tan o

Note that dx, corresponds to slipping of the point of contact along the workpiece edge.
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Figure 4-1: Relation between advance of pusher (6x) and rotation about the COR (30)

For fixed COR the pusher may advance a distance dx while the workpiece rotates an angle d@ about the
COR. dx consists of two parts: movement of the workpiece edge (dx;), and slipping of the pusher along the
edge (dx,).
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Defining the unit vector a = (cos a, sina) we can write
- _ 006
OX = OX; +0X, = ——al{c—r). 4
sin a
To avoid proliferation of absolute value signs, henceforth al{c-r) will be taken to be positive.
Considerations of symmetry will allow application of the results to cases where al{c-r) is negative.

Physically, a{c —r)>0 corresponds to clockwise rotation of the workpiece as it is pushed.

4.2. Energy lost to friction with the table
An area element of the disk at w supports a force P(w) dw normal to the table. The element will slide a

distance
30| w-r | ®)

due to the rotation 88 about the center of rotation r, and in the process will dissipate an amount of energy
dE, = ug P(W) dw 36 |w—r |. (6)

Integrating over the area of the disk, the total energy dissipated due to rotation 80 is

E =3 p [ P(w) [w-r |dw )

where we write E, to remind ourselves that the energy is a function of the presumed location of the center

of rotation r. Substituting for 0, we have
OX g sin a
" alc-r)

J’P(vv) |w-r [dw. (®)

The system will find a location for r which minimizes E,. At this minimum the derivatives of E, with
respect to both r, and T, must be zero. Evaluating the derivative of E. with respect to r and setting it

equal to zero we find
[d,a-v, al{c-r1)] 0

9
[alc-r)]? ©

OE, = dxugsin a

where



27
d, :I PW) |w-r1 |dw (10)

a scalar, can be physically interpreted as the weighted distance from the COR to the pressure distribution,

and

wW—

v, :J’ Piw) T |dw (12)

| w—r
a vector, can be interpreted as the weighted direction from the COR to the pressure distribution.

4.3. A digression: Iterative numerical solution

Minimization of E. can be carried out in an iterative manner to find the COR for a given pressure
distribution P(w). Figure 3-1 shows the locus of CORs obtained in this manner. Each point is the COR
for a randomly chosen three-point pressure distribution. Only pressure distributions consisting of three
points (a tripod) need be considered since according to Mason’s theorem 5 [10] three points are sufficient.
Weights were computed for the three points in such a way as to satisfy the constraint that the CM be at
the center of the disk. (If this required any of the weights to be negative, the tripod was discarded.) An

initial guess was made for the location of the center of rotation r, and O E, evaluated at that point.

The minimization technique used requires computation of J(OE, ), the second derivative of E,, (a two-by-
two matrix,) which can be obtained analytically. A new guess for r is then made by adding to the old
guess

-0E,
r= _ (12
O(0E,)
This method usually converged quickly if the initial guess was sufficiently close to the correct answer. By

moving only one leg of the tripod at a time, and by only a small amount, the value of r found for one

tripod could be used as an initial guess for the next. Figure 3-1 represents 590000 tripods, taking 4 CPU
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hours on a VAX-780. Similar figures done with four points of support instead of tripods are identical,

numerically validating Mason'’s theorem 5 [10].

4.4. Analytic solution
Resuming our analytical discussion from section 4.2, we set LJE, = 0 in equation 9. The constant terms
drop out leaving

ra=q,[afc-r)] (13

where we define the quotient moment, a vector, as

v
-2
=r2__, 14
q, =T d (14)

with v, and d, given in equations 10 and 11. q, is a function of the COR r and the pressure distribution

P(w), and has units of distance. In this section we hold the center of rotation r fixed, and analyze the

guotient moment for all pressure distributions P(w) .

The quotient locus {q,} is the set of g, for all possible choices of the pressure distribution P(w)
consistent with the requirements listed in section 2.5. 1t is still a function of r, but the dependence on
P(w) has been removed. Unfortunately we have been unable to develop any physical intuition about the
meaning of the quotient locus. We regard it merely as an intermediate mathematical construction, more

tractable than the COR locus to which it is related.

We will always plot the quotient locus displaced by r, i.e., based at the COR. {q,} may be plotted as a
region of space, if we remember that a given qJ{q,} is a vector with its tail at the COR and its head

anywhere in that region.

We will find the boundary of the quotient locus. The results will allow us to find the boundary of the COR
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locus in section 4.9.

To simplify discussion, we take the total weight of the workpiece Mg = 1, that is

Mg:J’ PW) dw=1. (15)
Since multiplying the pressure distribution P by a constant factor changes both numerator and
denominator of g, by that same factor, the assumption is harmless. Physically, the mass of the disk has

no effect on the motion, so we can choose it arbitrarily.

4.5. Extrema of the Quotient Locus

Since v, (equation 11) can be interpreted as a weighted average of unit vectors from the COR to the
pressure distribution, the greatest magnitude v, can have will be 1, and will be attained when the
pressure distribution is concentrated at the CM. In all other cases the direction to elements of the
pressure distribution varies, and so some cancellation is inevitable. When the magnitude of v _ is

maximal, it must be directed from the COR to the CM.

The smallest magnitude v, can achieve depends on whether the COR is inside or outside the disk, i.e.,
on whether r >a or r <a, where a is the radius of the disk. In either case we wish to achieve the
maximum amount of cancellation of direction possible. If r >a this occurs when the pressure distribution
consists of two points at opposite edges of the disk, providing the minimum possible agreement on

direction between the two vectors, as shown in figure 4-2.

If r <a, we can arrange for v, to be zero. Indeed we can arrange for v, to point from the COR maximally
away from the CM by making a two-point pressure distribution as shown in figure 4-3. (In the figure the

distance from w, to the COR is infinitesimal.) The two vectors w; and w, point in opposite directions. To
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Figure 4-2: Dipod responsible for the smallest value of v, for r >a

We study extrema of the moments v, and d, of the pressure distribution to find extrema of the "quotient

moment” ¢ =v, /d. We study extrema of the quotient moment g, to obtain bounds on the COR to
which it is related.

v, is the weighted unit vector from the COR (r) to the pressure distribution. It is maximized when the
pressure distribution supporting the workpiece is concentrated at the CM. When r>a, v, is minimized by
the pressure distribution shown here: half the weight of the workpiece is concentrated at each of the two
points of support w; and w,, which are chosen to provide as little agreement in direction from the COR as
possible.
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Figure 4-3: Dipod responsible for a negative value of v, for r <a

If the COR is within the disk (r<a), it is even possible to arrange for v, to point from r away from the CM,
by choosing the pressure distribution to be a dipod such as this one. As w, is closer to the CM than w, itis
bears more than half of the weight of the disk.
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maintain the centroid of the pressure distribution at the CM, we find the weights of w; and w, are
r

P,=——, and 16

15113 (16)
a

p,=_2 |

2 T +a

Therefore w, is more heavily weighted than w;, and

a-r
V, =PV +P,yv, = (Pz_Pl)sz—aHVz (17)

points from the COR away from CM.

Now consider d. (equation 10). Clearly if the pressure distribution is concentrated at the CM, the
weighted distance from the COR to the pressure distribution is just r. In fact r is the smallest value

which d, can attain. In the configuration shown in figure 4-3,
d =P {a+r)+P,0=r . (18)

d, takes on its maximum value when the pressure distribution consists of two points as in figure 4-2.
That value is

d =(r2+a?)2, (19)
Since q, is the quotient of v, and d,, extreme values of | g, | occur when v, is maximal and d, minimal,
and when v, is minimal and d, maximal. Figures 4-2 and 4-3 illustrate the pressure distributions which

(simultaneously) minimize v and maximize d,, for r>aand r <arespectively.

4.6. Numerical explorartion of the Quotient Locus

We can find the locus of all possible quotients numerically. It is much easier to find the {q,} locus (for a
given value of r ) than it is to find the COR locus. No iteration is required; for a given tripod, the moments
v, and d, can be calculated immediately. Figures 4-4 and 4-5 show typical {q,} locifor r <aand r >a,

respectively. The dots are values of g, found numerically, while the solid curve is the empirical boundary
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of the locus as described below.

The dots in figures 4-4 and 4-5 represent over 3,000,000 and 500,000 randomly chosen tripods,
respectively. The solid curves which appear to bound the dots are generated by two classes of dipods,
discussed below. On the basis of numerical studies such as shown in these figures, we believe that no
value of g, generated by a tripod or any other pressure distribution falls outside the dipod curve.
Therefore the dipod curve is the exact boundary of {qg,}. We have not been able to prove analytically
that no value of g, falls outside the dipod curve, so the boundaries should be considered empirically

justified only.

4.7. Boundary for |COR| < a

We observe that for r <athe boundary of the locus is a circle. This empirical boundary can be generated
by two-point pressure distributions (dipods) of the type shown in figure 4-6, where the angle w can vary.
These dipods are a generalization of the one shown in figure 4-3 . (The distance from r to w, is

infinitesimal.) We can then calculate a parametric form for the boundary in terms of w:

r
q, :a)r_+a(aa)—r) (20)

where @w= (cos w, sin w)

This generates a circle of radius

ar
b= : 21
r+a (21)
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Figure 4-4: Quotient locus {q,} (dots), and empirical boundary (solid), for r <a

Hundreds of thousands of randomly selected pressure distributions were chosen, and for each the
guotient moment was evaluated and plotted (dots). All the observed values of the quotient moment fall
within the boundary (solid curve) generated by quotient moments of special pressure distibutions consisting
of just two points of support: dipods. In fact, the boundary turns out to be a circle, the radius of which can
be determined analytically.
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Figure 4-5: Quotient locus {q,} (dots), and empirical boundary (solid), for r >a

As in figure 4-4, the quotient moments for randomly generated pressure distributions all fall within the
boundary generated by quotient moments of a special group of dipods. Here r>a, and the bean-shaped
boundary does not have a simply named shape such as the circle we found for r<a. However it is still
described by analytic formulae.
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Figure 4-6: Dipods contributing to the boundary of {q,}, for r <a

When r<a, i.e. when the COR turns out to be within the disk, these are the pressure distributions which
are responsible for the boundary of the quotient locus, and thus also are responsible for the boundary of the
COR locus. They are simply dipods, in which one point of contact between workpiece and sliding surface is
at the periphery of the disk, and the other point is internal to the disk, near what turns out to be the COR.
More than half the weight is supported by the internal contact, as it is nearer to the CM. It is not surprising
that the workpiece rotates about a COR essentially coincident with a point supporting most of the weight of
the workpiece [5]. As the internal point of support is moved in an infinitesimal circle parametrized by angle
w, the corresponding COR traces out the boundary of the COR locus inside the disk.
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4.8. Boundary for |COR| > a
For r >a, the empirical boundary of the locus {q,} is generated by dipods of the type shown in figure 4-7,
where w is allowed to vary. These dipods are a generalization of the dipod shown in figure 4-2 . Again,

the boundary can be calculated parametrically from w (via intermediate terms d*,d~,y*, and y") as

d* =(r2+a? + 2ar cos w)2 (22)
sin v :asTw
d_

cos y* = (1-sin2y*)V2

cos y"+cosy™ siny" -siny”

v = ( 2 ! 2 )
+ p—
g 47+
2
v
_ r
qr_rzd_

It is the boundaries of {q,} that will be used (in section 4.9) to determine the boundaries of the COR
locus. Therefore the boundaries of the COR locus, too, can be found by considering only dipods. This is
a stronger statement than Mason’s theorem 5, which requires tripods. Additionally, we have found the
two points constituting the dipods. However, it should be noted that the sufficiency of tripods holds for

any workpiece, whereas dipods are sufficient only for a disk.

Figures 4-4 and 4-5 demonstrate that the two classes of dipods considered above, and illustrated in
figures 4-6 and 4-7, generate extremal quotient moments. In other words, the locus {q,} of values of q,
for all pressure distributions P(w) satisfying the conditions of section 2.5 fall inside the empirical boundary
generated by the above dipods. The boundaries themselves are, of course, part of {q,} since the

boundaries are generated by acceptable pressure distributions.
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Figure 4-7: Dipods contributing to the boundary of {q,}, for r >a

When r>a, i.e. when the COR turns out to be outside the disk, these are the pressure distributions which
are responsible for the boundary of the quotient locus, and thus also are responsible for the boundary of the
COR locus. Again they are simply dipods, but now in each dipod both points of contact with the sliding
surface are at the periphery of the disk, and so each supports half the weight of the workpiece. As the
dipod system rotates around the CM (parametrized by angle w), the corresponding COR traces out the
boundary of the COR locus outside the disk.
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4.9. Analytic form of the COR locus
Having found a parametric representation of the {q,} locus, we can find the COR locus. Recall the
requirement for minimizing the energy lost to friction (equation 13):

rla=gq, [adc-r1)]. (23)

The COR locus is the set of all r for which there exists a q, 00 {q,} satisfying equation 23.

Equation 23 is a vector equation. The left side obtains its direction from a. The right side obtains its
direction from q,, since al{c—-r) is a scalar. To satisfy the vector equation g, must have direction a.

We can rewrite equation 23 in scalar form, retaining the direction constraint on q, separately:
r2=|q,| [alc—r)] (24)
where q, O {q,}

and g, |la

We wish to find the locus of r for all distributions P(w). It is best to imagine r to be an independent
variable. Each value of r yields a locus {q,}, with one element q, O {qg,} corresponding to each
acceptable pressure distribution P(w). For some values of r the value of g, required to satisfy equation

24isin {q,}; for other values it is not. The former values constitute the COR locus.

It is confusing, but unavoidable, that the locus {q,} shifts as we consider different locations of the center
of rotation r. In figure 4-8 we have plotted several {q,} loci for different values of r. Note that varying
the magnitude of r continuously changes the shape or size of the {q,} loci. But changing the direction of

r only causes a corresponding rotation of the {q,} locus.

The variables of equation 24 are shown geometrically in figures 4-9, 4-10, and 4-11. In each figure we

have plotted a value of r and the locus {q,} for that r. We then calculate and plot the value of g,
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Figure 4-8: Boundaries of quotient loci {q,} for various r

As r is changed, the boundary of the quotient locus changes continuously. Sweeping r around the CM
causes a corresponding rotation of the quotient locus boundary. Changing the distance of rr from the CM
changes the shape and size of the quotient locus boundary.
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required to satisfy equation 24. In figure 4-9, the value of g, required does not fall in {q,}, so the value
of r shown is not in the COR locus. In figure 4-10, the value of g, required does fall in {q,}, so the
value of r shown is in the COR locus. In figure 4-11, the value of g, required to satisfy equation 24
happens to be on the boundary of the {q,} locus. The boundary of the COR locus is generated by such
cases. Interior points of the COR locus are generated when the g, required is interior to the {q,} locus,
as in figure 4-10. Since we are interested only in the boundary of the COR locus, we will consider only

values of g, which are on the boundary of the {q,} locus, as shown.

4.10. Solution for the |COR| < a part of the COR locus
It will be convenient to represent the COR by its polar coordinates (r,¢€), and to define the relative angle

n. Both angles are shown in figure 4-11. We have
E=T+a-n. (25)

If r <a, the boundary of {q,} is acircle. The condition that g, lie on the circle can be expressed
| la, | a+(r-b)e|=b. (26)

where b is the radius of the circle, from equation 21. Equation 26 can be expressed in terms of the angle
n as

(g, I=(r =b)cos n)2+((r —b)sinn)?=b?. (27)

Solving this quadratic equation for | g, | we find
lg,|=(r-b)cosn+(b?=((r-b)sinn)?)¥2, (28)

Inserting this value of | g, | into equation 24 and eliminating the square root we obtain
2

" _(r-b)cosn)2=b2-((r-b)sinn)2. (29)
al{c-r)

Substituting b from equation 21 and simplifying we find
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Figure 4-9: Variables of equation 24, for a value of r not in the COR locus

Is a proposed value of rr the COR of the workpiece for some pressure distribution? First generate the
quotient locus boundary for the proposed r'. In this case it is a circle, beacuse r falls within the disk. Now
compute the value of g, which would be required to satisfy energy minimization (equation 24). Plot it too. If

q, falls within the quotient locus boundary (which it does not here), then r is the COR of the workpiece for
some pressure distribution. ¢, points to a quotient moment in the locus, so the pressure distribution which
led to that quotient moment is the one which causes the COR to be atr.
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Figure 4-10: Variables of equation 24, for a value of r in the COR locus

Here g, does fall within the quotient locus boundary, so the COR is at r for some pressure distribution.
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Figure 4-11: Variables of equation 24, for a value of r on the boundary of the COR locus

Here g, falls on the boundary of the quotient locus, so r is on the boundary of the COR locus. We could

test all values of r to see if they fall on the boundary in this way. Instead, we generate the boundary of the
quotient locus (parametrized by an angle w in the dipods) and solve for the value of rr which gives rise to a
q, satisfying this figure.
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r2(a+r)+(r-a)[ac-r)]2-2r2[a{c-r)] cosn=0 (30)

where [al{c-r)]=alt +rcosn.

Equation 30 is cubic in r and quadratic in cos . The solution for cos n is

r((r+a)?+(ale )2)Y2-a(alt )
r(r+a) '

cosn= (31)

The other quadratic root is invalid. Since n is related by equation 25 to the polar angle €, equation 31
describes the boundary of the COR locus in the polar coordinates r,¢, for r<a. A typical COR locus
boundary generated using equation 31 is shown in figure 4-12.

4.10.1. Extremal radius of the COR locus boundary for |COR|<a

The minimum radius of the COR locus boundary occurs at e=a, which corresponds to n=1.  From

equation 30 we find

_ a(ale) (32)
2a+(ale )

min
Note that r ;. is not the minimum distance from the CM to an element of the COR locus; that distance is

zero. I, is the minimum distance from the CM to the boundary of the COR locus. r;, is indicated in

figure 4-12.

It will also be useful to have the angles at which the COR locus boundary intersects the disk boundary.

From equation 31 we obtain
_((arz )2+4a)2-(alt )

cos N,_, 55 (33)
>From equation 30 we can find the radius of curvature of the COR locus boundary atr;, to be
a(alt )((alt )+2a)?2
_ (alt )((ale )+23) 34

_(aEd: y3+4a(alt )2+8a2(alk )+4ad
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Figure 4-12: COR locus boundary for r<a

Shown is the part of the COR locus boundary internal to the disk. The pressure distributions which give
rise to CORs on the bold boundary are dipods, with one point of support at the COR and the other on the
periphery of the disk as far as possible from the COR.

I'yin 1S the minimum distance from the CM to the boundary of the COR locus. Note that r ;. is not the
minimum distance from the CM to an element of the COR locus; that distance is zero.
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4.11. Solution for the |COR| > a part of the COR locus
If r >a, we cannot find a simple equation analogous to equation 26 constraining g, to the boundary of
{a,}. An effective approach is to parametrize the boundary of the {q,} locus by the angle w of equation

22, and solve for both € and r by binary search.

For each w the following procedure is used: We guess a value of r, in the range as<r<ry,, where tip is
an upper bound to be found in section 4.11.1. Equation 22 is then used to calculate a value of q,. Angle
n is related to the terms of equation 22 by

-V

n = arctan —> (35)

Vy

and so can be computed from w. Equation 24 can be written in terms of the angle n as
r2=|q,| (al& +rcosn) (36)
which is easily tested. If it is satisfied, we have found angle n and magnitude r describing a point on the

boundary of the COR locus. ¢ is then obtained from n using equation 25.

If the left-hand side of equation 36 is greater (resp. less) than the right-hand side, we increase (resp.
decrease) the value of r guessed above. In this way we perform a binary search, quickly converging on

a solution for r and €.

Figure 4-13 shows the boundary of the COR locus for various ¢ and a. The part of the boundary inside
the disk was computed using equation 31, while the part outside the disk was found by binary search as

outlined here. Calculation of each locus required about 2 CPU seconds on a VAX-780.
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Figure 4-13: Boundaries of COR loci for various ¢ and a

The pressure distributions which give rise to CORs on the boundary of the COR locus external to the disk
are dipods, with both points of support on the periphery of the disk diametrically opposite each other. The
boundary is generated as the angle w parametrizing the dipods is varied (figure 4-7).

In the figures the point at which the workpiece is being pushed is indicated by an arrowhead, and the
angle (a) of the edge being pushed is indicated by the line the arrowhead contacts. (In several cases the
arrowhead is outside the disk; this is unrealistic.)



49

4.11.1. Tip Line

We can calculate the extremum of the COR locus analytically. For many purposes this may be all that is
required. Additionally, it gives us a range within which to conduct the binary search discussed in section
4.11 . By symmetry, r takes on an extremal value when n = 0. In figure 4-7 this corresponds to v, =0,

which in turn occurs only when w=0or w = g

The extremum at w=0 has no apparent meaning. At w = > Wwe find from equation 22

r3
R e
At this value equation 24 yields
2
a
r. =<2_. 38
ip = o= (38)

This is the greatest distance r may be from the CM, and it occurs at polar angle € = t+a. In figure 3-4
we plot Mip VS. contact angle a, for a given value of c. As a is varied, the tip of the COR locus at

distance tip from the CM traces out straight line, the tip line.

The use of this graphical construction is illustrated in figure 3-4. For a given value of a, as shown, Ttip is
at the intersection of the tip line described above with a ray from the CM at angle 1+ a.
An interesting case occurs when a becomes perpendicular to c. (Note that this does not require a = 7_2T,)

Asalt - 0, we have Fip — - The COR at infinity corresponds to pure translation perpendicular to a.
Figure 4-13 ¢ shows a case in which a is almost perpendicular to c. Note that Mip = © does not mean

that pure translation is assured; only that it is possible. The COR may fall at any distance less than i

The radius of curvature of the COR locus boundary at the tip can be found analytically to be
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(39)

4.12. Symmetries of the COR locus

We now have the ability to quickly compute the COR locus for any ¢ and a.

The COR locus is a function of four parameters: the disk radius a, the edge angle a (which may be the
angle of the pushing fence or of the workpiece edge pushed, measured with respect to the line of motion
of the pusher), and the two components of the point of contact ¢ between pusher and pushed workpiece.
However the COR locus is really much simpler in functional dependence than the existence of four

parameters would seem to imply.

The most obvious symmetry is one of total size: if both ¢ and a are changed by a factor of y, the COR

locus will be scaled by a factor of y as well.

Note that the COR locus has an axis of symmetry through the CM at angle a. The "tip" of the locus falls
on this axis of symmetry, and the tip line construction (section 4.11.1, and figure 3-4) makes use of this

symmetry.

The shape of the COR locus depends only on the distance of the tip of the locus from the CM, a?/algd, as
a multiple of the disk radius a. If COR loci for various tip distances are precomputed, we need only select

the appropriate one, scale it by the disk radius a, and tilt it at the appropriate angle a.

Finally, the COR locus can depend only on the force and torque applied by the pusher. Displacing the

point of contact ¢ perpendicular to the edge angle a (i.e. along the line of action of the applied force)
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changes neither force nor torque, and therefore cannot change the COR locus. In figure 4-13, the COR

loci in sections a and b are identical because the point of contact ¢ has been displaced perpendicular to

the edge.

4.13. Summary

We have found the boundary of the COR locus for any choice of ¢ and a. Within the disk the boundary is
given by a simple formula relating r and ¢, the polar coordinates of the boundary (equation 31). Outside
of the disk, the polar coordinates of the boundary are found by binary search as outlined in section 4.11.
For most applications it is not necessary to find the entire COR locus boundary, as simple formulae exist
for several important points on the boundary. Most important of these is the tip-line construction

described in section 4.11.1.

Slightly more discussion of the boundaries of the quotient locus (section 4.7) is in order. The quotient
locus is an intermediate mathematical construction whose boundaries are transformed directly into the
boundaries of the COR locus. The boundaries of the quotient locus were found by making an informed
guess as to the pressure distributions which give rise to the boundaries. Then this guess was tested by
extensive computer simulation of random pressure distributions. These numerical results suggest that
the analytic quotient locus boundaries were indeed correct: no randomly generated pressure distribution
ever appeared which landed outside the analytic boundary of the quotient locus. Because of the
empirical justification of the boundaries of the quotient locus, however, our derivation of the analytic
boundaries of the COR locus is not rigorous. It may well be that it was this step (requiring computer

testing) which prevented analytic solution for the COR locus long ago [6] [8] [17].
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5. Application

A useful application of the results found above is to the problem of aligning a workpiece by pushing it. In
figure 2-1 a misoriented rectangle is being pushed by a fence. The fence is moving in a direction
perpendicular to its front edge. Evidently the rectangle will rotate CW as the fence advances [10], and will
cease to rotate when the edge of the rectangle comes into contact with the front edge of the fence [2].

The problem is to find how far the fence must advance to assure that the CW motion is complete.

The geometry of this problem differs from the geometry used in previous sections. Previously a point
pusher made contact with a straight workpiece edge. Here the straight edge of the pusher makes contact
with a point (corner) of the workpiece. But since the coefficient of friction between the pusher and the
edge of the workpiece (i) is zero, we know that in either case the force exerted by the pusher on the
workpiece is normal to the edge, regardless of whether the edge is that of the pusher or that of the
workpiece. Since the motion of the workpiece can depend only on the force applied to it, the angle of the
fence takes the place of the angle of the workpiece edge (a), and all the results derived above remain

unchanged.

In this section we will generalize the problem slightly, relative to the problem illustrated in figure 2-1 :
» The workpiece pushed is arbitrary, not a rectangle.

» The motion of the fence is not necessarily perpendicular to its face.

First we circumscribe a disk of radius a about the workpiece. The disk is centered at the CM of the

workpiece (figure 5-1). Note that the contact point need not be on the perimeter of circumscribed disk.

We know [10] that the workpiece will rotate CW, and will cease to rotate when the final configuration

shown in figure 5-2 is reached.
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Figure 5-1: Initial configuration of workpiece and fence, and resulting COR locus

The fence travels horizontally and contacts the shaded workpiece as shown. As the fence advances the
workpiece rotates clockwise at a rate which depends upon the location of the COR. The workpiece is
circumscribed by a disk of radius a, since this is the only shape for we can find exact COR locus

boundaries. The ice-cream-cone shaped COR locus boundary is shown. The minimum rate of rotation
occurs when the COR is at the tip of the locus.
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Figure 5-2: Final configuration of workpiece and fence, and resulting COR locus

Finally the workpiece has rotated into alignment with the fence. At the moment before alignment the COR
locus boundary is as shown. We want to determine the maximum advance of the fence which could
possibly be required to get from the orientation shown in figure 5-1 to the one shown here. So we assume
that the COR is always at the tip of the locus, which is the point for which the workpiece rotates most slowly
as the fence advances.
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We now ask the rate of rotation of the workpiece about the COR, with unit advance of the pusher. Let the
angle of the CM from the direction of motion of the pusher be . This is also the angle between the tip
line and the perpendicular to the line of motion. (Both angles are indicated in figure 5-1). From equation
4 we have

6x:%aﬂc—r). (40)
where r is the distance from the CM to the COR. The rate of rotation per advance of the pusher, df/dx,
depends on where the COR r falls within the COR locus. Since we wish to find the longest push which
could possible be necessary to achieve a certain amount of rotation, we need to know for which r in the

COR locus dp/dx is minimized, i.e. we consider the worst case location for r. This occurs when r is at the

tip of the COR locus. Therefore we have

6x:_d—BorE(c—rtip). (41)
sin a

Using Ftip from equation 38, this can be integrated to yield the indefinite integral

= Csin(a+p) _ a? log | 1+Sin (@+B)

. - - . (42
sin a 2csina 1-sin(a+p)

To find the maximum pushing distance, Ax, required to cause the workpiece to rotate from its initial
configuration shown in figure 5-1 to its final configuration shown in figure 5-2, we simply substitute the

initial and final values of B into equation 42, and take the difference X, = Xinitial-

6. Solution for the COR locus including contact friction

Up to now we have assumed that the coefficient of friction between the pusher and the edge of the
pushed workpiece was zero, i.e. pu=0. The pushing force was therefore normal to the edge being
pushed. Since the motion of the workpiece can depend only on the force applied to it, we will designate

the locus we found { COR} , to indicate its dependence on the force angle, which is perpendicular to a.
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We know how to generate the COR locus for a given angle of applied force. Unfortunately, when p.>0, it
is not possible to tell what the force angle will be. We will describe angular /limits on the force angle in
section 6.1, but within those limits the force angle depends on the pressure distribution, which is not
known. If we already knew that the COR would be at a certain point, however, it would then be possible

to find the force angle.

Our approach to this problem is to seek CORs which are consistent with the force angle which gives rise
to them. For each force angle @ within the angular limits, we generate {COR}(p. For each COR in {COR}(p

we find the force angle implied. If the force angle implied matches ¢, that COR is a possible one for the

workpiece. This formulation seems to threaten a great deal of computation, which in fact is not required.

We will refer to the set of consistent CORs as the COR sketch, to distinguish it from the elementary COR
loci {COR}(p produced for known force angles. Two elementary COR loci will be used in the construction
of the COR sketch. In the figures, these COR loci will be left visible in outline, while the actual COR

sketch — the consistent CORs — will be shown shaded.

6.1. Contact Friction and the Friction Cone

Let p, be the coefficient of friction between the pusher and the workpiece. If u.>0, two distinct modes of
behavior of the system are possible: sticking and slipping. In figure 2-1, sticking means that the element
of the fence in contact with the corner of the workpiece remains invariant as the pusher’s motion
proceeds. Referring to figure 2-2, sticking means the element of the workpiece edge which is in contact
with the pushing point remains invariant as the pusher’s motion proceeds. Slipping is simply the case in
which either the element of the pusher or the element of the workpiece, which are in contact with each

other, changes as the motion proceeds.
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Define
v =tan ", (43)

In figure 6-1 we construct a friction cone, of half angle v, at the point of contact c . The cone is centered
on the edge normal, at angle a-1v2 relative to horizontal. Note that the edge may be either that of a
fence, where it contacts a corner of the workpiece (as in figure 2-1), or an edge of the workpiece, where it
is touched by a corner of the pusher (as in figure 2-2). The friction cone is a well-known construction in

classical mechanics. (Recently Erdmann [3] has extended the friction cone to configuration space.)

The component of the applied pushing force tangential to the edge, F”, is supported by friction. Its
magnitude cannot exceed | F, where F is the component of force normal to the edge. Therefore the

total applied force vector must lie within the friction cone.

If we attempt to apply a force to the workpiece edge at an angle outside of the friction cone, friction
cannot support the tangential component of force. The result is slipping along the edge, and the actual
applied force is directed along one extreme of the friction cone. If we apply a force within the friction
cone, friction is sufficient to support the tangential component of force, and slipping will not occur: we

have sticking.

In short, slipping is only consistent with a force vector at one extreme of the friction cone, while sticking is
only consistent with a force vector within the friction cone. It is not usually possible to tell if slipping or

sticking will occur: often, depending on the pressure distribution, either may occur.
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Figure 6-1: Construction of the friction cone

The force which the pusher applies to the workpiece edge must lie within the friction cone shown. If we
attempt to apply a force at an angle falling outside the friction cone, friction cannot support the component
of force tangential to the workpiece edge. The pusher will then slip along the workpiece edge, and the
actual force applied will lie along one extreme of the friction cone. If we apply a force which lies within the
friction cone, the pusher will not slip relative to the workpiece edge.
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6.2. Sticking and Slipping zones

In this section we presume that the COR is known: a single point is the COR for the workpiece. We
divide the plane into three zones, called the sticking line, the up-slipping zone and the down-slipping
zone. (Figure 6-2). The up-slipping and down-slipping zones are regions of the plane with positive areas,
while the sticking line is merely a line, but all three will be collectively designated "sticking and slipping
zones." The motion of the workpiece is qualitatively different for the COR falling in each of the three

zones.

The sticking line is the line perpendicular to the pusher’s line of motion, intersecting the point of contact
between pusher and workpiece, (i.e. ¢ lies on the sticking line). Since we choose to draw the pusher’s
line of motion horizontally, the sticking line is vertical. The sticking line divides the down-slipping zone, on
its left, from the up-slipping zone, on its right. Also shown in figure 6-2 is the edge normal line. Above
this line, the up-slipping and down-slipping designations are reversed. The area above the edge normal
will be unimportant, however.

6.2.1. Sticking Line

First consider the workpiece’s motion when the COR is on the sticking line. Recall that the motion of any
point of the workpiece is perpendicular to the vector from the COR to that point. If the COR lies on the
sticking line, the workpiece’'s motion at the point of contact is perpendicular to the sticking line, and is

therefore parallel to the pusher’s line of motion.

Since the pusher’s line of motion and the workpiece’s motion at the point of contact are parallel, the
pusher and the workpiece, at the point of contact, travel along together. There is no need for one to slip

relative to the other; the workpiece and the pusher are sticking at the point of contact.
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Figure 6-2: Construction of zones: up-slipping, down-slipping, and sticking line

The location of the COR has implications for slipping or sticking of the pusher with respect to the
workpiece edge. If the COR lies on the sticking line shown, pusher and workpiece edge move along
(horizontally) together and there is no slipping of one relative to the other. If the COR falls in the up- or
down-slipping zones to either side of the sticking line, then the workpiece has a vertical component of
motion and so must slip relative to the pusher (which moves horizontally).
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6.2.2. Slipping Zones
Now suppose that the COR is in the down-slipping zone. The workpiece’s motion at the point of contact
has a downward component, relative to the pusher’s line of motion. The pusher-workpiece contact must

be slipping, with the workpiece moving down relative to the pusher.

Similarly, if the COR is in the up-slipping zone, the workpiece at the point of contact moves up relative to

the pusher as the pusher advances.

6.3. Consistency for slipping
If we know that the workpiece is slipping relative to the pusher (and whether up or down), then the force

angle is known: it is at one extreme of the friction cone, perpendicular to a +v.

If the COR lies in the down-slipping zone, the workpiece moves down as the pusher advances. Therefore
the force angle must be along the upper extreme of the friction cone, at angle a+v—-1/2. Similarly, if the
COR lies in the up-slipping zone, the workpiece moves up as the pusher advances, and the force angle

must be along the lower extreme of the friction cone, at angle a-v—-1v2.

Combining the above observations, we see that if slipping occurs, the COR must be either in {COR} ,,
and the down-slipping zone, or in {COR} ,_,, and the up-slipping zone. These two intersection regions are
called the down-slipping locus and the up-slipping locus. A very similar construction was used by Mason

and Brost in figure 5 of [12].

The down-slipping and up-slipping loci are two components of the COR sketch, because every COR in
either locus is consistent with the force angle that was used to generate it. We construct the down-

slipping locus of the COR sketch by intersecting the down-slipping zone (left of the sticking line) with
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{COR} We construct the up-slipping locus of the COR sketch by intersecting the up-slipping zone

a+v’

(right of the sticking line) with { COR} ,_,,.

In figure 3-5, { COR} and {COR},_, are shown in outline. The down-slipping and up-slipping loci are

a+v

the shaded areas left and right of the sticking line respectively.

6.4. The Sticking Locus
The third set of consistent CORs belong to the sticking locus. The sticking locus, together with the
up-slipping and down-slipping loci whose construction was described above, are all the CORs consistent

with the force angle they presume. The three consistent loci constitute the COR sketch.

If the COR lies on the sticking line, sticking occurs. The force angle can be anywhere in the friction cone,
i.e., between a-v—172 and a+v—-1/2. The sticking locus is therefore the intersection of the sticking line
with the union, over all @ perpendicular to a force angle within the friction cone, of {COR}(p. The sticking

locus is shown as a bold section of the sticking line in figure 3-5.

As discussed above, the two slipping loci are {COR} ., possibly cut off by the sticking line. In
calculating either slipping locus, the force angle is known: it is a =v-172. But in calculating the sticking
locus, (which is just a simple line segment), the force angle is not known, except that it lies within the
friction cone. To find the endpoints of the sticking locus exactly, we could form every locus {COR}(p, for
o-v<@<oa+v, and intersect each locus with the sticking line. The union of these intersections is the

sticking locus. This is not an efficient method.

The lower endpoint of the sticking locus is of particular interest. It is possible to approximate it by using

the tip-line construction described in section 4.11.1. The procedure for finding the sticking locus
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described above is to form every locus { COR} @ for a—v<@<a+v, and intersect each locus with the sticking

line. As we vary @, {COR}(p varies continuously from {COR},_,, which is outlined in figure 3-5, to

-\

{COR},,, also shown outlined. The tip of the extreme loci, as well as of all intermediate loci, fall on the

tip line. The tip line is shown dotted in figure 3-5.

Were it not for the fact that each {COR}(p locus drawn dips slightly below the tip line, the lower endpoint of
the sticking locus would be exactly at the tip line. We will use this approximation. The small error so

introduced can be bounded [15], and is usually negligible.

Using the tip line to approximate the lower endpoint of the sticking locus in this way depends on an
unstated assumption: that the tip of { COR},_,, lies to the left of the sticking line while the tip of {COR} .,

lies to the right of the sticking line. This assumption is necessary so that the tip of some intermediate

locus {COR}(pWiII intersect the sticking line. In section 6.6, we will deal methodically with this problem.

The shaded slipping loci and the bold sticking locus of figure 3-5 contain all the possible locations of the

COR.

6.5. Possible configurations of an elementary COR locus

The down-slipping, up-slipping , and sticking loci play an important part in the rest of this work. It is worth
describing the qualitatively different ways in which an elementary COR locus {COR}, can intersect the
three zones (down-slipping, up-slipping, and sticking line) in order to form the loci. These qualitatively
different types of intersections will be called distinct elementary configurations. Later we will describe the
qualitatively different COR sketches which can occur; the latter will be called distinct sketches. Two COR

loci are used in the construction of a COR sketch, so there are more distinct sketches than distinct
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elementary configurations.

For a given contact point c , changing a yields four distinct elementary configurations of the resulting
COR loci. In figure 6-3(A), the pure slipping elementary configuration, the entire COR locus falls in the
up-slipping zone. In figure 6-3(B), the COR intersects all three zones, but the tip of the locus falls on the
same side of the sticking line as the CM. This is the same-sided-split elementary configuration. As a is
further decreased, the tip of the COR locus crosses the sticking line, entering the opposite-sided-split
elementary configuration, as shown in figure 6-3(C). Finally, when a decreases to the point where the
edge normal at ¢ intersects the CM, the COR locus goes to infinity [10]. The COR at infinity implies pure
translation (with no rotation) of the workpiece as the pusher advances. Beyond this point the workpiece’s
sense of rotation switches from clockwise to counterclockwise. For our purposes in constructing a COR
sketch, counterclockwise rotation is unphysical [10], and so we will class this, and pure translation as one
elementary configuration, the wrapped elementary configuration, as shown in figure 6-3(D). No part of a
"wrapped" locus will ever contribute to the COR sketch, yet we will continue to draw its outline as shown

in the figure.

The same four elementary configurations can be defined (now with increasing a) when the sticking line is

to the right of the CM (Figure 6-4).

6.6. Possible distinct COR sketches

Depending on a and y, each of the two elementary COR loci { COR} used in constructing the COR

azxv
sketch may be any of the four elementary configurations described in section 6.5, (pure slipping, same-

sided split, opposite-sided split, or wrapped). There are nine possible distinct sketches composed of two

elementary configurations, as shown in figure 6-5. (Of the 42 combinations, 6 are eliminated because the
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Figure 6-3: Possible elementary configurations of the COR locus

As the angle a of the pushed edge varies, the COR locus may intersect the three zones in different ways,
called distinct "elementary configurations”. The entire locus may fall in the down-slipping zone (part A), the
locus may intersect both slipping zones and the sticking line with the tip of the locus on one side or the
other (parts B and C), or the locus may "wrap" through infinity as shown in part D.
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Figure 6-4: Possible elementary configurations with sticking line to the right of the CM

The same four elementary configurations can be defined when the sticking line is to the right of the CM.
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tip of { COR} cannot be left of the tip of {COR},_,. The one sketch in which both { COR} are

a+v axv

"wrapped" elementary configurations is inconsistent with clockwise rotation of the workpiece.)

It is worth looking carefully at each sketch, in particular to understand the construction of the sticking
locus. The sticking locus is the intersection of {COR}(p with the sticking line, as @ is swept from a+v to
o —-v. The sweeping is always clockwise. In sketch (G), sweeping clockwise means sweeping from the
pure slipping locus, clockwise, to the wrapped locus. The intermediate loci therefore do intersect the

sticking line, even though neither locus { COR} does. Unless this is understood the origin of the

axv

sticking locus in sketches (G) and (H) will remain mysterious.

Several of the sketches shown in figure 6-5 have interesting properties. In sketch (A), the workpiece must
slip up relative to the pusher. In sketches (B) and (D), the workpiece must stick or slip up. In sketch (G),
the workpiece must stick to the pusher. In sketches (H) and (1), the workpiece must stick or slip down. In
the remaining sketches (C), (E), and (F), either mode of slipping, or sticking, is possible, depending on the

pressure distribution.

Analogous qualitative results are possible when the point of contact ¢ is to the right of the CM. The
distinct COR sketches for this case can be obtained from those shown in figure 6-5 by reflecting about a
vertical axis. (The pusher's motion should still be considered left-to-right, however.) The distinct
sketches for counterclockwise rotation of the workpiece may be obtained by reflecting about a horizontal

axis.
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Figure 6-5: Nine distinct COR sketches with respect to the sticking line

Depending on the angle a of the pushed edge (not labeled here) and the coefficient of friction . (which
determines the width of the friction cones shown), the two elementary COR loci which contribute to a COR
sketch may intersect the slipping and sticking zones in nine different ways.

Look closely at each distinct sketch to understand the origin of the sticking locus (the bold section of the
sticking line.) The sticking locus is the intersection of { COR} = with the sticking line, as @ is swept from a +v
to a —v. The sweeping is always clockwise. In sketch (G), sweeping clockwise means sweeping from the
pure slipping locus, clockwise, to the wrapped locus. The intermediate loci therefore do intersect the

sticking line, even though neither locus { COR}  , ,, does.
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7. From instantaneous motion to gross motion

We have shown how to find all possible instantaneous motions of a pushed sliding workpiece, given only
the parameters a, ¢ , and a. In some cases it is possible to say with certainty that a particular kind of
motion, such as sticking, can or cannot occur. The set of possible CORs, as found by constructing the
COR sketch, describes completely the possible instantaneous motions of the workpiece as long as those
parameters remain in effect. Usually however, the instantaneous motion which results changes the

parameters (except the radius a), so that a new COR sketch must be constructed.

Often we wish to calculate not the bounds on the instantaneous direction of motion, as above, but bounds
on a gross motion of the workpiece which can occur concurrently with some other gross motion of known
magnitude. (For instance, we may wish to find bounds on the displacement of the pusher which occurs
while the workpiece rotates 15 degrees.) Our approach to dealing with gross motion follows a definite

strategy, which will be illustrated in the sample problems solved in sections 8, 9, and 10.

Suppose we wish to find the greatest possible change in a quantity x, while quantity B changes from {3, i
to Bgg- From the geometry of the problem we find a equation of motion relating the instantaneous
motions dx and dB. We then construct the COR sketch for each value of B. In each sketch we locate the
possible COR which maximizes dx/dB. Using that COR, we integrate the equation of motion from ;... to

Bfina» Yielding an upper bound for the quantity x.

Sometimes the possible COR which maximizes dx/d can be found analytically, or at least approximated
analytically, and sometimes it must be found numerically. When an analytical solution is found, it may or

may not be possible to integrate the equation of motion in closed form using that analytical solution. The
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examples which follow illustrate all of these situations.

8. Example: Aligning a workpiece by pushing with a fence

In this example, we wish to find the maximum distance a fence must advance after first contacting a
workpiece, in order to assure that an edge of the pushed workpiece has rotated into contact with the
fence. A typical initial configuration is shown in figure 8-1, with the workpiece shown shaded. (Note that
the fence does not advance perpendicular to its front edge.) The final configuration is shown in figure

8-2. (In section 5 we have solved this problem for the case where 1,=0.)

Also shown in figure 8-1 is the COR sketch for the initial configuration, and the angle B between the line of
motion and the line from the point of contact to the CM. f3 is also the angle between the tip line and the
sticking line. Angle B changes from 45 degrees initially in figure 8-1 to 80 degrees in the final
configuration, figure 8-2. Note that a one degree rotation of the workpiece about the COR will produce a
one degree change in (3 as well. We wish to find the advance x of the pusher (fence) required to change

B by 35 degrees.

The workpiece’s rate of rotation about the COR d, for advance of the pusher dx, is given by
dg
X=——alfc-r1). 44
sin a 1 ) (44)
To find the maximum required pushing distance, we must find the maximum value of a [ for any possible

COR r in the COR sketch. This will be the slowest COR; the one for which the rotation of the workpiece

with advance of the pusher is slowest.

Reviewing the nine distinct COR sketches in figure 6-5, we see that the slowest COR is at the lower

endpoint of the sticking locus in sketches (D), (E), (G), and (H). We will call this behavior
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Figure 8-1: Initial orientation of the fence and pushed workpiece

As the fence advances horizontally the four-sided workpiece rotates clockwise. The COR sketch is the
shaded portion, plus the bold section of the sticking line called the sticking locus. The two elementary
(1.=0) COR loci which were used to generate the COR sketch are shown in outline. We need to find the
COR responsible for slowest rotation of the workpiece. This turns out to be at the lowest point of the
sticking locus (marked "B"), not at the tip of one of the u =0 loci as in the frictionless case considered in
section 5.
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Figure 8-2: Final (aligned) orientation of the fence and pushed workpiece

Here we show the COR sketch at the moment before the conclusion of the workpiece’s clockwise rotation
into alignment with the fence. By this time the COR responsible for slowest rotation of the workpiece is no
longer at the bottom of the sticking locus but rather at the point marked "B" which is the tip of one of the
elementary (u,=0) COR loci.
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sticking-slowest. It occurs when the tips of the two loci { COR} fall on opposite sides of the sticking

axv

line.

In sketches (A), (B), (C), (F), and (1), the slowest COR is an element of one of the slipping loci { COR}

atv’

We will call this behavior slipping-slowest. It occurs when the tips of the two loci { COR} fall on the

axv

same side of the sticking line. (For the purposes of the rule given here, the "wrapped" loci in sketches
(G), (H), and (I) count as having their tip to the left of the sticking line.) In fact, the slowest COR in the

slipping-slowest regime is very nearly the COR at the tip of one of the loci { COR} It is only because

axv:

the angle of symmetry a +v differs from a that the tip is not the slowest COR. We will use the tip of one

of the loci {COR} as an approximation to the slowest COR. The error introduced by this

atv

approximation can be bounded [15] in terms of the radius of curvature of the tip of the COR loci, but for

practical purposes is negligible.

It is possible to have a transition from slipping-slowest behavior to sticking-slowest behavior within a
pushing operation, as B increases. Such a transition occurs when the tip of one of the loci {COR}, .,

passes through the sticking line. In figure 8-3, for example, it is { COR} which passes through the

a+v

sticking line. We may derive the condition for intersection:

a2+c?=-atan B tan (o v+p) (45)

The tip of locus { COR} is on the same side of the sticking line as the CM when the left side of

axv

equation 45 is less than the the right side. The value of 8 at which the tip crosses the sticking line may be

found by solving equation 45 for (3:

2 4ia02 2 (424 ~2)\ 12
_c4tan (axv) = (c*tan“(axv) —4a“ (a<+c9)
tan Btransition - 222 (46)

The pushing distances required to advance 3 from its initial value to the transition, and from the transition
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Figure 8-3: Transition from sticking-slowest to slipping-slowest behavior

This is the moment of "transition" from the COR responsible for slowest possible rotation of the workpiece
being at the bottom of the sticking locus as in figure 8-1 to being at the tip of one of the elementary (1,=0)
COR loci as in figure 8-2.



75

to the final value, must be evaluated separately. In our example, the locus { COR} is type same-sided

a+v

split initially, but changes to type opposite-sided split. Using equation 46 we find B, iion = 69-4 degrees,

as shown in figure 8-3.

8.1. Slipping-slowest regime

If the slowest COR s at the tip of one of the loci { COR}, . ,, we have
dg
ox=——alfc-r,.). 47
sin a He=Typ) (47)
a2
where Mip=7———
(azxv)le
which can be integrated to yield the indefinite integral
= csm_(aiv+B)_ a_ log |1+5fn(aiv+B)| (48)
sina 2csin a 1-sin (o xv+p)

Since, in the example being considered, the motion from B, qiion=69-4 degrees until B, =80 degrees
falls in the slipping-slowest behavior regime, we simply evaluate x at these two angles and subtract. Here
the "-" sign in "axv" is used. The distance Ax obtained is one component of the maximum required

pushing distance to align the workpiece.

8.2. Sticking-slowest regime
In figure 8-1 the slowest COR is the lowest point of the sticking locus, labeled "B". When the COR is at

point "B" ¢ —r may be easily approximated as
c’+a?

lc-r|=—
csin

(49)

(If the radius of curvature of the tip of the COR locus boundary were zero this approximation would be

exact. As it is not zero, the bottom of the sticking locus drops slightly below the tip line. This is a

negligible effect, bounded in [15]. We will neglect it here.

Note the absence of any dependence on the friction cone angle v. This is because when the pusher and
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workpiece are already sticking, further increase in p, has no physical effect. To find the maximum
required pushing distance it is only necessary to integrate equation 47 with ¢ —r as given here. We
obtain the indefinite integral

gl1—cos [3|
2c 1+cosf

_c?+a?

X (50)

In our example, motion from B, ..., =45 degrees until B, . iion =694 degrees falls in the sticking-slowest
behavior regime, so we simply evaluate x at these two angles and subtract. The distance Ax obtained is
the second component of the maximum required pushing distance to align the workpiece. The total
required pushing distance to align the workpiece is the sum of the two partial results obtained from

equations 48 and 50.

9. Example: Moving point pushing aside a disk
In this example we consider a disk being pushed not by a fence, but by a point moving in a straight line.
The point may be a corner of a polygonal pusher, as long as it is only a corner of the pusher that touches

the disk, and not an edge.

In all cases the outcome of the collision is the same: the disk is pushed aside by the pusher, and contact
is broken. The disk ceases to move at the instant the pusher loses contact with it (we assume slow
motion), so the disk will be left tangent to the pusher’'s path when contact is broken. The initial and final
configurations of the disk are shown in figure 9-1. We wish to calculate the minimum and maximum

length of the encounter, x

encounter» 1N t€rms of the collision parameter, B, as indicated in figure 9-1. We

might also wish to know the minimum and maximum angles through which the disk may rotate during the

collision.
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Figure 9-1: Configuration of the disk and the path of the pusher, before and after collision

A point pusher in linear motion encounters a disk. The collision is characterized by an initial value of the
“collision parameter” B, ... After the pusher has translated a distance X, ., e the disk has become
tangent to the path of the pusher and the two break contact, ending the collision. B . is 2. During the

collision the disk rotates an angle . We wish to place bounds on X ., e @nd on &.
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9.1. Length of the encounter
In figure 9-2, the variables of interest are x, which parametrizes the advance of the pusher along its path,
and (3, which completely characterizes the collision. B will vary from B, ;i its value at first contact, to

BﬁnaI:TVZ when contact is broken. x

encounter 1S the corresponding change in x, as 3 changes from {3, i tO

2.

If the instantaneous COR is known, the direction of motion of the CM of the disk is known: it makes an
angle 6 with the horizontal, as shown in figure 9-2. If the CM of the disk moves a distance Al along its line

of motion, we can find the resulting values of Ap and Ax, and thereby relate AR and Ax to each other.

The pusher advances a distance
Ax = Al cos B+Alsin Btan (51

due to Al. At all times 3 can be found from
asin B =y+Alsin 6 (52)

where (xy) are the coordinates of the point of contact.

Substituting Al from equation 51, and evaluating the change in sin 3 due to Al, we find

. Ax sin 6
alA(sin B) = 53
(sin B) cos B+sin Otan 3

For infinitesimal motions AP and Ax become d and dx. Using d (sin3) =cos dp, we find an equation of

motion

dx = adp (sinp + 235 (54)
tan®

Since it will turn out that tan8>0, the largest and smallest values of dx/dp will result when 8 assumes its

smallest and largest values, respectively.
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Figure 9-2: Finding equation of motion 51

If the COR were known, we could find relations among: (a) the motion of the CM of the disk Al, (b) the
change in the collision parameter 8@, and (c) the advance of the pusher Ax.
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Figure 9-3: COR sketch for a point pushing a disk

The COR sketch for the collision between pusher and disk. The angle of the edge being pushed, a, is the
tangent to the disk at the point of contact c. Therefore one of the two elementary COR loci which compose
the COR sketch is "wrapped" (figure 6-3). The COR sketch consists of only a down-slipping locus (left of
the sticking line) and a sticking locus. This is reasonable: it would be surprising if the disk should slip up
relative to the pusher.
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Now we construct the COR sketch, shown in figure 9-3. Since the edge normal at ¢ passes through the
CM, the extremes of the friction cone pass to either side of the CM, for any pu.>0. {COR} _, is a
"wrapped" locus (as described in section 6.5, ), so the COR sketch must be that of figure 6-5 sketch (G),
(H), or (I). In any case there must be a sticking locus, there cannot be an up-slipping locus, and there

may or may not be a down-slipping locus. In figure 9-3 we have shown a down-slipping locus.

In figure 9-3, (and in general when the COR sketch is any one of distinct types (G), (H) or (1)), the
smallest and largest values of 8 (figure 9-2), occur when the COR is at the lower or upper endpoints,
respectively, of the the sticking locus. For sketches (G) and (H) the lower endpoint of the sticking locus is
well approximated by the intersection of the sticking line with the tip line, and we will use this
approximation (neglecting the small effect of the curvature of the tip, though this could be included). For
the lower endpoint of the sticking locus in sketch (I), and for the top of the sticking locus in all three
sketches, numerical methods would have to be used. We will not find these numerical results here.

9.1.1. Greatest length of encounter

As in section 8.2, , we will neglect the slight dip of the sticking locus below the tip line, which results from

the non-zero radius of curvature of the tip of the COR locus boundary.

We will also assume that the COR sketch is of type (G) or (H), not (1), so that the lower endpoint of the
sticking locus can be approximated by the intersection of the sticking line with the tip line. This

assumption will be addressed in section 9.1.2, below.

If the COR is at the intersection of the sticking line with the tip line, we find from figure 9-4
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Figure 9-4: Finding the smallest 6 (equation 55)

The length of the encounter between pusher and disk is greatest if the COR is at such a location that 6 is
minimal. In most cases the bottom of the sticking locus is the location of the COR which minimizes 6.
Using the tip line construction we can find the minimum value of 6 as shown here.
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tan = COR (55)

Ycor
Xcor = —acosf, and

sin?p-2

Yoor = 81 B

where y~qg is found from the construction of figure 9-4. Using c=a, equation 55 can be simplified to
cosBsinf

tan® =
1+cos?p

(56)

Using this value of tan 8 in the equation of motion 54 results in
1+cos?p

dx = adB(sinp)+
sin3

(57)

which, integrated, yields the indefinite integral

) (58)

—al 1-cosf
Xencounter = a( n 1+cos B

The maximum value of x

ancounter C@N be obtained by evaluating equation 58 at {3,y @nd By, =12, and

subtracting. The value at 172 is zero.
9.1.2. Condition for sketch type (1)

The above derivation of maximum x

ancounter @SSUMed that the lower endpoint of the sticking locus is at the

tip line. This is not true when the COR sketch is of type (1), in figure 6-5.

The COR sketch is of type (I) when the tip of { COR} ,,,, is left of the sticking line. Simplifying equation 45

a+v

for a=c and a+B =172, we find the condition for sketch (1) to be:
tanp > 2tanv = 2. (59)

This means that the COR sketch will always become type (I) as B - 1072, unless p =. (.= can occur,
for example, in pushing a gear, if a tooth is engaged by the pusher.) In every case of pushing aside a

disk, sketch (1) is entered eventually.
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By using the tip line as the lower endpoint of the sticking locus, despite the fact that this is a poor
approximation in sketch (l), we find too low a value for the minimum 6. Our calculated maximum for

Xencounter (€QUAtion 58) is unnecessarily high. We could in principle refine the upper bound by finding the

lower endpoint of the sticking locus more accurately by numerical methods.

As mentioned above, we are also neglecting the slight dip of the sticking locus below the tip line (in

sketches (G) and (H)), which causes us to underestimate the maximum possible value of x Here

encounter*

too we could refine x

ancounter OY NUMerical methods.

Neglect of sketch (1), and neglect of the dip due to tip curvature, cause errors of opposite sign in

calculating the maximum x The latter is a smaller error. Neither error will be addressed here.

‘encounter”

9.1.3. Least length of encounter

The minimum possible value of x

encounter ©CCUrs when the COR is at the top of the sticking locus. We do

not have an analytical method of finding or approximating the upper endpoint of the sticking locus, as we
have for the lower endpoint. The lower endpoint is similarly hard to analyze if the COR sketch is of type
() in figure 6-5 . In these cases it is necessary to find the endpoints numerically for all  in the range of

interest, calculate 8 for each 3, and then integrate equation 54 numerically to find Xy, .ounter-

9.2. Rotation of the Pushed Disk during Encounter
9.2.1. Maximum rotation

In section 9.1, both the largest and smallest possible values of x resulted from CORs on the

‘encounter

sticking line. If the COR remains on the sticking line, the pusher does not slip relative to the surface of

the disk, and so evaluation of the rotation of the disk during the encounter, &, e 1S trivial. We have
Eencounter =a(m2- Binitiaj) (60)
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Since only up-slipping of the pusher is possible, equation 60 is an exact upper bound for § any

encounter’

slipping will only serve to reduce the rotation of the disk.

Maximal slipping is obtained if u.=0. The pushing force is directed through the CM of the disk, so the

disk can only translate and not rotate [10]. So if u.=0, we have § =0 as both maximum and

encounter
minimum rotation.

9.2.2. Minimum rotation

We found in section 9.1, that extreme values of dx/d occur when 6 takes on extreme values. Having
constructed the COR sketch, we found that the extreme values of 6 for possible CORs are assumed

when the COR falls at the top or bottom of the locus. In this section we will not be able to find a single

geometric variable, analogous to 8, whose extremes correspond to extremes of the rate of rotation.

Rotation of the disk will be measured by the angle &, measured at the COR, as shown in figure 9-5. We

can relate Ag to advance of the pusher Ax;
Ax=1sin& dg (61)

Combining equation 61 with equation 54 which relates AB to Ax, we find
. cosf3
adp(sinp+
B(sinP an e)

Ax = S dp (62)

We can eliminate 6 and I sin& in favor of the coordinates of the COR:

tan6 = — (63)

Isin =asinf-y

yielding
d& _ a(YcorCOS B +Xcorsinp)

haa) 64
dp Xcor(@SinB-YeoRr) ©9
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Figure 9-5: Finding equation of motion 61

If the location of the COR is known, the rotation of the disk & can be related to the advance of the pusher
AX.
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This has no simple geometric interpretation. Contours of constant d§/dp are plotted in figure 9-6, for =45
degrees. Minimum rotation occurs at minimum d&/dB. The COR sketch for B=45 degrees is
superimposed on figure 9-6. The possible value of the COR which is responsible for minimum rate of
rotation is the point of the COR locus which intersects the slowest valued contour line, indicated in the
figure as point A (in this case very close to the tip). Having obtained numerically the minimum possible
value of d&/dp, as a function of B, we can numerically find the indefinite integral:

_ (%
& min —J' (d—B)rrm(B) dB (65)

Minimum rotation in a given collision can then be evaluated by subtracting &.; (Biniig) from

Emin(Brina=TV2).

10. Example: Spiral localization of a disk

In this example we analyze an unusual robot motion by which the position of a disk (a washer say), free to
slide on a tabletop, can be localized without sensing. If the disk is known initially to be located in some
bounded area of radius b;, we begin by moving a point-like pusher in a circle of radius b;. Then we
reduce the pusher’s radius of turning by an amount Ab with each revolution, so that the pusher’'s motion
describes a spiral. Eventually the spiral will intersect the disk (of radius a), bumping it. We wish the disk
to be bumped toward the center of the spiral, so that it will be bumped again on the pusher's next
revolution. If the spiral is shrinking too fast, however, the disk may be bumped out of the spiral instead of

toward its center, and so the disk will be lost and not localized.

We wish to find the maximum shrinkage parameter Ab consistent with guaranteeing that the disk is
bumped into the spiral, and not out. (Ab will be a function of the present spiral radius.) We also wish to

find the number of revolutions that will be required to localize the disk to some radius b, with a<b<b,, and



88

Figure 9-6: Contours of constant d¢/d3, and the COR sketch

To find the minimum possible rotation of the disk & during its encounter with the pusher we seek that
location of the COR which minimizes & for unit increase in the collision parameter B, i.e. which minimizes
0¢/0B. Plotted are contours of constant 6¢/6B3. We must find numerically the point in the COR locus which
intersects the least contour. For the COR locus plotted, the least contour intersected is about .46, and the
COR which intersects it is, once again, very near the tip of the COR locus.
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the limiting value of b, called b, below which it will not be possible to guarantee localization, regardless of

number of revolutions.

10.1. Analysis

Suppose the pushing point has just made contact with the disk. Since the previous revolution had radius
only Ab greater than the current revolution, the pusher must contact the disk at a distance at most Ab from
the edge of the disk, as shown in figure 10-1. We will consider only the worst case, where the distance of

the pusher from the edge is the full Ab.

We know that if Ab<a the disk will move downward [10]. This is not sufficient to assure that the disk will
be pushed into the spiral (rather than out of the spiral), because the pushing point will also move down,
as it continues along its path (figure 10-1). To guarantee that the disk will be pushed into the spiral, we

must make sure that it moves down faster than does the pushing point.

Note that we will continue to draw the pusher’s motion as horizontal, even though the pusher must turn as
it follows the spiral. This is done to maintain the convention for COR sketches used in previous sections.
At every moment we simply choose to view the system from such an angle that the pusher’s motion is

horizontal.

One way of comparing rates of moving down is by considering the increase or decrease in the angle {3,
called the collision parameter, in figure 10-1. If, as the pusher's motion along its spiral progresses, 3
increases, then the disk is being pushed into the spiral; localization is succeeding. When 3 reaches 172,
the pusher grazes the disk and leaves it behind. The disk is then left tangent to the spiral. If, as the

pusher’s motion progresses, 3 decreases, the disk is being pushed out of the spiral; localization is failing.
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Figure 10-1: Geometry at the moment of the second collision of pusher and disk

A point pusher describes a decreasing spiral about a region of radius b; within which a disk of radius a is
known to be. As the spiral decreases in radius the disk is pushed towards the center of the spiral. We wish
to find the fastest-shrinking spiral which will guarantee that the disk is always pushed in towards the center
and never out of the spiral. It turns out there is a limiting radius of the spiral below which further
confinement of the disk cannot be guaranteed, no matter how slowly the spiral decreases in radius.

In this figure the disk was first struck by the pusher when it was at radius b;, and was pushed towards the
interior of the spiral. The disk was left tangent to the path of the pusher, and is about to be struck again by
the pusher, which is now at radius b,. Ab=b,-b, is the shrinkage rate of the spiral. Notice the collision
parameter (3 which results.
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10.2. Critical case: pusher chasing the disk around a circular path

In the critical case the angle B does not change with advance of the pusher. The pusher "chases" the
disk around the spiral, neither pushing it in nor out. In this section we will take the spiral to be a circle
(i.e., Ab=0), to simplify analysis. The critical case, shown in figure 10-2, is highly unstable. The pusher’s
motion is shown as an arc of a circle, labeled path of pusher. (Underlined names refer to elements of
figure 10-2). The center of that circle is labeled PC (for pusher-center). Point PC is directly below the

point of contact, in keeping with our convention of drawing the pusher’s line of motion horizontal.

To maintain the critical case, the path followed by the CM of the disk (labeled critical path of CM) must be

as shown in the figure: an arc of a circle, concentric with the arc path of pusher. Instantaneously, the
direction of motion of the CM must be along the line labeled motion of CM, tangent to the critical path of
CM. The critical line, drawn through PC and CM, is by construction perpendicular to motion of CM. The

COR of the disk must fall on the critical line, in order that the instantaneous motion along the line motion

of CM be tangent to the critical path of CM.

We have just seen that the COR of the disk must fall on critical line for the instantaneous motion of the

CM to be consistent with the CM following the critical path of CM. If the COR falls to the left of the critical

line, the CM diverges from the critical path of CM by moving inside the arc. Therefore  will increase with

advance of the pusher, and localization is succeeding. If the COR falls to the right of the critical line, the

CM diverges from the critical path of CM by moving outside the arc. Therefore (3 will decrease with

advance of the pusher, and localization is failing. The critical line divides the plane into two zones: if the

COR falls in the left zone, the disk is pushed into the pusher circle, while if the COR falls in the right zone,

the disk is pushed out of the pusher circle.
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Figure 10-2: Critical case: pusher "chasing" disk around a circular path

If the shrinkage of the spiral Ab is too great, the disk can be pushed out of the spiral. To find the critical
value of Ab below which the disk is guaranteed to be pushed into the spiral, we consider the marginal case
where it is possible for the pusher to "chase" the disk, with the collision parameter B neither increasing
(meaning the disk is going towards the interior of the spiral) nor decreasing (meaning that the disk is going
towards the exterior of the spiral.)
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We wish to find a condition on the radius of the pusher circle which guarantees that the disk will always
be pushed into the circle. We will construct the COR sketch, and then find positions for PC such that all

possible CORs are to the left of the critical line.

In figure 10-3 we have constructed the COR sketch with collision parameter B. Since the edge normal at
c passes through the CM, the extremes of the friction cone pass to either side of the CM, for any p_>0.
{COR}_, is a "wrapped" locus (section 6.5), and the COR sketch must be that of figure 6-5 (G), (H), or
(. In any case, there must be a sticking locus, there cannot be an up-slipping locus, and there may or

may not be a down-slipping locus. In figure 10-3 we have shown a down-slipping locus.

To make sure that the whole COR locus falls to the left of critical line, we need only place the center of
the pusher motion (PC) below the lower endpoint of the sticking locus. (Point PC is required to have the
same x coordinate as the point of contact, in keeping with our convention of drawing the pusher’s line of

motion horizontal.)

10.3. Critical radius vs. collision parameter

For every value of (3, (the collision parameter), we compute the distance from the pusher’s line of motion
to the lower endpoint of the sticking locus. This defines a critical radius r{B). For each collision
parameter B, r{p) is the radius the tightest circle that the pusher can describe with the guarantee that the
disk will be pushed into the circle, or at worst be "chased" around the circle indefinitely, but not be pushed
out of the circle. In figure 10-4, 1/rHp) is plotted as a function of collision parameter B for each of several
values of p.. (The discontinuity in slope results from the discontinuity in slope of the COR locus boundary

atr=a.)
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Figure 10-3: COR sketch for critical case, and solution for location of PC

We wish to find a condition on the radius of the pusher circle which guarantees that the disk will always
be pushed into the circle. We will construct the COR sketch, and then find positions for PC such that all
possible CORs are to the left of the critical line.

To make sure that the whole COR locus falls to the left of critical line, we need only place the center of
the pusher motion (PC) below the lower endpoint of the sticking locus.
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Figure 10-4: Radius r{p) of the critical circle as a function of collision parameter B

For every collision parameter B (here plotted as p/m), there is a tightest radius r* which the pusher can
describe still maintaining the guarantee that the disk can be chased or pushed inward, but never be pushed
outward. For a variety of coefficients of friction pi, we plot here the inverse of that tightest (critical) radius,

alr™.
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The inverse of the function r{p) will be denoted BHr), representing the smallest value of B for which a
pusher motion of radius r still results in guaranteed localization. In terms of the pusher’s distance from

the top edge of the disk, d, (figure 10-3), we can use the relationship
a(l-sinB)=d (66)

to define the critical distance from grazing dXr) as a function of r. dr) is the largest distance of the
pusher from the top edge of the disk for which a pusher motion of radius r still results in guaranteed

localization.

10.4. Limiting radius for localization

If there is a limiting radius b, of the spiral motion below which localization cannot be guaranteed, then as
the spiral approaches radius b, the motion must become circular. Ab - 0 as b, is approached, so
collisions become grazing collisions, and we have the distance from grazing d — 0. (In terms of the
collision parameter 3, we have B - 1/2.) The COR sketch for =172 is shown in figure 10-5. If the disk is
not to be bumped out of the spiral, we must have b =r{B=12). b, is indicated in the figure, and can be

shown analytically to be
b, =a(p.+1) for p.<1 (67)

b, =2a for p.=>1

Only at pu.=0 can a disk be localized completely, i.e. localized to within a circle the same radius as the

disk. Otherwise the tightest circle within which the disk can be localized is given by equation 67.
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Figure 10-5: COR sketch at the limiting radius, showing b,,

There is a limiting radius of the spiral b ,, below which we cannot guarantee that the disk will be pushed
inward, no matter how slowly the spiral is decreasing in radius, i.e. no matter how small Ab. As the spiral
approaches this radius it must more and more accurately approximate a circle, since it cannot go below
radius b . Thus the collision parameter B becomes 172 as radius b, is approached, and all collisions
become grazing collisions. Drawing the COR sketch for a grazing collision we find that b, =a(u +1), a
general kinematic limitation on the success this herding strategy can achieve.
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10.5. Computing the fastest guaranteed spiral
Let b, be the radius of the nt" revolution of the pusher, so that we have initially radius by, and b, is the
limiting radius as n — o (In specifying but a single radius for each revolution of the spiral, we will not truly
specify the spiral completely, but this will be sufficient to characterize the number of revolutions required
to achieve a desired degree of localization.)
To excellent approximation we can define the fastest spiral recursively by

b,=b,_,—d"b.) (68)
The difference between the radii of consecutive turns of the spiral n-1 and n, is therefore Ab:dE(bn).
Equation 68 thus enforces the condition that on the n" revolution, the value of d is exactly the critical
value for circular pushing motion of radius b,,. At worst, the disk is pushed neither in nor out of the spiral.
A slightly slower spiral would guarantee that the disk cannot be chased in this way for long, but is pushed
into the spiral. However the difference between our spiral and the "slightly slower" one is so slight that it

is not worth dealing with here [15].

Figure 10-6 shows the fractional deviation of spiral radius b, above b, vs. number of turns n, on
logarithmic and on linear scales. We start (arbitrarily) with b; =100a. The spiral radius was computed

numerically for p.=.25, using the results for BHr) shown in figure 10-4, and equation 68.

Figure 10-6 shows that when the spiral radius is large compared to the disk radius a (which is taken to be
1 in the figure), we can reduce the radius of the spiral by almost a with each revolution. As the limiting
radius is approached, the spiral reduces its radius more and more slowly, approaching the limiting radius

b,, as about n~1-6, where n is the number of revolutions.
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Figure 10-6: Performance of the optimal spiral

For p=.25 we plot the optimal spiral. This is the fastest-decreasing spiral which still guarantees that the
disk is pushed into the spiral and cannot be pushed out, i.e. localizes the disk as quickly as possible. We
found that the spiral cannot decrease below a radius b, while maintaining the guarantee, so that value has
been subtracted from the vertical (spiral radius) axis, leaving only the difference between the spiral radius
and its limiting value. In the linear plot, we can see that the radius of the optimal spiral decreases swiftly by
almost the disk’s radius a with each revolution until quite close to the limiting radius. It is then more
instructive to look at the log-log plot to see how the spiral radius approaches the limiting radius.
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Figure 10-6 demonstrates the best performance that the "herding" strategy can achieve.

11. Conclusion

We have solved for the possible instantaneous motions of a sliding workpiece as it is pushed, in the

presence of unknown frictional forces between workpiece and table, and between workpiece and pusher.

We have characterized the qualitatively different kinds of sliding motion which are possible, and found the

conditions under which each can occur. Using these results it is possible to find bounds for gross motions

of a pushed workpiece as well. This is done by integrating the possible instantaneous motions.

As an example, we have found the maximum distance a polygonal sliding workpiece must be pushed by a

fence in order to guarantee that a side of the workpiece has aligned itself with the fence. Using the useful

tip line construction described here, approximate results are obtained both for the alignment problem and

several others. Strict upper bounds for the maximum required pushing distance are found by using

slightly more sophisticated methods, but the difference between the upper bounds and the approximate

results are so slight that the effort seems hardly justified.

In a second example, we have taken the pushed workpiece to be a disk, and the pusher to be a point, or

the corner of a polygon, moving in a straight line. We have found the maximum distance that the pusher

and the disk may be in contact, before the disk is "pushed aside" by the moving workpiece. Bounds on

the rotation of the disk during its interaction with the pusher are also found.

Finally we have analyzed an unusual robot maneuver, in which a disk known to be within a certain circular

area can be "localized" to a much smaller circular area by a pusher which, perhaps under robot control,

describes a decreasing spiral around the disk. Thus the disk can be located by a robot without sensors.
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We found the ultimate limiting radius below which the disk cannot be localized further, no matter how
slowly the spiral decreases in radius. We also found (to within tight bounds) the "optimal spiral": the spiral
which localizes the disk with the fewest number of revolutions, while guaranteeing that the disk is not lost

from the spiral.

12. Suggestions for Further Work

12.1. Other models of friction
An important assumption used in deriving the COR loci is that of a coefficient of sliding friction pg which is
uniform over the sliding surface and velocity independent: simple Coulomb friction. Friction is rarely so

well behaved.

Velocity dependence of g will have only moderate consequences for the COR loci. The sense of rotation
(CW or CCW) is not affected by velocity dependence, because pure translation of the workpiece is the
marginal case dividing the senses of rotation. In pure translation all parts of the workpiece move with the
same velocity, so velocity dependence of y is unseen by the workpiece. If pg decreases with increasing
velocity (the usual case), we can predict that CORs will lie closer to center of mass (i.e. rotation rates will
be faster) than they would with constant p,. The side of the workpiece towards which it turns has a lower
velocity, therefore higher L, and therefore more drag, causing the workpiece to turn still faster towards

that side.

Spatial non-uniformity of pg is more serious. In our experimental work [15] a non-uniformly worn surface
caused a five degree offset in the marginal pushing direction dividing CW from CCW rotation. It would be

hard to control such a major effect analytically. Instead, sliding surfaces must be kept uniform.
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When it is the surface of the sliding part, rather than the surface of the table, which is non-uniform, we
may hope to find simple analytic adjustments to the COR locus to compensate. The distinction between
center of friction (COF) and center of mass becomes important [8] [10]. If the composition of the part
surface is understood and some information about the pressure distribution is available, a COF distinct
from the CM can be calculated for the part. Then the sense of rotation (at least) will be predictable. It is

not known what effect a COF distinct from the CM will have on the COR locus.

12.2. Pushing above the plane

We assumed that the point of contact between pusher and pushed workpiece is not far (relative to the
radius of the workpiece) above the sliding surface. In the extreme case of pushing far above the plane,
the workpiece will tip over instead of sliding. For small heights, the effect creates a center of friction

(COF) distinct from the center of mass (CM). The effect on the COR locus is unknown.

12.3. Non-quasistatic velocities

The results of sections 5 and 6 depend on the quasistatic assumption, discussed in section 2. We
assume that dissipative effects due to friction between a workpiece and the surface it slides on
overwhelm inertial effects. In the real world both effects are present, and become of comparable
importance at characteristic speeds considered in section 1 here, and references [15] and [11]. The

results of sections 5 and 6 may be considered to be the v - 0 limit.

In the opposite extreme we may neglect sliding friction altogether, and only consider inertial effects. The
motion is then independent of speed, so we may consider this case to be the v - o« limit. The details of
the contact between the sliding workpiece and the surface it slides on (the pressure distribution, section

2.5) no longer have any effect on the motion. For given initial conditions then, a single resulting motion
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can be calculated, rather than the locus of possible motion calculated for slow motions.

Drawing on the work of Routh [18], Wang [19] has calculated the motion of a pushed workpiece in the
v - oo limit (the "impact" limit). The motion is a function of the coefficient of friction between the pusher
and workpiece (. as in the quasistatic case, and of the geometry of pushing, but it also depends on the
elasticity of the materials in contact. Elasticity ranges from the plastic limit e=0, (e.g. modeling clay,) to

the elastic limit e=1, (e.g. spring steel.)

The instantaneous motion on impact can be described by a center of rotation (COR) somewhere in the
plane. Wang finds [20] that when e=0 or p =0, the COR falls along the axis of symmetry of the quasistatic

COR locus derived in section 5, and at a distance r;

impact from the CM given by

p 2
rimpact = ﬁ (69)

where p is the radius of gyration of the workpiece. Equation 69 is the same as equation 38 (which gives
the tip of the COR locus in the quasistatic case) when the workpiece pushed is a circular rim, for which
p=a. For all other workpieces p<a, so we may conclude that the COR for impact lies within the COR locus

for quasistatic pushing, if e=0 or p_=0.

If e0 and p >0, Wang finds that the sense of rotation (CW or CCW) does not necessarily agree with
Mason'’s results for quasistatic motion [10]. This means that in realistic cases where >0, a given sliding
operation which results in CW rotation of the pushed workpiece in the quasistatic limit may change over to

CCW rotation as velocity is increased.

For fixed elasticity e and coefficients of friction p, and g, as velocity is increased the locus of CORs

describing the motion must change continuously from the quasistatic locus at v=0 to the single point
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(sometimes outside the quasistatic locus) which is Wang's result at v=co. If the COR loci for intermediate
velocities could be found or bounded, motion planning algorithms based on sliding friction (e.g.

[14] [2] [9]) could be extended to non-quasistatic velocities.

12.4. Bounds on the COR locus for other than disks

The COR loci found in section 5 are exact if the sliding workpiece is a disk. Any COR in the locus could
occur for some combination of bumps on the bottom of a disk, i.e. for some pressure distribution. The
COR locus for a disk necessarily encloses the COR locus for any workpiece which could be enclosed in
that disk, with the same center of mass. The COR locus for the inscribed workpiece may be considerably
smaller than that for the disk, especially when the area of the inscribed workpiece is considerably less
than that of the disk. The COR locus for a square, found numerically, and the outline of the COR locus

for a disk circumscribing the square, are shown in figure 3-2.

For comparison, the line of CORs for a uniform pressure distribution on a disk is shown in figure 12-1. In
the uniform case, for each a, (related to the force angle) there is of course only one COR, as the pressure
distribution is completely specified. Shown in the figure is a particular a, for illustration, and the COR
locus outline for all pressure distributions for that a,. The tip line for all a is shown. The point of
intersection of the a; vector through the CM and the tip line is indicated with a dot, which is the tip of the
COR locus for a,;. The tip of the COR locus for any a lies at the intersection of the a vector through the
CM and the tip line. Similarly, the COR for uniform pressure for a, lies at the intersection of the a,vector
through the CM and the uniform pressure line, as indicated by a dot. The COR for uniform pressure for

any a lies at the intersection of the a vector through the CM and the line of uniform pressure.

Using the COR loci of disks in planning manipulation strategies for other shapes results in unnecessarily
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Figure 12-1: Tip line and line of CORSs for uniform pressure distribution.

Shown is the tip line for all a. This is the curve traced out by the tip of the COR locus as a is changed.
The tip is the farthest theCOR can fall from the CM, no matter what pressure distribution exists beneath the
disk. If we assume a uniform pressure distribution beneath the disk, then rather than a locus of CORs a
single COR must be the result.

For comparison with the tip line, we also plot here the curve traced out by the COR for uniform pressure
distribution, as a is changed. For a given a such as the one shown, the COR locus is shown, the tip of the
COR locus falls at the intersection of the vector a with the tip line, and the COR for uniform pressure
distribution lies at the intersection of the vector a with the "uniform support line".
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conservative strategies. It is even possible that no strategy might be found when one exists. This
problem could be alleviated if exact COR loci for arbitrarily shaped workpieces could be found. In finding
the COR locus for a disk we discovered two classes of "dipods" (pressure distributions consisting of only
two points of support, section 4.5, ) which were responsible for the boundary of the COR locus. For
workpieces other than disks, the boundary is not described by dipods, and finding the COR locus

becomes considerably harder.
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