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Abstract 

The physics of motion of a sliding object can be used to plan sensorless robot manipulation strategies 

based on sliding. Prediction of a sliding object's motion is difficult because the object's distribution of 

support on the surface, and the resulting frictional forces, are in general unknown. We describe a 

new approach to the analysis of sliding motion, which finds the set of object motions for a// 

distributions of support. The analysis includes contact friction between the pusher and pushed 

object, as well as sliding friction between the pushed object and the surface it slides on. To 

demonstrate the use of our results, we find the distance a polygonal object must be pushed by a fence 

to assure alignment of an edge of the object with the fence. We also analyze the motion of a sliding 

disk as it is pushed aside by the corner of an object in linear motion. Finally, we consider a sensorless 

manipulation strategy based on "herding" a sliding disk toward a central goal by moving a robot 

finger in a decreasing spiral about the goal. The optimal spiral is constructed, and its performance 

discussed. 
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1. Background 

1 .l. Motivation 

A discussion of previous work on sliding, and of the motivation for this work, may be found in an 

earlier report "The Motion of a Pushed, Sliding Object, part 1: sliding friction" [4]. 

1.2. The Center of Rotation 

An object sliding on a table has three degrees of freedom. Its position may be specified by the (x,y) 

displacement and angle 0 of a coordinate frame fixed in the object relative to a coordinate frame fixed 

in the table. The object's instantaneous motion can be described as infinitesimal changes in the 

displacements and rotation. 

Here we will treat the object as a two-dimensional rigid body, since we are only concerned with the 

object's interaction with the table it is sliding on. Al l  pushing forces will be restricted to lie in the plane 

of the table as well. The results may be applied to three-dimensional objects, as long as the vertical 

component of the pushing force is negligible, and as long as the point of contact is near the table. 

When an object is being pushed, in the general case there is only one point of contact between the 

object and the pusher. The contact may be where the leading edge of a pushing fence touches a 

corner of the object (figure 1-l), or it may be where a pushing point touches an edge of the object 

(figure 1-2.) The analysis presented here applies to either case. In many figures (e.g., figure 2-2) just 

an 'edge' will be drawn, which may be the pushed edge of the object or the front edge of a fence. 

The pusher is assumed to move along a predetermined path in the plane of the table (that is, it is 

under position control). The object retains two degrees of freedom, with the third degree of freedom 

of its motion fixed by the requirement to maintain contact between the pusher and the object. 

These two degrees of freedom are most conveniently expressed as the coordinates of a point in the 

plane called the center of rotation (COR.) Any infinitesimal motion of the object can be expressed as 

a rotation 68 about some COR, chosen so that the infinitesimal motion of each point Gof the object is 

perpendicular to the vector from the COR to the point G. If the object is a disk, and the motion it 

performs is pure rotation in place, the COR is at the center of the disk. Motions we might describe as 

"mostly translation" correspond to CORs far from the point of contact. In the extreme case, pure 

translations occur when the COR is at infinity. 

The weight of an object is supported by a collection of contact points between the object and the 
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Figure 1 - 1 : The edge of an advancing fence pushing a corner of a sliding object 
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Figure 1-2: A corner of an advancing pusher pushing an edge of a sliding object 
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table. These support forces may change 3s the object moves relative to the table. Finding the COR is 

complicated by the fact that changes in the distribution of support forces under the object 

substantially affect the motion, Le., such changes affect the location of the COR. Intuitively, i f  the 

support is concentrated near the center of mass (CM), the object will tend to rotate more and translate 

less than if the support is uniformly distributed over the entire bottom surface of the object. 

The distribution of support may be changed dramatically by tiny deviations from flatness in the 

object's bottom surface (or in the surface it is sliding on.) Any assumption we could make about the 

form of the support distribution would not be justified in practice. In a previous paper [4] we found 

the locus of CORs under all possible support distributions. It should be possible to read this paper 

without having read [4], using only the results from the previous paper which are described here in 

section 2. 

Two major simplifications were assumed in the previous work [4]. One was that the coefficient of 

friction at the pusher-object contact is zero. That assumption is removed in this paper. 

The second simplification, common to both papers, is that the object being pushed is a disk with its 

CM at the center. Given another object of interest (such as a square), we can consider a disk 

centered at the CM of the square, big enough to enclose it. The radius a of the disk is the maximum 

distance from the CM of the square to any point of the square. Since any support distribution on the 

square could also be a support distribution on the disk, the COR locus of the disk must enclose the 

COR locus of the square. The locus for the disk provides useful bounds on the locus for the real 

object. 

2. Review 
The parameters of the COR problem are the point of contact c' between the pusher and the object, 

and the angle a between the edge and the line of pushing, as shown in figure 2-1. The values of a 

and c' shown are the ones which are useful in considering the motion of the five-sided object shown 

inscribed in the disk. We do not require the point of contact c' to be on the perimeter of the disk, as 
this would eliminate applicability of the results to objects inscribed in the disk. Indeed, for generality 

we do not even require the point of contact to be within the disk. Similarly, we do not require a to be 

such that the edge being pushed is perpendicular to vector r, as it would be if the object were truly a 

disk. The disk (with radius a), a, r, and the CM, are shown in figure 2-1. A particularly simple 

distribution of support forces, in which the support is concentrated at just a "tripod" of points 

(GI, G2, G3) is indicated, along with what might be the COR for that distribution of support. 
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Figure 2- 1 : Parameters of the pushing problem 



6 

Pcslikin and Sanderson [4] analyze the motion of the sliding object in detail. The approach is to 

minimize the energy dissipated by friction with the surface for arbitrary infinitesimal motions. 

Analytical relations are found between the set of all support distributions, an intermediate forinulation 

called the Q-locus, and the locus of CORs. Boundaries of the COR locus are found by numerical 

evaluation of the resulting analytical expressions. 

Figure 2-2 shows examples of the COR loci found previously[4] for various values of a and i?. In 

each section the angle a of the edge with respect to the line of pushing is indicated. The edge may be 

the front edge of a fence pushing a corner of an inscribed object, as in figure 1-1, or it may be an edge 

of the inscribed object in contact with a pushing point, as in figure 1-2. ? is the vector from the CM (at 

the center of the disk) to the point of contact indicated by the arrowhead. The boundary of the COR 

locus is shown in bold outline. Every point within the locus is the COR for some distribution of 

support forces on the disk. Results described previously [4] indicate that no distribution of support 

forces can result in a COR outside the boundary shown. 

The COR loci shown were generated under the assumption that the coefficient of friction between the 

pusher and the object bc) is zero. While the pusher’s line of motion is horizontal, the force exerted by 

the pusher in general will not be horizontal. In the special case that p, = 0, the force exerted on the 

object at the point of contact ?must be perpendicular to the edge. If the angle of that edge (with 

respect to the x axis) is a, the force must be directed at angle a - 7112. 

When p,>O, the direction of the force exerted on the object by the pusher’s horizontal movement 

cannot in general be determined. It varies, depending on the distribution of support forces beneath 

the object, which is not known. 

The coefficient of friction with the supporting surface (pS) does not affect the object’s motion if we 

use a simple model of friction. We assume that ps is constant over space, that it is independent of 

normal force magnitude and tangential force magnitude and direction, and that it is velocity 

independent. In short, we assume Coulomb friction. 

Defining the unit vector 2 = (cosa, sina), we observe that the COR loci have an axis of symmetry 

about G. Further, we see in figure 2-2(c), that i f  the pushing force is directed from the point of contact 

almost directly through the CM, the maximum distance from the CM to an element of the COR locus 

becomes great. This distance, called r . , is infinite if the pushing force is directed at the CM, as 

shown by Mason [3]. In [4] we found a simple formula for rtip: 
tlP 
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Figure 2-2: Boundaries of the  COR locus for various ?and a 
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As the angle a is varied, the tip of the COR locus traces out a straight line called the tip line. The tip 

line (figure 2-3) is perpendicular to < and a distance 02/c from the CM. It is also possible to find 

analytically the radius of curvature of the COR locus boundary at the tip: 

r 
tip 

1 . r,iL7 

S =  
4 

We will not derive in this paper the equations needed to generate the boundary of the COR locus for a 

given set of parameters a, a, and ?. (These equations may be found in [4].) It will be assumed that 

the COR loci can be generated as needed. Here we will show how to combine elementary COR loci 

from the p, = 0 case, to find the locus of CORs when pc>O. Many useful results can be found knowing 

only the qualitative behavior of the COR loci, not the exact forms. The only quantitative information 

we shall use from previous work [4] is that given by equations 1 and 2, above. 

3. The COR Sketch with Contact Friction 

3.1. Overview 

In our previous work [4], we took p,=O. The pushing force was therefore normal to the edge being 

pushed. Since the motion of the object can depend only on the force applied to it, we will designate 

the locus as {COR}a to indicate its dependence on the force angle, which is perpendicular to 2. 
{COR}a also depends on the point of contact ? of course. 

We know how to generate the COR locus for a given angle of applied force. Unfortunately, when 

pc>O, it is not possible to tell what the force angle will be. We will describe angular limits on the force 

angle in section 3.2, but within those limits the force angle depends on the distribution of support 

forces, which is not known. If we already knew that the COR would be at a certain point, however, it 

would then be possible then to find the force angle. 

Our approach to this problem is to seek CORs which are consistent with the force angle which gives 

rise to them. For each force angle q within the angular limits, we generate {COR} . For each COR in 

{COR)'p we find the force angle implied. If the force angle implied matches cp, that COR is a possible 
'p 
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Figure 2-3: r . (a) vs. a, and construction of the tip line 
tlp 
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one for the object. (The above formulation seems to threaten a great deal of computation, which in 

fact is not required.) 

We will refer to the set of consistent CORs as the COR sketch, to distinguish it from the elementary 

COR loci {COR} produced for known force angles. Several elementary COR loci will be used in the 

construction of the COR sketch. In the figures, these COR loci will be left visible in outline, while the 

actual COR sketch - the consistent CORs - will be shown shaded. 

P 

3.2. Contact Friction and the Friction Cone 

Let p, be the coefficient of friction between the pusher and the object. If pc>O, two distinct modes of 

behavior of the system are possible: sticking and slipping. In figure 1-1, sticking means that the 

element of the fence in contact with the object remains invariant as the pusher's motion proceeds. In 

figure 1-2, sticking means the element of the object which is in contact with the pusher remains 

invariant as the pusher's motion proceeds. Slipping is simply the case in which either the element of 

the pusher or the element of the object, which are in contact with each other, changes as the motion 

proceeds. 

Define 

Y = tan -'pC (3) 

In figure 3-1 we construct a friction cone, of half angle Y, at the point of contact ?. The cone is 

centered on the edge normal, at angle a - n/2 relative to horizontal. Note that the edge may be either 

that of a fence, where it contacts a corner of the object (as in figure 1-l), or an edge of the object, 

where it is touched by a corner of the pusher (as in figure 1-2). 

The component of the applied pushing force tangential to the edge, F , is due to p,. Its magnitude 

cannot exceed p c F I ,  where FL is the component of force normal to the edge. Therefore the total 

applied force vector must lie within the friction cone. 

II 

If we attempt to apply a force to the edge at an angle outside of the friction cone, friction cannot 

support the tangential component. The result is slipping along the edge, and the actual applied force 

is directed along one extreme of the friction cone. If we apply a force within the friction cone, friction 

is sufficient to support the tangential component of force, and slipping will not occur: we have 

sticking. 
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Figure 3- 1 : Construction of the friction cone 
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In short, slipping is only consistent with a force vector at one extreme of the friction cone, while 

sticking is only consistent with a force vector within the friction cone. It is not usually possible to tell if 

slipping or sticking will occur: often, depending on the distribution of support forces, either may 

occur. 

3.3. Sticking and Slipping Zones 

In this section we presume that the COR is known: a single point is the COR for the object. We divide 

the plane into three zones, called the sticking line, the up-slipping zone and the down-slipping zone. 

(Figure 3-2). The up-slipping and down-slipping zones are regions of the plane with positive areas, 

while the sticking line is merely a line, but all three will be collectively designated “sticking and 

slipping zones.” The motion of the object is qualitatively different for the COR falling in each of the 

three zones. 

The sticking line is the line perpendicular to the pusher’s line of motion, intersecting the point of 

contact between pusher and object, (i.e. ?lies on the sticking line). Since we choose to draw the 

pusher’s line of motion horizontally, the sticking line is vertical. The sticking line divides the down- 

slipping zone, on its left, from the up-slipping zone, on its right. Also shown in figure 3-2 is the edge 

normal line. Above this line, the up-slipping and down-slipping designations are reversed. The area 

above the edge normal will be unimportant, however. 

3.3.1. Sticking Line 

First consider the object’s motion when the COR is on the sticking line. Recall that the motion of any 

point of the object is perpendicular to the vector from the COR to that point. If the COR lies on the 

sticking line, the object’s motion at the point of contact is perpendicular to the sticking line, and is 

therefore parallel to the pusher’s line of motion. 

Since the pusher’s line of motion and the object’s motion at the point of contact are parallel, the 

pusher and the object, at the point of contact, travel along together. There is no need for one to slip 

relative to the other; the object and the pusher are sticking at the point of contact. 

3.3.2. Slipping Zones 

Now suppose that the COR is in the down-slipping zone. The object’s motion at the point of contact 

has a downward component, relative to the pusher’s line of motion. The pusher-object contact must 

be slipping, with the object moving down relative to the pusher. 

Similarly, if the COR is in the up-slipping zone, the object at the point of contact moves up relative to 

the pusher as the pusher advances. 
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Figure 3-2: Construction of zones: up-slipping, down-slipping, and sticking line 
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3.4. Consistency for Slipping 

If we know that the object is slipping relative to the pusher (and whether up or down), then the force 

angle is known: it is at one extreme of the friction cone, perpendicular to a+v. 

If the COR lies in the down-slipping zone, the object moves down as the pusher advances. Therefore 

the force angle must be along the upper extreme of the friction cone, at angle a + Y - 9712. Similarly, 

if the COR lies in the up-slipping zone, the object moves up as the pusher advances, and the force 

angle must be along the lower extreme of the friction cone, at angle a - Y - n/2. 

Combining the above observations, we see that if slipping occurs, the COR must be either in 

{COR},+, and the down-slipping zone, or in {COR},-, and the up-slipping zone. These two 

intersection regions are called the down-slipping locus and the up-slipping locus. 

The down-slipping and up-slipping loci are two components of the COR sketch, because every COR 

in either locus is consistent with the force angle that was used to generate it. We construct the 

down-slipping locus of the COR sketch by intersecting the down-slipping zone (left of the sticking 

line) with {COR},+,. We construct the up-slipping locus of the COR sketch by intersecting the 

up-slipping zone (right of the sticking line) with {COR}a-V. 

In figure 3-3, {COR},+, and {COR},-, are shown in outline. The down-slipping and up-slipping loci 

are the shaded areas left and right of the sticking line respectively. 

3.5. The Sticking Locus 

The third set of consistent CORs belong to the sticking locus. The sticking locus, together with the 

up-slipping and down-slipping loci whose construction was described above, are all the CORs 

consistent with the force angle they presume. The three consistent loci constitute the COR sketch. 

If the COR lies on the sticking line, sticking occurs. The force angle can be anywhere in the friction 

cone, Le., between a - v  - n/2  and a 4- v- n/2. The sticking locus is therefore the intersection of the 

sticking line with the union, over all cp perpendicular to a force angle within the friction cone, of 

{COR) . The sticking locus is shown as a bold section of the sticking line in figure 3-3. 
Q 

As discussed above, the two slipping loci are {COR),+,, possibly cut off by the sticking line. In 
calculating either slipping locus, the force angle is known: it is a+v-n/2.  But in calculating the 

sticking locus, (which is just a simple line segment), the force angle is not known, except that it lies 

within the friction cone. To find the endpoints of the sticking locus exactly, we could form every locus 
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Figure 3-3: Construction of the COR sketch 
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( C ' O R )  , for c r - v < g , < t r + v ,  and intersect each locus with the sticking line. The union of these 

intersections is the sticking locus. This is not an efficient method. 
g. 

The lower endpoint of the sticking locus is of particular interest. It is possible to approximate it, and 

to bound the error of our approximation, by using the tip-line construction described in section 2, 

equation 1 and shown in figure 2-3. The procedure for finding the sticking locus described above is 

to form every locus (C'OR} , for a -  v<g,<a + Y ,  and intersect each locus with the sticking line. As we 

vary 9, {COR} varies continuously from {COR}a-v, which is outlined in figure 3-3, to {C'OR}a+v, 

also shown outlined. The tip of the extreme loci, as well as of all intermediate loci, fall on the tip line. 

The tip line is shown dotted in figure 3-3. 

cp 

91 

Were it not for the fact that each {COR}cp locus drawn dips slightly below the tip line, the lower 

endpoint of the sticking locus would be exactly at the tip line. We will use this approximation. The 

small error so introduced will be dealt with in section 4.1. 

Using the tip line to approximate the lower endpoint of the sticking locus in this way depends on an 

unstated assumption: that the tip of lies to the left of the sticking line while the tip of 

lies to the right of the sticking line. This assumption is necessary so that the tip of some 

intermediate locus (COR) will intersect the sticking line. In section 3.7 we will deal methodically 

with this problem. 
cp 

The shaded slipping loci and the bold sticking locus of figure 3-3 contain all the possible locations of 

the COR. 

3.6. Possible Configurations of an Elementary COR Locus 

The down-slipping, up-slipping , and sticking loci play an important part in the rest of this work. It is 

worth describing the qualitatively different ways in which an elementary COR locus {COR}, can 

intersect the three zones (down-slipping, up-slipping, and sticking line) in order to form the loci. 

These qualitatively different types of intersections will be called distinct elementary configurations. 

Later we will describe the qualitatively different COR sketches which can occur; the latter will be 

called distinct sketches. Two COR loci are used in the construction of a COR sketch, so there are 

more distinct sketches than distinct elementary configurations. 

For a given contact point ?, changing a yields four distinct elementary configurations of the resulting 

COR loci. In figure 3-4(A), the pure slipping elementary configuration, the entire COR locus falls in 

the up-slipping zone. In figure 3-4(8), the COR intersects all three zones, but the tip of the locus falls 
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A: PURE SLIPPING B SAME SIDED SPLIT 

C: OPPOSITE SIDED SPLIT D: WRAPPED 

Figure 3-4: Possible elementary configurations of the COR locus with respect to the sticking line 
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on the same side of the sticking line as the CM. This is the same-sided-split elementary configuration. 

As u is further decreased, the tip of the COR locus crosses the sticking line, entering the 

opposite-sided-split elementary configuration, as shown in figure 3-4(C). Finally, when u decreases 

to the point where the edge normal at s' intersects the CM, the COR locus goes to infinity [3]. The 

COR at infinity implies pure translation (with no rotation) of the object as the pusher advances. 

Beyond this point the object's sense of rotation switches from clockwise to counterclockwise. For our 

purposes in constructing a COR sketch, counterclockwise rotation is unphysical[3], and so we will 

class this, and pure translation as one elementary configuration, the wrapped elementary 

configuration, as shown in figure 3-4(D). No part of a "wrapped" locus will ever contribute to the 

COR sketch, yet we will continue to draw its outline as shown in the figure. 

The same four elementary configurations can be defined (now with increasing a) when the sticking 

line is to the right of the CM (Figure 3-5). 

3.7. Possible Distinct COR Sketches 

Depending on a and p,, each of the two elementary COR loci {COR}akV used in constructing the 

COR sketch may be any of the four elementary configurations described in section 3.6 (pure slipping, 

same-sided split, opposite-sided split, or wrapped). There are nine possible distinct sketches 

composed of two elementary configurations, as shown in figure 3-6. (Of the 4' combinations, 6 are 

eliminated because the tip of (COR}a+v cannot be left of the tip of {COR}a-V. The one sketch in 

which both {COR} are "wrapped" elementary configurations is inconsistent with clockwise 

rotation of the object.) 
Q*V 

It is worth looking carefully at each sketch, in particular to understand the construction of the sticking 

locus. The sticking locus is the intersection of {COR} with the sticking line, as Q, is swept from 
cp 

a 4- Y to a - Y .  The sweeping is always clockwise. In sketch (G), sweeping clockwise means 

sweeping from the pure slipping locus, clockwise, to the wrapped locus. The intermediate loci 

therefore do intersect the sticking line, even though neither locus does. Unless this is 

understood the origin of the sticking locus in sketches (G) and (H) will remain mysterious. 

Several of the sketches shown in figure 3-6 have interesting properties. In sketch (A), the object must 

slip up relative to the pusher. In sketches (B) and (D), the object must stick or slip up. In sketch (G), 

the object must stick to the pusher. In sketches (H) and (I), the object must stick or slip down. In the 

remaining sketches (C), (E), and (F), either mode of slipping, or sticking, is possible, depending on the 

distribution of support. 



19 

A PURE SLIPPING B: SAME SIDED SPLIT 

C: OPPOSITE SIDED SPLIT D: WRAPPED 

Figure 3-5: Possible elementary configurations, when the sticking line is to the right of the CM 
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Figure 3-6: Nine distinct COR sketches with respect to the sticking line 
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Analogous qualitative results are possible when the point of contact ? is to the right of the CM. The 

distinct COR sketches for this case can be obtained from those shown in figure 3-6 by reflecting 

about a vertical axis. (The pusher’s motion should still be considered left-to-right, however.) The 

distinct sketches for counterclockwise rotation of the object may be obtained by reflecting about a 

horizontal axis. 

3.8. Summary: Instantaneous Motion 

We have shown how to find all possible instantaneous motions of a pushed sliding object, given only 

the parameters a, l?, and a. In some cases it is possible to say with certainty that a particular kind of 

motion, such as sticking, can or cannot occur. The set of possible CORs, as found by constructing 

the COR sketch, describes completely the possible instantaneous motions of the object as long as 
those parameters remain in effect. Usually however, the instantaneous motion which results changes 

the parameters (except the radius a), so that a new COR sketch must be constructed. 

3.9. Strategy for Gross Motion 

Often we wish to calculate not the bounds on the instantaneous direction of motion, as above, but 

bounds on a gross motion of the object which can occur concurrently with some other gross motion 

of known magnitude. (For instance, we may wish to find bounds on the displacement of the pusher 

which occurs while the object rotates 15 degrees.) Our approach to dealing with gross motion 

follows a definite strategy, which will be illustrated in the sample problems solved in sections 4, 5, and 

6. 

Suppose we wish to find the greatest possible change in a quantity x, while quantity /? changes from 

/Iinirial to pJnar From the geometry of the problem we find a differential equation of rnofion relating the 

instantaneous motions dx and dp. We then construct the COR sketch for each value of p. In each 

sketch we locate the possible COR which maximizes dx/d/I. Using that COR, we integrate the 

differential equation of motion from Binitin, to BJmp yielding an upper bound for the quantity x. 

Sometimes the possible COR which maximizes dx/dp can be found analytically, or at least 

approximated analytically, and sometimes it must be found numerically. When an analytical solution 

is found, it may or may not be possible to integrate the differential equation of motion in closed form 

using that analytical solution. The examples which follow illustrate all of these situations. 
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4. Example: Aligning an Object by Pushing with a Fence 
In this example, we wish to find the maximum distance a fence must advance after first contacting an 

object, in order to assure that an edge of the pushed object has rotated into contact with the fence. A 

typical initial configuration is shown in figure 4-1, with the object shown shaded. (Note that the fence 

does not advance perpendicular to its front edge.) The final configuration is shown in figure 4-2. 

Also shown in figure 4-1 is the COR sketch for the initial configuration, and the angle p between the 

line of motion and the line from the point of contact to the CM. p is also the angle between the tip line 

and the sticking line. Angle p changes from 45 degrees initially in figure 4-1 to 80 degrees in the final 

configuration, figure 4-2. Note that a one degree rotation of the object about the COR will produce a 

one degree change in as well. We wish to find the advance x of the pusher (fence) required to 

change p by 35 degrees. 

The object's rate of rotation about the COR dp, for advance of the pusher dx, is given by 

dx = y d/3 (4) 

where y is the distance from the line of motion to the COR. To find the maximum required pushing 

distance, we must find the maximum value of y for any possible COR. 

Reviewing the nine distinct COR sketches in figure 3-6, we see that the COR responsible for the 

greatest y, i.e., the COR farthest from the line of motion, is the COR at the lower endpoint of the 

sticking locus in sketches (D), (E), (G), and (H). In sketches (A), (B), (C), (F), and (I), it is the COR at 

the bottom of one of the loci {COR},,, which is farthest from the line of motion. If the tips of the two 

loci {COR} fall on the same side of the sticking line, the lowest COR is an element of one of the 

two loci {COR},,,. We will call this behavior slipping-lowest. If the tips of the two loci {COR},+, - fall 

on opposite sides of the sticking zone , the lowest COR is the lowest point of the sticking locus. We 

will call this behavior sticking-lowest. (For the purposes of the rule given here, the "wrapped" loci in 

sketches (G), (H), and (I) count as having their tip to the left of the sticking line.) 

a+v 

It is possible to have a transition from slipping-lowest behavior to sticking-lowest behavior within a 

pushing operation, as p increases. Such a transition occurs when the tip of one of the loci {COR},,, 
passes through the sticking line. In figure 4-3, for example, it is {COR},+, which passes through the 

sticking line. In figure 4-4, the tip of the COR locus intersects the sticking line. We may derive the 

condition for intersection: 

a' + c2  = -a'tan p tan (a*v+p)  ( 5 )  
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Figu re 4- 1 : Initial orientation of the fence and pushed object 
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Figure 4-2: Final (aligned) orientation of the fence and pushed object 
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Figure 4-3: Transition from sticking-lowest to slipping-lowest behavior 
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Figure 4-4: Geometric construction for equations 5 and 6 
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The tip of locus { ~ q O R } , ~ v  is on the same side of the sticking line as the CM when the left side of 

equation 5 is less than the the right side. The value of p at which the tip crosses the sticking line may 

be found by solving equation 5 for 8:  

The pushing distances required to advance p from its initial value to the transition, and from the 

transition to the final value, must be evaluated separately. In our example, the locus {(‘OH},+, is 

type same-sided split initially, but changes to type opposite-sided split. Using equation 6 we find 

Ptransition = 69.4 degrees, as shown in figure 4-3. 

4.1. Approximating the Lowest COR by  an Element of the Tip Line 

In either behavior regime, sticking-lowest or slipping-lowest, the lowest COR is only slightly below the 

tip line. If the radius of curvature of the tip of the COR locus were zero, the lowest COR would fall on 

the tip line. Here we will neglect the finite curvature of the tip, and approximate the lowest point of a 

COR locus (or of the sticking locus) by some element of the tip line. In section 4.2 we will bound the 

error this approximation produces. 

4.1 .l. Slipping-Lowest Behavior 

In figure 4-2 the lowest COR is an element of {COR}a+,, labeled “B”. Here we find the distance from 

the line of motion to the most distant COR, when that COR is an element of {COR},+Y. Using figure 

4-5 the distance can be approximated as 

= c sin B + rIip sin (a’v) Yslip low (7) 

2 - a  
where r .  = 

w ccos(a*v +@)’ 

from equation 1. To find the maximum required pushing distance it is only necessary to integrate 

dx = y d’ with y as given here. We obtain the indefinite integral 

Since, in the example being considered, the motion from BIransirion = 69.4 degrees until pjna1 = 80 

degrees falls in the slipping-lowest behavior regime, we simply evaluate x at these two angles and 

subtract. The distance A x  obtained is one component of the maximum required pushing distance to 

align the object. 
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Figure 4-5: COR responsible for slowest rotation in slipping-lowest behavior regime 
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4.1 .2. Sticking- Low est Behavior 

In figure 4-1 the lowest COR is the lowest point of the sticking locus, labeled "8". From figure 4-6 Ihe 

distance from the line of motion to the lower endpoint of the sticking locus can be approximated as 

Note the absence of any dependence on the friction cone angle Y .  This is because when the pusher 

and object are already sticking, further increase in p, has no physical effect. To find the maximum 

required pushing distance it is only necessary to integrate dx = y Cip with J' as given here. We obtain 

the indefinite integral 

I 
c 2 + a 2  I-COS~ 

log I, + cos p x = -  
2c  

In our example, motion from = 45 degrees until /?Imrrsirion = 69.4 degrees falls in the sticking- 

lowest behavior regime, so we simply evaluate x at these two angles and subtract. The distance A x  
obtained is the second component of the maximum required pushing distance to align the object. 

The total required pushing distance to align the object is the sum of the two partial results obtained 

from equations 8 and 10. 

4.2. Correction for the Curvature of the Tip 

4.2.1. Slipping-Lowest Behavior 

As can be seen from figure 4-7, because of the curvature of the tip of the boundary of the COR locus it 

is possible for the COR locus to dip slightly below the tip line. The true lowest point is marked 'A', 

while the point we took to be the lowest in section 4.1.1 is marked 'E'. Using the geometric 

construction shown in figure 4-7, we can compute a better approximation for the maximum distance 

from the line of motion to the lowest point of the COR locus (point 'A'): 

ybound = csin p + ( r,$ - s) sin (a*v) + s 

Inserting r . from equation 1 and the radius of curvature s from equation 2 in equation 11, we find that 

dx = y dp cannot be integrated in closed form. However if we make the approximation 
I IP  
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Figure 4-6: COR responsible for slowest rotation in sticking-lowest behavior regime 
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Figure 4-7: Bounding the effect of curvature of the tip, in the slipping-lowest regime 
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then dx = JJ dfi can be' integrated to yield an indefinite integral representing an additional required 

pushing distance: 

- C S  sin3(a+v+p) 
(1 - sin a+v) (sin(a+v +@) - ). 

' m i n l =  - a' 3 

The approximation made in equation 12 slightly overestimates the radius of curvature s, leading to a 

slight overestimate of ybouns and therefore to a upper bound for the required additional pushing 

distance xodnr' The sun1 of equations 8 and 13 provides an upper bound for the required pushing 

distance. (A slightly lower guaranteed pushing distance could be found.) For practical purposes 

equation 8 alone will suffice, since the contribution due to tip curvature is small. 

4.2.2. Sticking-Lowest Behavior 

It is also possible for the lowest point of the sticking locus to fall slightly below the tip line. In figure 

4-8 is shown a COR locus (CORJa which intersects the sticking line below the tip line. 

If (CORJa has tip curvature s, we find the greatest distance that the curved tip can drop below the tip 

line to be 

We do not know the value of a for the locus which produces the lowest point of the sticking locus, but 

we do know that rliP(a) is greater than the distance (rJ from the CM to the intersection of the tip line 

with the sticking line. We evaluate s at radius rx instead of t . , and use the angle ax instead of a in 

equation 14. The resulting upper bound is: 
1'P 

COS 3a _ _  

1 + c2+ tan 'b 
c2tana 

where tanax = 

Unfortunately ydpd@ cannot be integrated in closed form, and so must be integrated numerically or 

ignored. 

5 .  Example: Moving Point Pushing Aside a Disk 
In this example we consider a disk being pushed not by a fence, but by a point moving in a straight 

line. The point may be a corner of a polygonal pusher, as long as it is only a corner of the pusher that 

touches the disk, and not an edge. 
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Figure 4-8: Bounding the effect of curvature of the tip, in the sticking-lowest regime 
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In all cases the outcome of the collision is the same: the disk is pushed aside by the pusher, and 

contact is broken. The disk ceases to move at the instant the pusher loses contact with it (we assume 

slow motion), so the disk will be left tangent to the pusher’s path when contact is broken. The initial 

and final configurations of the disk are shown in figure 5-1. We wish to calculate the minimum and 

maximum length of the encounter, xpncounlL,r, in terms of the collision parameter, p ,  as indicated in 

figure 5-1. We might also wish to know the minimum and maximum angles through which the disk 

may rotate during the collision. 

5.1. Length of the Encounter 

In figure 5-2, the variables of interest are x, which parametrizes the advance of the pusher along its 

path, and @, which completely characterizes the collision. /3 will vary from /3inirial, its value at first 

contact, to 7712 when contact is broken. xeneOuRIer is the corresponding change in x, as p changes 

from )Binitia, to n/2. 

If the instantaneous COR is known, the direction of motion of the CM of the disk is known: it makes an 

angle 8 with the horizontal, as shown in figure 5-2. If the CM of the disk moves a distance AIalong its 

line of motion, we can find the resulting values of A/3 and Ax, and thereby relate AB and Ax to each 

other. 

The pusher advances a distance 
Ax = Alcos 8 i- Alsin 8 tan /3 

due to Al. At all times /3 can be found from 

asin = y + Alsin 9 

where (x,y) are the coordinates of the point of contact. 

Substituting AIfrom equation 16, and evaluating the change in sin /3 due to Al, we find 

Axsin B 
cos e + sin e tan2 

aA(sin p)  = 

For infinitesimal motions Ap and Ax become d)B and dx. Using d(sinp) = cospdp, we find a 

differential equation of motion 

cos /3 
dx = adp(sinp + -) 

tan 9 

Since it will turn out that tan 8 >0,  the largest and smallest values of dx/dp will result when 8 assumes 

its smallest and largest values, respectively. 
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Figure 5- 1 : Configuration of the disk and the path of the pusher, before and after collision 
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Figure 5-2: Construction for finding the differential equation of motion 16 
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Figure 5-3: COR sketch for a point pushing a disk 
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Now we construct the COR sketch, shown in figure 5-3. Since the edge normal at ? passes through 

the CM, the extremes of the friction cone pass to either side of the CM, for any pc>O. is a 

"wrapped" locus (as described in section 3.6), so the COR sketch must be that of figure 3-6 sketch 

(G), (H), or (I). In any case there must be a sticking locus, there cannot be an up-slipping locus, and 

there may or may not be a down-slipping locus. In figure 5-3 we have shown a down-slipping locus. 

In figure 5-3, (and in general when the COR sketch is any one of distinct types (G), (H) or (I)), the 

smallest and largest values of 8 (figure 5-2), occur when the COR is at the lower or upper endpoints, 

respectively, of the the sticking locus. For sketches (G) and (H) the lower endpoint of the sticking 

locus is well approximated by the intersection of the sticking line with the tip line, and we will use this 

approximation (neglecting the small effect of the curvature of the tip, though this could be included). 

For the lower endpoint of the sticking locus in sketch (I), and for the top of the sticking locus in all 

three sketches, numerical methods would have to be used. We will not find these numerical results 

here. 

5.1.1. Greatest Length of Encounter 

As in section 4.1 -2, we will neglect the-slight dip of the sticking locus below the tip line, which results 

from the non-zero radius of curvature of the tip of the COR locus boundary. 

We will also assume that the COR sketch is of type (G) or (H), not (I), so that the lower endpoint of the 

sticking locus can be approximated by the intersection of the sticking line with the tip line. This 

assumption will be addressed in section 5.1.2, below. 

If the COR is at the intersection of the sticking line with the tip line, we find from figure 5-4 

xCOR 
tan8 = - 

xcoR = -aces/?, and 

where ycoR is found from the construction of figure 5-4. Using c = a, equation 20 can be simplified to 

cos /3 sin /? 
tan8 = (21) 

1 + cos'p 

Using this value of tan 8 in the differential equation of motion 19 results in 

1 + cos2/? 
dx = ad,(sinp) + 

sin/? 
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Figure 5-4: Construction for finding the smallest 8 (equation 20 ) 



40 

which, integrated, yields the indefinite integral 

The maximum value of xpnCounrer can be obtained by evaluating equation 23 at pinilia/ and n/2,-and 

subtracting. The value at n/2 is zero. 

5.1.2. Condition for Sketch Type (1) 

The above derivation of maximum xEnCounle, assumed that the lower endpoint of the sticking locus is at 

the tip line. This is not true when the COR sketch is of type (I), in figure 3-6. 

The COR sketch is of type (I) when the tip of 

equation 5 for a = c and a 4-p = n/2, we find the condition for sketch (I) to be: 

is left of the sticking line. Simplifying 

tanp > 2tanv = 2pc (24) 

This means that the COR sketch will always become type (I) as p ---t n/2, unless p, = 00. (pc = 00 can 

occur, for example, in pushing a gear, if a tooth is engaged by the pusher.) In every case of pushing 

aside a disk, sketch (I) is entered eventually. 

By using the tip line as the lower endpoint of the sticking locus, despite the fact that this is a poor 

approximation in sketch (I), we find too low a value for the minimum 8 .  Our calculated maximum for 

(equation 23) is unnecessarily high. We could in principle refine the upper bound by finding 'encounler 
the lower endpoint of the sticking locus more accurately by numerical methods. 

As mentioned above, we are also neglecting the slight dip of the sticking locus below the tip line (in 

sketches (G) and (H)), which causes us to underestimate the maximum possible value of xenCormler. 
Here too we could refine xencounler by numerical methods, or by using the bound on the dip found in 

section 4.2.2. 

Neglect of sketch (I), and neglect of the dip due to tip curvature, cause errors of opposite sign in 

calculating the maximum xenCounter. The latter is a smaller error. Neither error will be addressed here. 

5.1.3. Least Length of Encounter 

The minimum possible value of xencounler occurs when the COR is at the top of the sticking locus. We 

do not have an analytical method of finding or approximating the upper endpoint of the sticking locus, 

as we have for the lower endpoint. The lower endpoint is similarly hard to analyze if the COR sketch is 

of type (I) in figure 3-6. In these cases it is necessary to find the endpoints numerically for all j3 in the 
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range of interest, calculate 8 for each and then integrate equation 19 numerically to find .r~,nTOUnl~,r. 

5.2. Rotation of the Pushed Disk during Encounter 

5.2.1. Maximum Rotation 

In section 5.1, both the largest and smallest possible values of xenCOunlef resulted from CORs on the 

sticking line. If the COR remains on the sticking line, the pusher does not slip relative to the surface 

of the disk, and so evaluation of the rotation of the disk during the encounter, ,$encounlcfl is trivial. We 

have 

t encounter = a(n/2 - /3,,2 (25)  

Since only up-slipping of the pusher is possible, equation 25 is an exact upper bound for ~encOunte; 

any slipping will only serve to reduce the rotation of the disk. 

Maximal slipping is obtained i f  pc = 0. The pushing force is directed through the CM of the disk, so 

the disk can only translate and not rotate [3]. So if p, = 0, we have ,$fnCOUnter = 0 as both maximum and 

minimum rotation. 

5.2.2. Minimum Rotation 

We found in section 5.1 that extreme values of dx/@ occur when 8 takes on extreme values. Having 

constructed the COR sketch, we found that the extreme values of 8 for possible CORs are assumed 

when the COR falls at the top or bottom of the locus. In this section we will not be able to find a single 

geometric variable, analogous to 8, whose extremes correspond to extremes of the rate of rotation. 

Rotation of the disk will be measured by the angle [, measured at the COR, as shown in figure 5-5. 

We can relate At to advance of the pusher Ax: 
Ax = kin[ d[ (26) 

Combining equation 26 with equation 19 which relates AB to Ax, we find 

We can eliminate 8 and lsin [ in favor of the coordinates of the COR: 

ACOR 

yCOR 
tan8 = - 

lsin 5 = asinp - y 
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Figure 5-5: Construction for finding the differential equation of motion 26 



43 

yielding 

This has no simple geometric interpretation. Contours of constant d [ / d ,  are plotted in figure 5-6, for 

#3 = 45 degrees. Minimum rotation occurs at minimum dt/dp. The COR sketch for P = 45 degrees is 

superimposed on figure 5-6. The possible value of the COR which is responsible for minimum rate of 

rotation is the point of the COR locus which intersects the lowest valued contour line, indicated in the 

figure as point A (in this case very close to the tip). Having obtained numerically the minimum 

possible value of d,$/dP, as a function of PI  we can numerically find the indefinite integral: 

Minimum rotation in a given collision can then be evaluated by subtracting from 6,in(n/2). 

6. Example: Spiral Localization of a Disk 
In this example we analyze an unusual robot motion by which the position of a disk (a washer say), 

free to slide on a tabletop, can be localized without sensing. If the disk is known initially to be located 

in some bounded area of radius bl, we begin by moving a point-like pusher in a circle of radius bl. 

Then we reduce the pusher’s radius of turning by an amount Ab with each revolution, so that the 

pusher’s motion describes a spiral. Eventually the spiral will intersect the disk (of radius a), bumping 

it. We wish the disk to be bumped toward the center of the spiral, so that it will be bumped again on 

the pusher’s next revolution. If the spiral is shrinking too fast, however, the disk may be bumped out 

of the spiral instead of toward its center, and so the disk will be lost and not localized. 

We wish to find the maximum shrinkage parameter Ab consistent with guaranteeing that the disk is 

bumped into the spiral, and not out. (Ab will be a function of the present spiral radius.) We also wish 

to find the number of revolutions that will be required to localize the disk to some radius b, with 

a<b<b, ,  and the limiting value of b, called boo, below which it will not be possible to guarantee 

localization, regardless of number of revolutions. 

6.1. Analysis 

Suppose the pushing point has just made contact with the disk. Since the previous revolution had 

radius only Ab greater than the current revolution, the pusher must contact the disk at a distance at 

most Ab from the edge of the disk, as shown in figure 6-1. We will consider only the worst case, where 

the distance of the pusher from the edge is the full Ab. 
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Figure 5-6: Contours of constant d[/dp, and the COR sketch 
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Figu re 6- 1 : Geometry at the moment of the second collision of pusher and disk 
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We know that i f  A b < ( ]  the disk will move downward [3]. This is not sufficient to assure that the disk 

will be pushed into the spiral (rather than out of the spiral), because the pushing point will also move 

down, as it continues along its path (figure 6-1). To guarantee that the disk will be pushed into the 

spiral, we must make sure that it moves down faster than does the pushing point. 

Note that we will continue to draw the pusher's motion as horizontal, even though the pusher must 

turn as it follows the spiral. This is done to maintain the convention for COR sketches used in 

previous sections. At every moment we simply choose to view the system from such an angle that the 

pusher's motion is horizontal. 

One way of comparing rates of moving down is by considering the increase or decrease in the angle 

/3, called the collision parameter, in figure 6-1. If, as the pusher's motion along its spiral progresses, 

/3 increases, then the disk is being pushed into the spiral; localization is succeeding. When /3 reaches 

n /2 ,  the pusher grazes the disk and leaves it behind. The disk is then left tangent to the spiral. If, as 

the pusher's motion progresses, /3 decreases, the disk is being pushed out of the spiral; localization is 

failing. 

6.2. Critical Case: Pusher Chasing the Disk around a Circular Path 

In the critical case the angle /l does not change with advance of the pusher. The pusher "chases" 

the disk around the spiral, neither pushing it in nor out. In this section we will take the spiral to be a 

circle (i.e.l Ab = 0),  to simplify analysis. The critical case, shown in figure 6-2, is highly unstable. The 

pusher's motion is shown as an arc of a circle, labeled path of Dusher. (Underlined names refer to 

elements of figure 6-2). The center of that circle is labeled pC (for pusher-center). Point pC is directly 

below the point of contact, in keeping with our convention of drawing the pusher's line of motion 

horizontal. 

To maintain the critical case, the path followed b y  the CM of the disk (labeled critical Dath of CM) must 

be as shown in the figure: an arc of a circle, concentric with the arc path of Dusher. Instantaneously, 

the direction of motion of the CM must be along the line labeled motion of CM, tangent to the critical 

path of CM. The critical line, drawn through pC and m, is by construction perpendicular to motion 

-- of CM. The COR of the disk must fall on the critical line, in order that the instantaneous motion along 

the line motion of CM be tangent to the critical Dath of CM. 

We have just seen that the COR of the disk must fall on critical line for the instantaneous motion of the 

CM to be consistent with the CM following the critical Dath of CM. If the COR falls to the left of the 

-- critical line, the CM diverges from the critical Dath of CM by moving inside the arc. Therefore p will 
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Figure 6-2: Critical case: pusher "chasing" disk around a circular path 
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increase with advance of the pusher, arid localization is succeeding. If the COR falls to the right of 

the Critical line, the CM diverges from the critical Dath of CM by moving outside the arc. Therefore /3 

will decrease with advance of the pusher, and localization is failing. The Critical line divides the plane 

into two zones: if the COR falls in the left zone, the disk is pushed into the pusher circle, while if the 

COR falls in the right zone, the disk is pushed out of the pusher circle. 

We wish to find a condition on the radius of the pusher circle which guarantees that the disk will 

afways be pushed into the circle. We will construct the COR sketch, and then find positions for pC 
such that all possible CORs are to the left of the critical line. 

In figure 6-3 we have constructed the COR sketch with collision parameter /I. Since the edge normal 

at ? passes through the CM, the extremes of the friction cone pass to either side of the CM, for any 

pL,>O. {COR}a-Y is a “wrapped“ locus (section 3.6), and the COR sketch must be that of figure 3-6 

(G), (H), or (I). In any case, there must be a sticking locus, there cannot be an up-slipping locus, and 

there may or may not be a down-slipping locus. In figure 6-3 we have shown a down-slipping locus. 

To make sure that the whole COR locus falls to the left of critical line, we need only place the center of 

the pusher motion (P(J below the lower endpoint of the sticking locus. (Point pC is required to have 

the same x coordinate as the point of contact, in keeping with our convention of drawing the pusher’s 

line of motion horizontal.) 

6.3. Critical Radius vs. Collision Parameter 

For every value of p, (the collision parameter), we compute the distance from the pusher’s line of 

motion to the lower endpoint of the sticking locus. This defines a critical radius r*@). For each 

collision parameter PI r*@) is the radius the tightest circle that the pusher can describe with the 

guarantee that the disk will be pushed into the circle, or at worst be “chased” around the circle 

indefinitely, but not be pushed out of the circle. In figure 6-4, 1 / r * ( p )  is plotted as a function of 

collision parameter p for each of several values of p,.  (The discontinuity in slope results from the 

discontinuity in slope of the COR locus boundary at r =  a.) 

The inverse of the function r*@) will be denoted p*(r) ,  representing the smallest value of for which 

a pusher motion of radius I- still results in guaranteed localization. In terms of the pusher’s distance 

from the top edge of the disk, d, (figure 6-3), we can use the relationship 

a(1- sinp) = d 
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Figure 6-3: COR sketch for critical case, and solution for location of pC 



Figure 6-4: Radius f w )  of the critical circle as a function of collision parameter /3 
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to define the crifical distance from grazing d * ( r )  as a function of r. d * ( r )  is the largest distance of the 

pusher from the top edge of the disk for which a pusher motion of radius r still results in guaranteed 

localization. 

6.4. Limiting Radius for Localization 

If there is a limiting radius boo of the spiral motion below which localization cannot be guaranteed, 

then as the spiral approaches radius boo the motion must become circular. Ab -+ 0 as Doo is 

approached, so collisions become grazing collisions, and we have the distance from grazing d -t 0. 

(In terms of the collision parameter /I, we have /I -t n / 2 . )  The COR sketch for /I = n/2 is shown in 

figure 6-5. If the disk is not to be bumped out of the spiral, we must have boo = r*@=n/2).  boo is 

indicated in the figure, and can be shown analytically to be 

boo = a(pc + 1 )  for p, I 1 (32)  

bm = 2a for pcz 1 

Only at p, = 0 can a disk be localized completely, i.e. localized to within a circle the same radius as 

the disk. Otherwise the tightest circle within which the disk can be localized is given by equation 32. 

6.5. Computing the Fastest Guaranteed Spiral 

Let bn be the radius of the nth revolution of the pusher, so that we have initially radius bll and boo is the 

limiting radius as n-+ m. (In specifying but a single radius for each revolution of the spiral, we will not 

truly specify the spiral completely, but this will be sufficient to characterize the number of revolutions 

required to achieve a desired degree of localization.) 

We will define two spirals recursively, in terms of bn. The first of these will be "too-fast": the spiral 

described shrinks so fast that it is possible for the disk to be pushed out of the spiral. The second will 

be "too-slow": the spiral described will guarantee localization, but will not be the fastest spiral to do 

so. The "too-fast" and "too-slow" spirals will differ very little, and so will place tight bounds on the 

performance of the exact fastest guaranteed spiral. 

6.5.1. Too-Fast Spiral 

The too-fast spiral is defined recursively by 

bn = b,,l - d*(bJ (33)  

The difference between the radii of consecutive turns of the spiral n-1  and n, is therefore 
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MOTION OF PUSHER 

Figure 6-5:  COR sketch at the limiting radius, showing bbO 



Ab = d*(bn). Equation 33 thus enforces the condition that on the rjh revolution, the value of d is 

exactly the critical value for circular pushing motion of radius b,,. At worst, the disk is pushed neither 

in nor out of the spiral. Unfortunately the spiral radius is b,, only for an instant, and then decreases. It 

is then possible for the disk to be pushed out of the spiral. The spiral described by equation 33 does 

not guarantee localization. 

6.5.2. Too-Slow Spiral 

Consider the spiral defined by 

The difference between the radii of consecutive turns of the spiral n-1 and n, is A b  = d*(b,+,). 

Equation 34 enforces the condition that on the dh revolution, the value of d is exactly the critical value 

for circular pushing motion of radius b,+l. Here the value of don the nth revolution is the critical one, 

not for radius bn as above, but for b,+l. At the beginning of the dh revolution, the value of the d is 

such that it is guaranteed that the disk be pushed into the spiral. The radius of the spiral remains 

above the critical radius for dfor an entire revolution (until revolution n+ 1). We need only show that 

the disk cannot be "chased" for an entire revolution in this condition; it will first be bumped into the 

spiral and lose contact with the pusher. 

In figure 6-6 are shown the path of the pusher during the first half of revolution n, and also the tightest 

path the pusher could take with the guarantee that, at worst, the disk would be "chased" and not 

pushed out of the spiral. The initial position of the disk is shown at the top, common to both proposed 

paths of the pusher. At the bottom is shown the worst case final position of the disk, i f  the pusher 

takes the tighter path. Since this final position places the disk entirely within the looser proposed 

path, we know that if the pusher takes the looser path it must loose contact with the disk before the 

pusher has executed half of a revolution. 

6.5.3. Performance of the Two Spirals 

Figure 6-7 shows the fractional deviation of spiral radius bn above boo, vs. number of turns n, on 

logarithmic and on linear scales. In both the "too-fast" and the "too-slow" spirals we start (arbitrarily) 

with b, = 100a. The spiral radii were computed numerically for p, = .25, using the results for P*(r)  
shown in figure 6-4, and equations 33 or 34. Since the optimal spiral must fall between the "too-fast" 

and the "too-slow" spirals, we have very tight bound on the optimal spiral. 

Figure 6-7 shows that when the spiral radius is large compared to the disk radius a (which is taken to 
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Figure 6-6: Construction showing why "too-slow" spiral is guaranteed to localize the disk 
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be 1 in the figure), we can reduce the radius of the spiral by almost N with each revolution. As the 

limiting radius is approached, the spiral reduces its radius more and more slowly, approaching the 

limiting radius Dm as about I J - ' . ~ ,  where n is the number of revolutions. 

Figure 6-7 demonstrates the best performance that the "herding" strategy can acheive. 

7. Conclusion 
We have shown how bounds can be placed on the possible instantaneous motions of a sliding object 

being pushed by another object, in the presence of unknown frictional forces between object and 

table, and between object and pusher. We have characterized the qualitatively different kinds of 

sliding motion which are possible, and found the conditions under which each can occur. 

Using these results it is possible to find bounds for gross motions of a pushed object as well. This is 

done by integrating the possible instantaneous motions. 

As an example, we have found the maximum distance a polygonal sliding object must be pushed by a 

fence in order to guarantee that a sideof the object has aligned itself with the fence. This is the same 

problem considered in [4], but here we have included a non-zero coefficient of friction between the 

polygon and the pusher. Using the useful tip line construction described here, approximate results 

are obtained both for the alignment problem and several others. Strict upper bounds for the 

maximum required pushing distance are found by using slightly more sophisticated methods, but the 

difference between the upper bounds and the approximate results are so slight that the effort seems 

hardly justified. 

In a second example, we have taken the pushed object to be a disk, and the pusher to be a point, or 

the corner of a polygon, moving in a straight line. We have found the maximum disatnce that the 

pusher and the disk may be in contact, before the disk is "pushed aside" by the moving object. 

Bounds on the rotation of the disk during its interaction with the pusher are also found. 

Finally we have analysed an unusual robot manuever, in which a disk known to be within a certain 

circular area can be "localized" to a much smaller circular area by a pusher which, perhaps under 

robot control, describes a decreasing spiral around the disk. Thus the disk can be located by a robot 

without sensors. We found the ultimate limiting radius below which the disk cannot be localized 

further, no matter how slowly the spiral decreases in radius. We also found (to within tight bounds) 

the "optimal spiral": the spiral which localizes the disk with the fewest number of revolutions, while 

guaranteeing that the disk is not lost from the spiral. 
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We believe that the motion of a sliding object is now sufficiently well understood that reliable robot 

strategies taking advantage of sliding motion can be designed and verified. Brost [ l ]  and Mani [2] 

have independently developed graphical methods for description of sliding motion, based on the 

results of Mason [3]. 

The above mentioned work (including our work) has the limitation of assuming slow (quasistatic) 

motion of pushed objects. In the opposite limit, fast motion, friction between the pushed object and 

the table can be ignored. If the coefficient of friction between pusher and pushed object is known, 

the motion of the pushed object can be solved exactly (rather than bounded as we have done here.) 

This problem is presently under study by several workers. It will be necessary to solve the 

intermediate case, or at least to bound the effects of inertia, in order to deal with other than 

quasistatic motions. 

The bounds on possible motions described in our work are exact bounds only when the sliding object 

is a disk. For other objects, tighter bounds exist. If the bounds for a disk are used in constructing a 

strategy for manipulating an object much smaller than its circumscribed disk (for instance a thin 

rectangle), unduly conservative strategies may result. 
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