
PSoC™ Designer:

User Guide

Revision 1.17 (Cypress Revision *B)
Spec.# 38-12001

Last Revised: December 5, 2003
Cypress MicroSystems, Inc.

C Language Compiler

CYPRESS MICROSYSTEMS

Cypress MicroSystems, Inc.
2700 162nd St. SW, Building D

Lynnwood, WA 98037
Phone: 800.669.0557

Fax: 425.787.4641

http://www.cypress.com/ http://www.cypress.com/aboutus/sales_locations.cfm support@cypressmicro.com

Copyright © 2002-2003 Cypress MicroSystems, Inc. All rights reserved.
PSoC™ (Programmable System-on-Chip) is a trademark of Cypress MicroSystems, Inc.

Copyright © 1999-2000 iMAGEcraft Creations Inc. All rights reserved.
All Microsoft products referenced herein are either trademarks or registered trademarks of Microsoft Corp.

All Intel products referenced herein are either trademarks or registered trademarks of Intel Corporation.
© Copyright 1994-2002 Motorola, Inc. All Rights Reserved.

The information contained herein is subject to change without notice.

http://www.cypress.com/
http://www.cypress.com/aboutus/sales_locations.cfm
support@cypressmicro.com
68.�http://www.cypress.com/aboutus/sales_locations.cfm

Table of Contents
List of Tables ... v
Two-Minute Overview ... 1
Documentation Conventions ... 2
Section 1. Introduction ... 3

1.1 What is the PSoC Designer C Compiler? ...3
1.2 Section Overview ..4
1.3 Product Upgrades ..4
1.4 Support ..5

Section 2. Accessing the Compiler ... 7
2.1 Enabling the Compiler ..7
2.2 Accessing the Compiler ...7
2.3 Menu Options ..8

Section 3. Compiler Files ... 11
3.1 Startup File ..11
3.2 Library Descriptions ...11

Section 4. Compiler Basics .. 13
4.1 Types ...13
4.2 Operators ...14
4.3 Expressions ...16
4.4 Statements ..16
4.5 Pointers ...17
4.6 Re-entrancy ...17
4.7 Processing Directives (#’s) ..17

4.7.1 Preprocessor Directives ...18
4.7.2 pragma Directives ..18

Section 5. Functions ... 21
5.1 Library Functions ...21

5.1.1 String Functions ...21
5.1.2 Mathematical Functions ...24
5.1.3 API Software Library Functions ...26

5.2 Interfacing C and Assembly ...26

Section 6. Additional Considerations ... 29
6.1 Accessing M8C Features ..29
6.2 Addressing Absolute Memory Locations ...29
6.3 Assembly Interface and Calling Conventions ..30
6.4 Bit Twiddling ..30
6.5 Inline Assembly ...31
6.6 Interrupts ...31
6.7 IO Registers ...32
Table of Contents
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 i

PSoC Designer: C Language Compiler User Guide
6.8 Long Jump/Call ..32
6.9 Memory Areas ...33

6.9.1 Flash Memory Areas ..33
6.9.2 Data Memory ..33

6.10 Program and Data Memory Usage ..33
6.10.1 Program Memory ...33
6.10.2 Data Memory ..34

6.11 Program Memory as Related to Constant Data ...34
6.12 Stack Architecture and Frame Layout ..35
6.13 Strings ...35
6.14 Virtual Registers ..36
6.15 Convention for Restoring Internal Registers ..36

Section 7. Linker ... 37
7.1 Linker Operations ..37

7.1.1 Customized Linker Actions ...38

Section 8. Librarian .. 39
8.1 Librarian ...39

8.1.1 Compiling a File into a Library Module ...39
8.1.2 Listing the Contents of a Library ..42
8.1.3 Adding or Replacing a Module ...42
8.1.4 Deleting a Module ..42

Section 9. Command Line Compiler Overview .. 43
9.1 Compilation Process ..43
9.2 Driver ...43
9.3 Compiler Arguments ..44

9.3.1 Arguments Affecting the Driver ...45
9.3.2 Preprocessor Arguments ..45
9.3.3 Compiler Arguments ...45
9.3.4 Linker Arguments ..45

Section 10. Code Compression ... 47
10.1 Theory of Operation ...47
10.2 Code Compressor Process ...47

10.2.1 ‘C’ and Assembly Code ..47
10.2.2 Where are the “Program Execution” Bytes? ..48
10.2.3 What Can the PSoC Debugger Expect? ..48

10.3 PSoC Designer Integration of the Code Compressor ..48
10.3.1 boot.asm ..48
10.3.2 Text Area Requirement for Code Compressor ...48

10.4 Code Compressor and the AREA Directive ...49
10.5 Build Messages ...50
10.6 Up against the Wall? ...50
10.7 Additional Things to Consider When Using Code Compression51

Appendix A. Status Window Messages .. 53
1.1 Preprocessor ...53
1.2 Preprocessor Command Line Errors ..55
1.3 C Compiler ..55
1.4 Assembler ...59
1.5 Assembler Command Line Errors ...61
1.6 Linker ..61
ii Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Table of Contents
Index .. 63
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 iii

PSoC Designer: C Language Compiler User Guide
iv Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

List of Tables
Table 1: Documentation Conventions ..2
Table 2: Compiler Menu Options..8
Table 3: Supported Data Types..13
Table 4: Supported Operators ..15
Table 5: Preprocessor Directives ...18
Table 6: pragma Directives...18
Table 7: String Functions..22
Table 8: Mathematical Functions..24
Table 9: API Software Library Functions ..26
Table 10: #pragma Fastcall Conventions for Argument Passing ...26
Table 11: #pragma Fastcall Conventions for Return Value..27
Table 12: Compiler Argument Prefixes...44
Table 13: Arguments Affecting the Driver...45
Table 14: Preprocessor Arguments..45
Table 15: Compiler Arguments...45
Table 16: Linker Arguments ...45
Table A.1: Preprocessor Errors/Warnings..53
Table A.2: Preprocessor Command Line Errors/Warnings ..55
Table A.3: C Compiler Errors/Warnings ...55
Table A.4: Assembler Errors/Warnings ..59
Table A.5: Assembler Command Line Errors/Warnings...61
Table A.6: Linker Errors/Warnings ...61
List of Tables
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 v

PSoC Designer: C Language Compiler User Guide
vi Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

This two-minute overview of PSoC™ Designer: C Language Compiler User
Guide was purposefully placed up front for you advanced engineers who are
ready to write source for the device but need a quick jump-start. (Now we only
have a minute and-a-half left.)

 Time’s up…

Two-Minute Overview

Overview 35 seconds You have the device, PSoC Designer, and the C com-
piler… This guide provides:

� enabling and accessing procedures,
� instructions for using the C compiler within PSoC

Designer parameters,
� references for the internal workings of the compiler.

Basics 30 seconds After generating your device configuration, click the
Application Editor icon in the toolbar to access the
pre-configured source files.

The source tree of project files appears in the left frame.
The folders can be expanded to reveal the files. Double-
click individual files to open and edit them in the main
window. Click File >> New to add .c files to your project.

Quick
Reference

25 seconds Click a hyperlink to reference key material:

� Accessing the Compiler
� Compiler Files
� Compiler Basics
� Functions
� Processing Directives (#’s)
� Librarian

Bottom Line 10 seconds The PSoC Designer C Compiler is an “extra” tool you
can use to customize the functionality you desire into the
PSoC device.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 1

PSoC Designer: C Language Compiler User Guide

Following, are easily identifiable conventions used throughout the PSoC
Designer suite of product documentation.

Documentation Conventions

Table 1: Documentation Conventions

Convention Usage

Courier Size 10-12 Displays input and output:
//-----------------------------
// Sample Code
// Burn some cycles
//-----------------------------

void main()
{
char cOuter, cInner;
for(cOuter=0x20; cOuter>0; cOuter--)
 {
for(cInner=0x7F; cInner>0; cInner--)
 {
 }
 }
 }

Courier Size 12 Displays file locations:
C:\Program Files\Cypress MicroSys-
tems\PSoC Designer\tools

Italics Displays file names:
projectname.rom

[bracketed, bold] Displays keyboard commands:
[Enter] or [Ctrl] [C]

File >> Open Displays menu paths:
Edit >> Cut
2 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 1. Introduction

1.1 What is the PSoC Designer C Compiler?

The PSoC Designer C Compiler compiles each .c source file to a PSoC device
assembly file. The PSoC Designer Assembler then translates each assembly
file (either those produced by the compiler or those that have been added) into
a relocatable object file, .o. After all the files have been translated into object
files, the builder/linker combines them together to form an executable file. This
.rom file is then downloaded to the emulator where it is debugged to perfect
design functionality.

For comprehensive details on hardware, system use, and assembly language
see:

� PSoC Designer: Integrated Development Environment User Guide

� PSoC Designer: Assembly Language User Guide

� PSoC Designer: ICE Connection Troubleshooting Guide

� CY8C25122, CY8C26233, CY8C26443, CY8C26643 Device Data Sheet
for Silicon Revision D

� CY8C27143, CY8C27243, CY8C27443, CY8C27543, CY8C27643 PSoC
Mixed-Signal Array Data Sheet

� CY8C24123, CY8C24223, CY8C24423 PSoC Mixed-Signal Array Data
Sheet

� CY8C22113, CY8C22213 PSoC Mixed-Signal Array Data Sheet

� In-System Serial Programming (ISSP) CY3207ISSP User Guide

Together, these documents complete the PSoC Designer documentation suite.

Section 1. Introduction
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 3

PSoC Designer: C Language Compiler User Guide
Additional recommended reading includes:

� C Programming Language, Second Edition, Brian W. Kernighan and
Dennis Ritchie, Pearson Education March 1989

� C: A Reference Manual, Fifth Edition, Samuel P. Harbison and
Guy L. Steele, Pearson Education February 2002

1.2 Section Overview

1.3 Product Upgrades

Cypress MicroSystems provides scheduled upgrades and version enhance-
ments for PSoC Designer free of charge. Compiler upgrades are included in
your PSoC Designer C Compiler license agreement.

You can order PSoC Designer and Compiler upgrades from your distributor on
CD-ROM or, better yet, download them directly from http://www.cypress.com/.

Section 1. Introduction Describes the purpose of this guide, overviews
each section, and gives product upgrade and
support information.

Section 2. Accessing the Com-
piler

Describes enabling and accessing the compiler
and its options.

Section 3. Compiler Files Discusses and lists startup and C library options
within PSoC Designer.

Section 4. Compiler Basics Lists C compiler types, operators, expressions,
statements, and pointers that are compatible
within PSoC Designer parameters.

Section 5. Functions Lists C compiler functions that are compatible
within PSoC Designer parameters.

Section 6. Additional Consider-
ations

Lists additional compiler options you can use to
leverage the functionality of your code or pro-
gram.

Section 7. Linker Discusses C compiler linker options deployed
within PSoC Designer.

Section 8. Librarian Discusses C compiler library functions used
within PSoC Designer.

Section 9. Command Line Com-
piler Overview

Overviews C compiler command line features
that can be used strictly within the constraints of
PSoC Designer.

Section 10. Code Compression Details code compression features, benefits
and guidelines.
4 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

http://www.cypress.com/

Section 1. Introduction
Also provided at the web sites are critical updates to system documentation.
To stay current with system functionality you can find documentation updates
under PSoC >> More Resources at http://www.cypress.com/.

Check the web site frequently for both product and documentation updates. As
the device families and PSoC Designer evolve, you can be sure that new tech-
nology, features and enhancements will be added.

1.4 Support

Support for PSoC Designer and its C Compiler is free and available online.
Resources include Seminars, Discussion Forums, Application Notes, PSoC
Consultants, TightLink Email/Knowledge Base, Tele-Training, and Support
Technicians.

Application Hotline: 425.787.4814
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 5

http://www.cypress.com/

PSoC Designer: C Language Compiler User Guide
6 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 2. Accessing the Compiler

In this section you will learn how to enable and access the compiler and its
options.

2.1 Enabling the Compiler

Enabling the compiler is done within PSoC Designer. To accomplish this, exe-
cute the following steps:

1. Access Tools >> Options >> Compiler tab.

2. Enter your key code.

3. Scroll to read the License Agreement, then click a check to accept the
License Agreement and hit OK.

If, for some reason, you have not received a key code or are uncertain of how
to proceed, contact a Cypress MicroSystems Support Technician at
425.787.4814.

2.2 Accessing the Compiler

All features of the compiler are available and accessible in the Application
Editor subsystem of PSoC Designer.

To access the Application Editor subsystem, click the Application Editor icon
. This icon can be found in the subsystem toolbar .

Section 2. Accessing the Compiler

You have this key code if you purchased the C Language Compiler License
when you received PSoC Designer (by download, mail, or through a distrib-
utor).

To view the version details for the iMAGEcraft Compiler, click Version.
When finished, click the “x” in the upper-right to close.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 7

PSoC Designer: C Language Compiler User Guide
Such features include adding and modifying .c project files, both of which are
described ahead in brief, and in the PSoC Designer: Integrated Development
Environment User Guide in detail.

2.3 Menu Options

The following menu options are available in PSoC Designer for writing and
editing assembly language and C compiler files:

Avoid use of the following characters in path and file names (they are prob-
lematic): \ / : * ? " < > | & + , ; = [] % $ ` '.

Table 2: Compiler Menu Options

Icon Option Menu Shortcut Feature

Compile/
Assemble

Build >> Com-
pile/Assemble

[Ctrl] [F7] Compiles/assembles the most
prominent open, active file (.c or
.asm)

Build Build >> Build [F7] Builds entire project and links
applicable files

New File File >> New [Ctrl] [N] Adds a new file to the project

Open File File >> Open [Ctrl] [O] Opens an existing file in the
project

Indent Indents specified text

Outdent Outdents specified text

Comment Comments selected text

Uncomment Uncomments selected text

Toggle Book-
mark

 Toggles the bookmark: Sets/
removes user-defined book-
marks used to navigate source
files

Clear Book-
mark

 Clears all user-defined book-
marks

Next Book-
mark

 Goes to next bookmark

Previous
Bookmark

 Goes to previous bookmark

Find Text Edit >> Find [Ctrl] [F] Find specified text

Replace Text Edit >> Replace [Ctrl] [H] Replace specified text
8 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 2. Accessing the Compiler
Find in Files Edit >> Find in
Files

Find specified text in specified
file(s)

Repeat
Replace

 Repeats last replace

Set Editor
Options

 Set options for editor

Undo Edit >> Undo [Ctrl] [Z] Undo last action

Redo Edit >> Redo [Ctrl] [Y] Redo last action

Table 2: Compiler Menu Options, continued

Icon Option Menu Shortcut Feature
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 9

PSoC Designer: C Language Compiler User Guide
10 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 3. Compiler Files

In this section you will learn startup file procedures and can reference sup-
ported library files.

3.1 Startup File

PSoC Designer creates a startup file called boot.asm. Its primary functions
within the parameters of PSoC Designer include initializing C variables, orga-
nizing interrupt tables, and calling _main. The underscore (_main) allows
boot.asm to call a “main” in either C or assembly.

The boot.asm startup file also defines the reset vector. You do not need to
modify the startup file to use other interrupts because PSoC Designer man-
ages interrupts and vectors.

3.2 Library Descriptions

There are three primary code libraries used by PSoC Designer: libcm8c.a,
libpsoc.a, and cms.a.

The libcm8c.a library resides in the PSoC Designer …\tools directory
(…\Program Files\Cypress Microsystems\PSoC
Designer\tools). This library contains many functions typically used in 'C'
programming.

Section 3. Compiler Files

Many functions within PSoC Designer are built upon specifications in this
file. Therefore, it is highly recommended that you do not modify the startup
file. If you have a need, first consult your Cypress MicroSystems Technical
Support Representative.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 11

PSoC Designer: C Language Compiler User Guide
The libpsoc.a library resides in the project \lib directory, and contains user
module functions. Device Editor automatically adds the source code for your
User Modules to the library during the generate-application process. However,
other library objects can be manually added to this library.

To add existing object files, copy your source file to the project …\lib direc-
tory, then “officially” add it to the project in PSoC Designer. For details on add-
ing existing files to your project, see PSoC Designer: Integrated Development
Environment User Guide.

The cms.a library resides in the …\tools directory. This library contains con-
venient functions that do not involve User Modules. For example, the functions
to read and write flash reside here (Flash Block Programming). 'C' prototypes
for using these functions are given in the include file (flashblock.h) stored in
the …\tools \include directory.

Avoid use of the following characters in path and file names (they are prob-
lematic): \ / : * ? " < > | & + , ; = [] % $ ` '.
12 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 4. Compiler Basics

In this section you can reference PSoC Designer C Compiler basics, which
include types, operators, expressions, statements, and pointers.

4.1 Types

PSoC Designer C Compiler supports the following standard data types:

Section 4. Compiler Basics

With few exceptions, PSoC Designer C Compiler implements the ANSI C
language. The one notable exception is that the standard requires that dou-
ble floating point be at least 64 bits, but implementing full 64 bits is prohibi-
tive on 8-bit microcontrollers. Therefore, PSoC Designer C Compiler treats
the “double” data type the same as the “float” data type.

In terms of the compiler, the ONLY non-ANSI feature is that doubles are only
32-bit. ANSI "bar" proper would require that to be at least 64 bits. Otherwise,
if it is in C89 or the ISO equivalent, it is supported by the compiler.

All types support the signed and unsigned type modifiers.

Table 3: Supported Data Types

Type Bytes Description Range

char 1 A single byte of memory that
defines characters

1 unsigned 0…255
signed -128…127

int 2 Used to define integer numbers unsigned 0…65535
1 signed -32768…32767

short 2 Standard type specifying 2-byte
integers

unsigned 0…65535
1 signed -32768…32767
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 13

PSoC Designer: C Language Compiler User Guide
The following type definitions are included in m8c.inc. Express common con-
ventions for additional data types.

The following floating-point operations are supported in the PSoC Designer C
Compiler. Floating Point Intrinsic Functions:

floats and doubles are in IEEE 754 standard 32-bit format with 8-bit expo-
nent and 23-bit mantissa with one sign bit.

4.2 Operators

Following is a list of the most common operators supported within the PSoC
Designer C Compiler. Operators with a higher precedence are applied first.

long 4 Standard type specifying the
largest integer entity

unsigned
0…4294967295

1 signed -
2147483648…21474836

47

float 4 Single precision floating point
number in IEEE format

1.175e-38…3.40e+38

double 4 Single precision floating point
number in IEEE format

1.175e-38…3.40e+38

enum 1 if enum < 256
2 if enum > 256

Used to define a list of aliases
that represent integers.

0…65535

1 Default, if not explicitly specified as signed or unsigned.

typedef unsigned char BOOL;

typedef unsigned char BYTE;

typedef signed char CHAR;

typedef unsigned int WORD;

typedef signed int INT;

typedef unsigned long DWORD;

typedef signed long LONG;

compare (=) add (+)

multiply (*) subtract (-)

divide(/) casting (long to float)

Table 3: Supported Data Types, continued

Type Bytes Description Range
14 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 4. Compiler Basics
Operators of the same precedence are applied right to left. Use parentheses
where appropriate to prevent ambiguity.

Table 4: Supported Operators

Pre. Op. Function Group Form Description

1 ++ Postincrement a ++

1 -- Postdecrement a --

1 [] Subscript a[b]

1 () Function Call a(b)

1 . Select Member a.b

1 -> Point at Member a->b

2 sizeof Sizeof sizeof a

2 ++ Preincrement ++ a

2 -- Predecrement -- a

2 & Address of &a

2 * Indirection *a

2 + Plus +a

2 - Minus -a

2 ~ Bitwise NOT Unary ~ a 1's complement of a

2 ! Logical NOT !a

2 (decla-
ration)

Type Cast (declaration)a

3 * Multiplication Binary a * b a multiplied by b

3 / Division Binary a / b a divided by b

3 % Modulus Binary a % b Remainder of a divided by b

4 + Addition Binary a + b a plus b

4 - Subtraction Binary a - b a minus b

5 << Left Shift Binary a << b Value of a shifted b bits left

5 >> Right Shift Binary a >> b Value of a shifted b bits right

6 < Less a < b a less than b

6 <= Less or Equal a <= b a less than or equal to b

6 > Greater a > b a greater than b

6 >= Greater or Equal a >= b a greater than or equal to b

7 == Equals a == b
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 15

PSoC Designer: C Language Compiler User Guide
4.3 Expressions

PSoC Designer supports standard C language expressions.

4.4 Statements

PSoC Designer compiler supports the following standard statements:

� if else: Decides on an action based on if being true.

� switch: Compares a single variable to several possible constants. If the
variable matches one of the constants, a jump is made.

7 != Not Equals a != b

8 & Bitwise AND Bitwise a & b Bitwise AND of a and b

9 ^ Bitwise Exclusive
OR

Bitwise a ^ b Bitwise Exclusive OR of a
and b

10 | Bitwise Inclusive
OR

Bitwise a | b Bitwise OR of a and b

11 && Logical AND a && b

12 || Logical OR a || b

13 ? : Conditional c?a:b

14 = Assignment a = b

14 *= Multiply Assign a *= b

14 /= Divide Assign a /= b

14 %= Remainder Assign a %= b

14 += Add Assign a += b

14 -= Subtract Assign a -= b

14 <<= Left Shift Assign a <<= b

14 >>= Right Shift Assign a >>= b

14 &= Bitwise AND
Assign

a &= b

14 ^= Bitwise Exclusive
OR Assign

a ^= b

14 |= Bitwise Inclusive
OR Assign

a |= b

15 , Comma a , b

Table 4: Supported Operators, continued

Pre. Op. Function Group Form Description
16 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 4. Compiler Basics
� while: Repeats (iterative loop) a statement until the expression proves
false.

� do: Same as while, only the test runs after execution of statement, not
before.

� for: Executes a controlled loop.

� goto: Transfers execution to a label.

� continue: Used in a loop to skip the rest of the statement.

� break: Used with a switch or in a loop to terminate the switch or loop.

� return: Terminates the current function.

� struct: Used to group common variables together.

� typedef: Declares a type.

4.5 Pointers

A pointer is a variable that contains an address that points to data. It can point
to any data type (i.e., int, float, char, etc.). A generic (or unknown) pointer type
is declared as “void” and can be freely cast between other pointer types. Func-
tion pointers are also supported.

Due to the nature of the Harvard architecture of the M8C, a data pointer may
point to data located in either data or program memory. To discern which data
is to be accessed, the const qualifier is used to signify that a data item is
located in program memory. See Program Memory as Related to Constant
Data in section 6.

Pointers require 2 bytes of memory storage to account for the size of both the
data and program memory.

4.6 Re-entrancy

Currently, there are no pure re-entrant library functions. It is possible, however,
to create a re-entrant condition that will compile and build successfully. Due to
the constraints that a small stack presents, re-entrant code is not recom-
mended.

4.7 Processing Directives (#’s)

PSoC Designer C Compiler supports the following preprocessors and prag-
mas:
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 17

PSoC Designer: C Language Compiler User Guide
4.7.1 Preprocessor Directives

4.7.2 pragma Directives

Table 5: Preprocessor Directives

Preprocessor Description

#define Define a preprocessor constant or macro

#else Executed if #if, #ifdef, or #ifndef fails

#endif Close #if, #ifdef, or #ifndef

#if Branch based on an expression

#ifdef Branch if preprocessor constant has been defined

#ifndef Branch if a preprocessor constant has not been defined

#include Insert a source file

#line Specify the number of the next source line

#undef Remove a preprocessor constant

Table 6: pragma Directives

#pragma Description

#pragma ioport LED:0x04;
char LED;

Defines a variable that occupies a region in I/O space. This
variable can then be used in I/O reads and writes. The
#pragma ioport must precede a variable declaration defining
the variable type used in the pragma.

#pragma fastcall GetChar Provides an optimized mechanism for argument passing.
This #pragma is used only for assembly functions called
from “C.”

#pragma
abs_address:<address>

Allows you to locate 'C' code/Flash data at a specific
address such as #pragma abs_address:0x500. The
#pragma end_abs_address (described below) should be
used to terminate the block of code/Flash data. Note that
“data” includes both ROM and RAM.
18 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 4. Compiler Basics
#pragma end_abs_address Terminates a block of code/Flash data that was located with
the abs_address pragma. This allows the code that follows
the end_abs_address pragma to be located from the last
relocatable point. Note that “data” includes both ROM and
RAM.

#pragma text:<name> Change the name of the “text” area. Make modifications to
“Custom.LKP” in the project directory to place the new area
in the code space.

#pragma interrupt_handler
<func1> [,<func2>]*

For interrupt handlers. Virtual registers are saved only if they
are used, unless the handler calls another function. In that
case, all Virtual registers are saved.

#pragma nomac
#pragma usemac

These two pragmas override the command line -nomac
argument, or Project >> Settings, Compiler tab, Enable MAC
option. See Section 3, Compiler Project Settings in the
PSoC Designer: Integrated Development Environment User
Guide. The pragmas should be specified outside of a func-
tion definition.

Table 6: pragma Directives, continued

#pragma Description
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 19

PSoC Designer: C Language Compiler User Guide
20 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 5. Functions

In this section you can reference compiler functions supported within PSoC
Designer.

PSoC Designer C Compiler functions use arguments and always return a
value. All C programs must have a function called main().

Each function must be self-contained in that you may not define a function
within another function or extend the definition or a function across more than
one file.

It is important to note that the compiler generates inline code whenever possi-
ble. However, for some C constructs, the compiler generates calls to low level
routines. These routines are prefixed with two underscores and should not be
called directly by the user.

5.1 Library Functions

Use #include <associated-header.h> for each function described
below. Note that two versions of these functions are provided. The ‘c’ prefix
indicates that the source string s2 is located in Flash, as designated by the
const qualifier. PSoC Designer supports the following library functions:

5.1.1 String Functions

The following functions can be found in the PSoC Designer installation direc-
tory at ...:\Program Files\Cypress MicroSystems\PSoC
Designer\tools\include\string.h and stdlib.h

Section 5. Functions

All strings are null terminated strings.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 21

PSoC Designer: C Language Compiler User Guide
Table 7: String Functions

Function Prototype Description Header

abs int abs(int); stdlib.h

atof double atof(CONST char *); stdlib.h

atoi int atoi(CONST char *); stdlib.h

atol long atol(CONST char *); stdlib.h

itoa void itoa(char *string, unsigned int value, int
base);

stdlib.h

ltoa void ltoa(char *string, unsigned long value,
int base);

stdlib.h

ftoa char *ftoa(float f, int *status);
/* ftoa function */
#define _FTOA_TOO_LARGE -2 /*
|input| > 2147483520 */
#define _FTOA_TOO_SMALL -1 /*
|input| < 0.0000001 */
/* ftoa returns static buffer of ~15 chars. If
the input is out of * range, *status is set to
either of the above #define, and 0 is *
returned. Otherwise, *status is set to 0 and
the char buffer is * returned.

 * This version of
the ftoa is fast but
cannot handle val-
ues outside * of
the range listed.
Please contact us
if you need a
(much) larger *
version that han-
dles greater
ranges.
 * Note that the
prototype differs
from the earlier
version of this *
function.
*/

stdlib.h

rand int rand(void); stdlib.h

srand void srand(unsigned); stdlib.h

strtol long strtol(CONST char *, char **, int); stdlib.h

strtoul unsigned long strtoul(CONST char *, char
**, int);

stdlib.h

char *cstrncpy(char *, const char *cs,
size_t);

string.h

cstrcat char *cstrcat(char *, const char *); string.h

cstrcmp int cstrcmp(const char *cs, char *); string.h

cstrcpy char *cstrcpy(char *, const char *cs); string.h

cstrlen size_t cstrlen(const char *cs); string.h

memchr void *memchr(void *, int, size_t); string.h

memcmp int memcmp(void *, void *, size_t); string.h
22 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 5. Functions
You can view the list of string functions at a command prompt window by typ-
ing: …:\Program Files\Cypress MicroSystems\PSoC
Designer\tools> ilibw –t libcm8c.a

memcpy void *memcpy(void *, void *, size_t); string.h

memmove void *memmove(void *, void *, size_t); string.h

memset void *memset(void *, int, size_t); string.h

strcat char *strcat(char *, CONST char *); string.h

strcmp int strcmp(CONST char *, CONST char *); string.h

strcoll int strcoll(CONST char *, CONST char *); string.h

strcpy char *strcpy(char *, CONST char *); string.h

strcspn size_t strcspn(CONST char *, CONST char
*);

string.h

strlen size_t strlen(CONST char *); string.h

strncat char *strncat(char *, CONST char *, size_t); string.h

strncmp int strncmp(CONST char *, CONST char *,
size_t);

string.h

strncpy char *strncpy(char *, CONST char *,
size_t);

string.h

strpbrk char *strpbrk(CONST char *, CONST char
*);

string.h

strrchr char *strrchr(CONST char *, int); string.h

strspn size_t strspn(CONST char *, CONST char
*);

string.h

strstr char *strstr(CONST char *, CONST char *); string.h

Table 7: String Functions, continued

Function Prototype Description Header
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 23

PSoC Designer: C Language Compiler User Guide
5.1.2 Mathematical Functions

The following functions can be found in the PSoC Designer installation direc-
tory at ...:\Program Files\Cypress MicroSystems\PSoC
Designer\tools\include\math.h.

Table 8: Mathematical Functions

Function Description

float fabs(float x); fabs calculates the absolute value (magnitude) of the argu-
ment x, by direct manipulation of the bit representation of x.
Return the absolute value of the floating point number x.

float frexp(float x, int *eptr); All non zero, normal numbers can be described as m * 2**p.
frexp represents the double val as a mantissa m and a
power of two p. The resulting mantissa will always be
greater than or equal to 0.5, and less than 1.0 (as long as val
is nonzero). The power of two will be stored in *exp. Return
the mantissa and exponent of x as the pair (m, e). m is a
float and e is an integer such that x == m * 2**e. If x is zero,
returns (0.0, 0), otherwise 0.5 <= abs(m) < 1.

float tanh(float x); The function returns the hyperbolic tangent of x.

float sin(float x); Return the sine of x.

float atan(float x); The function returns the angle whose tangent is x, in the
range [-pi/2, +pi/2] radians.

float atan2(float y, float x); The function returns the angle whose tangent is y/x, in the
full angular range [-pi, +pi] radians.

float asin(float x); The function returns the angle whose sine is x, in the range
[-pi/2, +pi/2] radians.

float exp10(float x); Returns 10 raised to the specified real number.

float log10(float x); log10 returns the base 10 logarithm of x. It is implemented
as log(x) / log(10).

float fmod(float y, float z); The fmod function computes the floating-point remainder of
x/y (x modulo y). The fmod function returns the value for the
largest integer i such that, if y is nonzero, the result has the
same sign as x and magnitude less than the magnitude of y.

float sqrt(float x); The function returns the square root of x, x^(1/2).

float cos(float x); The function returns the cosine of x for x in radians. If x is
large the value returned might not be meaningful, but the
function reports no error.

float ldexp(float d, int n); ldexp calculates the value that it takes and returns float
rather than double values. ldexp returns the calculated
value.
24 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 5. Functions
float modf(float y, float *i); modf splits the double val apart into an integer part and a
fractional part, returning the fractional part and storing the
integer. The fractional part is returned. Each result has the
same sign as the supplied argument val.

float floor(float y); floor finds the nearest integer less than or equal to x. floor
returns the integer result as a double.

float ceil(float y); ceil finds the nearest integer greater than or equal to x. ceil
returns the integer result as a double.

float fround(float d); Produce a quotient that has been rounded to the nearest
mathematical integer; if the mathematical quotient is exactly
halfway between two integers, (that is, it has the form inte-
ger+1/2), then the quotient has been rounded to the even
(divisible by two) integer.

float tan(float x); The function returns the tangent of x for x in radians. If x is
large the value returned might not be meaningful, but the
function reports no error.

float acos(float x); acos computes the inverse cosine (arc cosine) of the input
value. Arguments to acos must be in the range -1 to 1. The
function returns the angle whose cosine is x, in the range [0,
pi] radians.

float exp(float x); exp calculates the exponential of x, that is, the base of the
natural system of logarithms, approximately 2.71828). The
function returns the exponential of x, e^x.

float log(float x); Return the natural logarithm of x, that is, its logarithm base e
(where e is the base of the natural system of logarithms,
2.71828...). The function returns the natural logarithm of x.

float pow(float x,float y); pow calculates x raised to the exp1.0nt y. On success, pow
returns the value calculated.

float sinh(float x); sinh computes the hyperbolic sine of the argument x. The
function returns the hyperbolic sine of x.

float cosh(float x); cosh computes the hyperbolic cosine of the argument x. The
function returns the hyperbolic cosine of x.

Table 8: Mathematical Functions, continued

Function Description
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 25

PSoC Designer: C Language Compiler User Guide
5.1.3 API Software Library Functions

The header and include files can be found at: …:\Program
Files\Cypress MicroSystems\PSoC Designer\tools\include.

5.2 Interfacing C and Assembly

To optimize argument passing and return values from a C function to an
assembler function, use the #pragma fastcall.

The fastcall convention was devised to create an efficient argument/return
value mechanism between ‘C’ and assembly language functions.

The following table reflects the set of #pragma fastcall conventions used for
argument passing register assignments:

Table 9: API Software Library Functions

Function Prototype Description Header

bFlashWriteBlock BYTE bFlashWriteBlock
(FLASH_WRITE_STRUCT *)

See flashblock header file
for definition of structure.

Writes data to the Flash
Program Memory.

flashblock.h,
flashblock.inc
(for assembly
language)

FlashReadBlock void FlashReadBlock
(FLASH_READ_STRUCT *)

See flashblock header file
for definition of structure.

Reads data from the
Flash Program Mem-
ory into RAM.

flashblock.h,
flashblock.inc
(for assembly
language)

Fastcall is only used by ‘C’ functions calling assembly written functions.
Functions written in ‘C’ cannot utilize the fastcall convention.

Table 10: #pragma Fastcall Conventions for Argument Passing

Argument Type Register Argument Register

char A

char, char A, X First char in A and second in X

int X, A MSB in X and LSB in A
26 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 5. Functions
Arguments that are pushed on the stack are pushed from right to left.

The reference of returned structures reside in the A and X registers. If passed
by value, a structure is always passed through the stack, and not in registers.
Passing a structure by reference (i.e., passing the address of a structure) is
the same as passing the address of any data item, that is, a pointer (which is 2
bytes).

The following table reflects the set of #pragma fastcall conventions used for
return value register assignments:

Pointer A, X MSB in A and LSB in X

char, … A, X First argument passed in A. Successive arguments
are pointed to by X, where X is set up as a pointer to
the remaining arguments. Typically, these arguments
are stored on the stack

Int,… X X is set up as a pointer that points to the contiguous
block of memory that stores the arguments. Typically,
the arguments are stored on the stack.

All the others X Same as above

Table 11: #pragma Fastcall Conventions for Return Value

Return Type Return Register Comment

char A

int X, A

long __r0..__r3 Delivered in the virtual registers

pointer A, X

Table 10: #pragma Fastcall Conventions for Argument Passing , continued

Argument Type Register Argument Register
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 27

PSoC Designer: C Language Compiler User Guide
28 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 6. Additional Considerations

In this section you will learn additional compiler options to leverage the func-
tionality of your code/program.

6.1 Accessing M8C Features

The strength of the compiler is that while it is a high-level language, it allows
you to access low-level features of the target device. Even in cases where the
target features are not available in the compiler, usually inline assembly and
preprocessor macros can be used to access these features transparently.

6.2 Addressing Absolute Memory Locations

If your program needs to address Absolute Memory Locations there is one
(verified) option:

1. Use the #pragma abs_address, for example:

To address an array in Flash memory:

#pragma abs_address: 0x2000
const char abMyStringData [100]={0};
#pragma end_abs_address

2. Optionally, an absolute memory address in data memory can be declared
using the #define directive as follows:

#define MyData (*(char*) 0x200)

where MyData references memory location 0x200.

Section 6. Additional Considerations

The PSoC Designer C Compiler accepts the extension: inline assembly: asm
("mov A,5"); see Inline Assembly.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 29

PSoC Designer: C Language Compiler User Guide
6.3 Assembly Interface and Calling Conventions

Standard to PSoC Designer C Compiler and Assembler, an underscore is
implicitly added to ‘C’ function and variable names. This should be applied
when declaring and referencing functions and variables between ‘C’ and
assembly source. For example, the ‘C’ function defined with a prototype such
as “void foo();” would be referenced as “_foo” in assembly. In ‘C’ how-
ever, the function would still be referenced as “foo()”. The underscore is also
applied to variable names.

6.4 Bit Twiddling

A common task in programming a microcontroller is to turn on or off some bits
in the registers. Fortunately, standard C is well suited to bit twiddling without
resorting to assembly instructions or other non-standard C constructs. PSoC
Designer supports the following bitwise operators that are particularly useful:

a | b bitwise or The expression is denoted by "a" is bitwise or'ed with the expression
denoted by "b." This is used to turn on certain bits, especially when
used in the assignment form |=. For example:

PORTA |= 0x80; // turn on bit 7 (msb)

a & b bitwise and This operator is useful for checking if certain bits are set. For exam-
ple:

if ((PORTA & 0x81) == 0)// check bit 7 and bit 1

Note that the parentheses are needed around the expression of an & opera-
tor because it has lower precedence than the == operator. This is a source
of many programming bugs in compiler programs. See Section 4. Compiler
Basics for the table of supported operators and precedence.

a ^ b bitwise
exclusive or

This operator is useful for complementing a bit. For example, in the
following case, bit 7 is flipped:

PORTA ^= 0x80;// flip bit 7

~a bitwise
complement

This operator performs a ones-complement on the expression. It is
especially useful when combined with the bitwise and operator to
turn off certain bits. For example:

PORTA &= ~0x80;// turn off bit 7
30 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 6. Additional Considerations
6.5 Inline Assembly

Besides writing assembly functions in assembly files, inline assembly allows
you to write assembly code within your C file. (Of course, you may use assem-
bly source files as part of your project as well.) The syntax for inline assembly
is:

asm ("<string>");

for example

asm ("mov A,5");

Multiple assembly statements can be separated by the newline character
\n. String concatenations can be used to specify multiple statements without
using additional assembly keywords. For example:

asm(".LITERAL \n"

"S:: db 40h \n"

".ENDLITERAL \n");

‘C’ variables can be referenced within the assembly string, as in the following
example:

asm (“mov A,_cCounter”);

Inline assembly may be used inside or outside a C function. The compiler
indents each line of the inline assembly for readability. The PSoC Designer
Assembler allows labels to be placed anywhere (not just at the first character
of the lines in your file) so you may create assembly labels in your inline
assembly code. You may get a warning on assembly statements that are out-
side of a function. You may ignore these warnings.

6.6 Interrupts

Interrupt handlers can be written in C. In order to employ interrupt handlers in
C, you must first inform the compiler that the function is an interrupt handler.
You do this by using the following pragma (in the file where you define the
function, before the function definition):

#pragma interrupt_handler <name> *

C variables have an implicit underscore at the beginning that needs to be
used when using C variables from assembly.

If you are referencing registers inline, be sure to include reference to m8c.h.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 31

PSoC Designer: C Language Compiler User Guide
For an interrupt function, the compiler generates the reti instruction instead
of the ret instruction, then saves and restores all registers used in the func-
tion.

For example:

#pragma interrupt_handler timer_handler

...

void timer_handler()

 {

 ...

 }

You may place multiple names in a single interrupt_handler pragma, sepa-
rated by spaces. For example:

#pragma interrupt_handler timer_ovf sci_ovf

6.7 IO Registers

IO registers are specified using the following #pragma:

6.8 Long Jump/Call

The assembler/linker will turn a JMP or CALL instruction into the long form
LJMP and LCALL if needed. This applies if the target is in a different linker area
or if it is defined in another file.

Virtual registers are saved only if they are used by the routine. If your inter-
rupt handler calls another function, then the compiler saves and restores all
virtual registers since it does not know which virtual register the called func-
tion uses.

#pragma ioport
LED:0x04;
char LED;....
LED = 1;

// ioport is at I/O space 0x04
LED must be declared in global scope
32 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 6. Additional Considerations
6.9 Memory Areas

The compiler generates code and data into different "areas." (See the com-
plete list of Assembler Directives in the PSoC Designer: Assembly Language
User Guide). The areas used by the compiler, ordered here by increasing
memory address, are:

6.9.1 Flash Memory Areas

� interrupt vectors: This area contains the interrupt vectors.

� func_lit: Function table area. Each word in this area contains the address
of a function entry.

� lit: This area contains integer and floating-point constants.

� idata: The initial values for the global data are stored in this area.

� text: This area contains program code.

6.9.2 Data Memory

� data: This is the data area containing global and static variables, and
strings. The initial values of the global variables are stored in the "idata"
area and copied to the data area at startup time.

� bss: This is the data area containing "uninitialized" C global variables. Per
ANSI C definition, these variables will get initialized to zero at startup time.

The job of the linker is to collect areas of the same types from all the input
object files and concatenate them together in the output file. For further infor-
mation, see Section 7. Linker.

6.10 Program and Data Memory Usage

6.10.1 Program Memory

The program memory, which is read only, is used for storing program code,
constant tables, initial values, and strings for global variables. The compiler
generates a memory image in the form of an output file of hexadecimal values
in ASCII text (a .rom file).
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 33

PSoC Designer: C Language Compiler User Guide
6.10.2 Data Memory

The data memory is used for storing variables and the stack frames. In gen-
eral, they do not appear in the output file but are used when the program is
running. A program uses data memory as follows:

[high memory]

[stack frames]

[global variables]

[initialized globals]

[virtual registers]

[low memory]

It is up to you, the programmer, to ensure that the stack does not exceed the
high memory limit of 0xFF, or unexpected results will occur.

6.11 Program Memory as Related to Constant Data

The M8C is a Harvard architecture machine, separating program memory from
data memory. There are several advantages to such a design. For example,
the separate address space allows the device to access more total memory
than a conventional architecture.

Due to the nature of the Harvard architecture of the M8C, a data pointer may
point to data located in either data or program memory. To discern which data
is to be accessed, the const qualifier is used to signify that a data item is
located in program memory. Note that for a pointer declaration, the const qual-
ifier may appear in different places, depending on whether it is qualifying the
pointer variable itself or the items that it points to. For example:

const int table[] = { 1, 2, 3 };

const char *ptr1;

char * const ptr2;

const char * const ptr3;

table is a table allocated in the program memory. ptr1 is an item in the data
memory that points to data in the program memory. ptr2 is an item in the pro-
gram memory that points to data in the data memory. Finally, ptr3 is an item in
the program memory that points to data in the program memory. In most
cases, items such as table and ptr1 are probably the most typical. The com-
piler generates the INDEX instruction to access the program memory for read-
only data.
34 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 6. Additional Considerations
Note that the C compiler does not require const data to be put in the read-only
memory, and in a conventional architecture, this would not matter except for
access rights. So, this use of the const qualifier is unconventional, but within
the allowable parameters of the compiler. However, this does introduce con-
flicts with some of the standard C function definitions.

For example, the standard prototype for cstrcpy is cstrcpy(char *,
const char *cs); with the const qualifier of the second argument signify-
ing that the function does not modify the argument. However, under the M8C,
the const qualifier would indicate that the second argument points to the pro-
gram memory. For example, variables defined outside of a function body or
variables that have the static storage class, have file storage class. If you
declare local variables with the const qualifier, they will not be put into
Flash and undefined behaviors may result.

6.12 Stack Architecture and Frame Layout

The stack must reside in page 0 and grows towards high memory. Most local
variables and function parameters are allocated on the stack. A typical function
stack frame looks as follows:

[high address]
[returned values]

X: [local variables and other compiler generated temporaries]
[return address]
[incoming arguments]
[old X]

[low address]

Register X is used as the “frame pointer” and for accessing all stacked items.
Note that because the M8C limits the stack access to the first page only, no
more than 256 bytes can be allocated on the stack even if the device supports
more than 256 bytes of RAM. Less RAM is available to the stack due to a total
RAM space of 256 bytes.

6.13 Strings

The compiler allocates all literal strings in program memory. Effectively, the
type for declaring a literal string is “const char” and the type for referencing
it is “const char*”. You must ensure that function parameters take the
appropriate argument type.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 35

PSoC Designer: C Language Compiler User Guide
6.14 Virtual Registers

Virtual registers are used for temporary data storage when running the com-
piler. Locations _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7, _r8, _r9, _r10, _r11, _rX,
_rY, and _rZ are available. Only those that are required are actually used. This
extra register space is necessary because the M8C only has a single 8-bit
accumulator. The virtual registers are allocated on the low end of data mem-
ory.

If your PSoC Designer project is written exclusively in assembly language, the
boot.tpl/boot.asm can be modified to omit memory allocation for _r4 to _rz (10
bytes) by setting the equate "C_LANGUAGE_SUPPORT" to zero (0).

6.15 Convention for Restoring Internal Registers

When calling PSoC User Module APIs and library functions it is the caller's
responsibility to preserve the A and X registers. This means that if the current
context of the code has a value in the X and/or A register that must be
maintained after the API call, then the caller must save (push on the stack)
and then restore (pop off the stack) them after the call has returned.

Even though some of the APIs do preserve the X and A register, Cypress
MicroSystems reserves the right to modify the API in future releases in such a
manner as to modify the contents of the X and A registers. Therefore, it is very
important to observe the convention when calling from assembly. The C
compiler observes this convention as well.
36 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 7. Linker

In this section you will learn how the linker operates within PSoC Designer.

7.1 Linker Operations

The main purpose of the linker is to combine multiple object files into a single
output file suitable to be downloaded to the In-Circuit Emulator for debugging
the code and programming the device. Linking takes place in PSoC Designer
when a project “build” is executed. The linker can also take input from a
"library" which is basically a file containing multiple object files. In producing
the output file, the linker resolves any references between the input files. In
some detail, the linking steps involve:

1. Making the startup file (boot.asm) the first file to be linked. The startup file
initializes the execution environment for the C program to run.

2. Appending any libraries that you explicitly request (or in most cases, as are
requested by the IDE) to the list of files to be linked. Library modules that
are directly or indirectly referenced will be linked. All user-specified object
files (e.g., your program files) are linked.

3. Scanning the object files to find unresolved references. The linker marks
the object file (possibly in the library) that satisfies the references and adds
it to its list of unresolved references. It repeats the process until there are
no outstanding unresolved references.

4. Combining all marked object files into an output file and generating map
and listing files as needed.

For additional information about Linker, and specifying Linker settings, refer to
the PSoC Designer: Integrated Development Environment User Guide (Project
Settings).

Section 7. Linker
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 37

PSoC Designer: C Language Compiler User Guide
7.1.1 Customized Linker Actions

It is possible to customize the actions of the Linker when a PSoC Designer
“build” does not provide the user interface to support these actions.

A file called custom.lkp can be created in the root folder of the project, which
can contain Linker commands (see Section 9. Command Line Compiler Over-
view).

The file name must be custom.lkp. Be aware that in some cases, creating a
text file and renaming it will still preserve the .txt file extension (e.g. cus-
tom.lkp.txt). If this occurs, your custom commands will not be used. The
“make“ file process reads the contents of custom.lkp and amends those com-
mands to the Linker action.

A typical use for employing the custom.lkp capability would be to define a cus-
tom relocatable code AREA. Using a custom AREA and the custom.lkp file
allows you to set a specific starting address for this AREA.

For example, if you wish to create code in a separate code AREA that should
be located in the upper 2k of the Flash, you could use this feature. For the
sake of this example, let's call the custom code AREA ‘BootLoader’. If you
were developing code in 'C' for the 'BootLoader' AREA you would use the fol-
lowing pragma in your 'C' source file:

#pragma text:BootLoader // switch the code below from
// AREA text to BootLoader

// ... Add your Code ...
#pragma text:text // switch back to the text

// AREA

If you were developing code in assembly you would use the AREA directive as
follows:

AREA BootLoader(rom,rel)
; ... Add your Code ...
AREA text ; reset the code AREA

Now that you have code that should be located in the 'BootLoader' AREA, you
can add your custom Linker commands to custom.lkp. For this example, you
would enter the following line in the custom.lkp file:

-bBootLoader:0x3800.0x3FFF

You can verify that your custom Linker settings were used by checking the
'Use verbose build messages' field in the Builder tab under the Tools >>
Options menu. You can “build” the project then view the Linker settings in the
Build tab of the Output Status window (or check the location of the BootLoader
AREA in the .mp file).
38 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 8. Librarian

In this section you will learn the librarian functions of PSoC Designer.

8.1 Librarian

A library is a collection of object files in a special form that the linker under-
stands. When your program references a library’s component object file
directly or indirectly, the linker pulls out the library code and links it to your pro-
gram. The library that contains supported C functions is usually located in the
PSoC Designer installation directory at \Program Files\Cypress
MicroSystems\PSoC Designer\tools\libcm8c.a.

There are times when you need to modify or create libraries. A command line
tool called ilibw.exe is provided for this purpose. Note that a library file must
have the .a extension. For further reference, see Section 7. Linker.

8.1.1 Compiling a File into a Library Module

Each library module is simply an object file. Therefore, to create a library mod-
ule, you need to compile a source file into an object file. There are several
ways that you can create a library.

One method is to create a brand new project. Add all the necessary source
files that you wish to be added to your custom library, to this project. You then
add a project-specific MAKE file action to add those project files to a custom
library.

Let's take a closer look at this method, using an example. A blank project is
created for any type of part, since we are only interested in using 'C' and/or
assembly, the Application Editor, and the Debugger. The goal for creating a
custom library is to centralize a set of common functions that can be shared
between projects. These common functions, or primitives, have deterministic
inputs and outputs. Another goal for creating this custom library is to be able to
debug the primitives using a sequence of test instructions (e.g., a regression
test) in a source file that should not be included in the library. No User Modules
are involved in this example.

Section 8. Librarian
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 39

PSoC Designer: C Language Compiler User Guide
PSoC Designer automatically generates a certain amount of code for each
new project. In this example, use the generated _main source file to hold
regression tests but do not add this file to the custom library. Also, do not add
the generated boot.asm source file to the library. Essentially, all the files under
the "Source Files" branch of the project view source tree go into a custom
library, except main.asm (or main.c) and boot.asm.

Create a file called local.dep in the root folder of the project. The local.dep file
is included by the master Makefile (found in the …\PSoC Designer\tools
folder). The following shows how the Makefile includes local.dep (found at the
bottom of Makefile):

#this include is the dependencies

-include project.dep

#if you don't like project.dep use your own!!!

-include local.dep

The nice thing about having local.dep included at the end of the master Make-
file is that the rules used in the Makefile can be redefined (see the Help >>
Documentation \Supporting Documents\make.pdf for detailed informa-
tion). In this example, we use this to our advantage.

The following shows information from example local.dep:

----- Cut/Paste to your local.dep File -----

define Add_To_MyCustomLib

$(CRLF)

$(LIBCMD) -a PSoCToolsLib.a $(library_file)

endef

obj/%.o : %.asm project.mk

ifeq ($(ECHO_COMMANDS),novice)

echo $(call correct_path,$<)

endif

$(ASMCMD) $(INCLUDEFLAGS) $(DEFAULTASMFLAGS) $(ASM-
40 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 8. Librarian
FLAGS) -o $@ $(call correct_path,$<)

$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))

obj/%.o : %.c project.mk

ifeq ($(ECHO_COMMANDS),novice)

echo $(call correct_path,$<)

endif

$(CCMD) $(CFLAGS) $(CDEFINES) $(INCLUDEFLAGS)
$(DEFAULTCFLAGS) -o $@ $(call correct_path,$<)

$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))

------ End Cut -----

The rules (e.g., obj/%.o : %.asm project.mk and obj/%.o : %.c
project.mk) in the local.dep file shown above are the same rules found in
the master Makefile with one addition each. The addition in the redefined rules
is to add each object (target) to a library called PSoCToolsLib.a. Let's look
closely at this addition.

$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))

The MAKE keyword foreach causes one piece of text (the first argument) to
be used repeatedly, each time with a different substitution performed on it. The
substitution list comes from the second foreach argument.

In this second argument we see another MAKE keyword/function called fil-
ter-out. The filter-out function removes obj/main.o from the list of all
targets being built (e.g., obj/%.o). As you remember, this was one of the
goals for this example.

You can filter out additional files by adding those files to the first argument of
filter-out such as $(filter-out obj/main.o obj/excludeme.o,
$@). The MAKE symbol combination $@ is a shortcut syntax that refers to the
list of all the targets (e.g., obj/%.o).

The third argument in the foreach function is expanded into a sequence of
commands, for each substitution, to update or add the object file to the library.
This local.dep example is prepared to handle both 'C' and assembly source
files and put them in the library, PSoCToolsLib.a. The library is created/
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 41

PSoC Designer: C Language Compiler User Guide
updated in the project root folder in this example. However, you can provide a
full path to another folder (e.g., $(LIBCMD) -a c:\temp\PSoC-
ToolsLib.a $(library_file)).

Another goal was to not include the boot.asm file in the library. This is easy
given that the master Makefile contains a separate rule for the boot.asm
source file, which we will not redefine in local.dep.

You can cut and paste this example and place it in a local.dep file in the root
folder of any project. To view messages in the Build tab of the Output Status
window regarding the behavior of your custom process, go to Tools >> Options
>> Builder tab and click a check at “Use verbose build messages.“

Use the Project >> Settings, Linker tab fields to add the library modules/library
path if you want other PSoC Designer projects to link in your custom library.

8.1.2 Listing the Contents of a Library

On a command prompt window, change the directory to where the library is,
and give the command ilibw -t <library>. For example:

ilibw -t libcm8c.a

8.1.3 Adding or Replacing a Module

1. Compile the source file into an object module.

2. Copy the library into the working directory.

3. Use the command ilibw -a <library> <module> to add or replace a
module.

ilibw creates the library file if it does not exist, so to create a new library, just
give ilibw a new library file name.

8.1.4 Deleting a Module

The command switch -d deletes a module from the library. For example, the fol-
lowing deletes crtm8c.o from the libcm8c.a library:

ilibw -d libcm8c.a crtm8c.o;
42 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 9. Command Line Compiler Overview

In this section you will learn supported compiler command line options. This
section covers the uses of the C compiler outside of PSoC Designer and con-
tains information that is not required when using the compiler within PSoC
Designer.

9.1 Compilation Process

Underneath the user friendly IDE is a set of command line compiler programs.
While you do not need to understand this section to use the compiler, it is good
for those who want to find out "what's under the hood."

Given a list of files in a project, the compiler's job is to transform the source
files into an executable file in some output format. Normally, the compilation
process is hidden from you within the IDE. However, it can be important to
have an understanding of what happens "under the hood." Examine the follow-
ing:

1. The compiler compiles each C source file to an assembly file.

2. The assembler translates each assembly file (either from the compiler or
assembly files) into a relocatable object file.

3. Once all files have been translated into object files, the linker combines
them to form an executable file. In addition, a map file, a listing file, and
debug information files are also output.

9.2 Driver

The compiler driver handles all the details previously mentioned. It takes the
list of files and compiles them into an executable file (which is the default) or to
some intermediate stage (e.g., into object files). It is the compiler driver that
invokes the compiler, assembler, and linker as needed.

The compiler driver examines each input file and acts on it based on its exten-
sion and the command-line arguments given.

Section 9. Command Line Compiler Overview
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 43

PSoC Designer: C Language Compiler User Guide
.c files are C compiler source files and .asm files are assembly source files,
respectively. The design philosophy for the IDE is to make it as easy to use as
possible. The command line compiler, though, is extremely flexible. You con-
trol its behavior by passing command-line arguments to it. If you want to inter-
face the compiler with PSoC Designer, note the following:

� Error messages referring to the source files begin with "!E file(line):.."

� To bypass the command line length limit on Windows® 95/98/NT…, you
may put command-line arguments in a file, and pass it to the compiler as
@file or @-file. If you pass it as @-file, the compiler will delete file after it is
run.

9.3 Compiler Arguments

This section documents the options as used by the IDE in case you want to
drive the compiler using your own editor/IDE such as Codewright. All argu-
ments are passed to the driver and the driver in turn applies the appropriate
arguments to different compilation passes.

The general format of a command is

iccm8c [command line arguments] <file1> <file2> ... [

<lib1> ...]

where iccm8c is the name of the compiler driver. As you can see, you can
invoke the driver with multiple files and the driver will perform the operations
on all of the files. By default, the driver then links all the object files together to
create the output file.

For most of the common options, the driver knows which arguments are des-
tined for which compiler pass. You can also specify which pass an argument
applies to by using a -W<c> prefix. For example:

Table 12: Compiler Argument Prefixes

Prefix Description

-Wp Preprocessor, e.g., -Wp-e

-Wf Compiler proper, e.g., -Wf-atmega

-Wa Assembler

-Wl (Letter el.) Linker
44 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 9. Command Line Compiler Overview
9.3.1 Arguments Affecting the Driver

9.3.2 Preprocessor Arguments

9.3.3 Compiler Arguments

9.3.4 Linker Arguments

Table 13: Arguments Affecting the Driver

Argument Action

-c Compile the file to the object file level only (does not invoke the linker).

-o <name> Name the output file. By default, the output file name is the same as the
input file name, or the same as the first input file if you supply a list of
files.

-v Verbose mode. Print out each compiler pass as it is being executed.

Table 14: Preprocessor Arguments

Argument Action

-D<name>[=value] Define a macro.

-U<name> Undefine a macro.

-e Accept C++ comments.

-I<dir> (Capital i.) Specify the location(s) to look for header files. Multiple -I flags can
be supplied.

Table 15: Compiler Arguments

Argument Action

-l (Letter el.) Generate a listing file.

-A -A (Two A’s.) Turn on strict ANSI checking. Single -A turns on some ANSI checking.

-g Generate debug information.

Table 16: Linker Arguments

Argument Action

-L<dir> Specify the library directory. Only one library directory (the last speci-
fied) will be used.

-O Not currently implemented, no effect.

-m Generate a map file.

-g Generate debug information.

-u<crt> Use <crt> instead of the default startup file. If the file is just a name
without path information, then it must be located in the library directory.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 45

PSoC Designer: C Language Compiler User Guide
-W Turn on relocation wrapping. Note that you need to use the -Wl prefix
because the driver does not know of this option directly (i.e., -Wl-W).

-fihx_coff Output format is both COFF and Intel® HEX.

-fcoff Output format is COFF.

-fintelhex Output format is Intel HEX.

-fmots19 Output format is Motorola S19.

-bfunc_lit:<address
ranges>

Assign the address ranges for the area named "func_lit." The format is
<start address>[.<end address>] where addresses are word address.
Memory that is not used by this area will be consumed by the areas to
follow.

-bdata:<address
ranges>

Assign the address ranges for the area or section named "data," which
is the data memory.

-
dram_end:<addres
s>

Define the end of the data area. The startup file uses this argument to
initialize the value of the hardware stack.

-l<lib name> Link in the specific library files in addition to the default libcm8c.a. This
can be used to change the behavior of a function in libcm8c.a since
libcm8c.a is always linked in last. The "libname" is the library file name
without the "lib" prefix and without the ".a" suffix. For example:
-llpm8c "liblpm8c.a" using full printf
-lfm8c "libfpm8c.a" using floating point printf

Table 16: Linker Arguments, continued

Argument Action
46 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 10. Code Compression
In this section you will learn how, why, and when to enable the PSoC
Designer Code Compressor.

10.1 Theory of Operation

The PSoC Designer Code Compressor replaces duplicate code “blocks” with a
“call” to a single instance of the code. It also optimizes long calls or jumps
(LCALL or LJMP) to relative offset calls or jumps (CALL or JMP).

Code compression occurs (if enabled) after linking the entire code image. The
Code Compressor uses the binary image of the program as its input for finding
duplicate code blocks. Therefore, it works on source code written in ‘C’ or
assembly or both. The Code Compressor utilizes other components produced
during linking and the program map is used to take into account the various
code and data areas.

In the Project Settings dialog box you can enable the PSoC Designer Code
Compressor. To access the dialog box, click Project >> Settings, Compiler tab.
The Code Compressor can be enabled or disabled for the open project using
the check box adjacent to the “Enable Code Compression” field.

10.2 Code Compressor Process

The Code Compressor process is invoked as a linker switch. The “compres-
sion” theory involves consolidating similar “program execution” bytes into one
copy and using a “call” where they were needed. Since this process deals with
“program execution” bytes some assumptions must be made clear.

10.2.1 ‘C’ and Assembly Code

The Code Compressor cannot differentiate between code created from
assembly or ‘C’ source files. The process comes from the linker which only
sees source objects in relocatable assembly form i.e., it only sees images of
bytes in the memory map and dis-assembles the program bytes to discover
the instructions.

Section 10. Code Compression
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 47

PSoC Designer: C Language Compiler User Guide
10.2.2 Where are the “Program Execution” Bytes?

The Code Compressor process, spawned from the linker, makes an assump-
tion that “program execution” bytes are “tagged” by the “AREA” they reside in.
This assumption adds a plethora of usability issues. There is a rigid set of
“AREAs” that the Code Compressor process expects “program execution”
bytes to be in. PSoC project developers were free to create “data” tables in
areas that the Code Compressor now expects only code. This is a project-
compatibility issue discussed later.

Because the Code Compressor only sees bytes, it needs to know which por-
tion of the memory image has valid instructions. It does this easily if the com-
piler and you adopt the simple convention of only “instructions” go into the
default text area. The Code Compressor can handle other instruction areas,
but it needs to know about them.

Since the Code Compressor expects a certain correlation between areas and
code it can compress, any user-defined code areas will not be compressed.

10.2.3 What Can the PSoC Debugger Expect?

The Code Compressor will “adjust” the debug information file as “swaps” of
code sequences with “calls” are made. It is expected that there should be very
little impact on the debugger. The swaps of code sequences with “calls” are
analogous to ‘C’ math, which inserts math library calls.

10.3 PSoC Designer Integration of the Code Compressor

10.3.1 boot.asm

boot.asm is held within an area called “TOP.” This contains the interrupt vector
table (IVT) as well as ‘C’ initialization, the sleep interrupt handler, and other ini-
tial setup functions. To effectively use the Code Compressor and reduce the
“special” handling required by it to coordinate a special case area (TOP), it is
required that you delineate the TOP and “text” areas within boot.asm.

10.3.2 Text Area Requirement for Code Compressor

The text area should be the last (e.g., highest memory addresses) relocatable
code area if your expectation is to reduce the entire program image. You can-
not shrink the

Note that it is not a requirement for the boot.asm file be split into multiple
files. boot.asm just needs to use different AREAs for the different things. i.e.,
TOP for IVT, the startup code and the sleep timer may reside in boot.asm as
long as you use a “AREA text” before them to switch the area.
48 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 10. Code Compression
whole program image if an absolute-code area is defined above the text area.
However, you can still use the Code Compressor to shrink the “text” Area.

10.4 Code Compressor and the AREA Directive

The Code Compressor “looks” for duplicate code within the ‘text” Area. The
“text” Area is the default area in which all ‘C’ code is placed.

The above diagram shows a scenario that is not allowed or potentially prob-
lematic. Code areas created with the AREA directive, using a name other than
“text,” are not compressed or “fixed up” (following compression). Therefore, if
Function A in the “text” Area calls Function X in the “non_text” Area, then
Function X calls Function B where there would be “thepotential” that the loca-
tion of Function B changed. The call or jump generated in the code for Func-
tion X would go to the wrong location.

It is allowable for Function A to call a function in a “non_text” Area and simply
return.

For example, if Function A in the “text” Area calls Function X in the “non_text”
Area, then Function X calls to Function B could be invalid. The location for
Function B can change because it is in the “text” Area. Calls and jumps are
fixed up in the “text” Area only. Following code compression, the call location
to Function B from Function X in the “non_text” Area will not be fixed up.

All normal user code that is to be compressed must be in the default "text"
Area. If you create code in other area, for example, in a bootloader, then it
must not call any functions in the “text” Area. However, it is acceptable for a
function in the “text” Area to call functions in other areas. The exception is the
TOP area where the interrupt vectors and the startup code can call functions in
the “text” Area. Addresses within the “text” Area must be not used directly oth-
erwise.

"text" Area "not_text" Area

Function A
Function B

Function XCalls

Not Allowed
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 49

PSoC Designer: C Language Compiler User Guide
If you reference any text area function by address, then it must be done indi-
rectly. Its address must be put in a word in the area "func_lit." At runtime, you
must de-reference the content of this word to get the correct address of the
function. Note that if you are using C to call a function indirectly, the compiler
will take care of all these details for you. The information is useful if you are
writing assembly code.

10.5 Build Messages

When the Code Compressor is enabled text messages will be displayed in the
Build tab of the Output Status Window that describes the results of employing
code compression. These messages are listed and described below.

1. 4054 bytes before Code Compression, 3774 after. 6%
reduction

This is an example of code compression taking place. The values shown
reflect the ‘text’ area bytes before and after code compression. This should
not be confused with the entire program image.

2. Program too small for worthwhile code compression

This message is shown when the Code Compressor has determined that
no code savings could be accomplished; it is as though the Code Com-
pressor option was turned off.

3. !X Cannot recover from assertion: new_target at inter-
nal source file ..\optm8c.c(180)

Please report to "Cypress MicroSystems" sup-
port@cypressmicro.com

This message informs the user that there was a fundamental mis-use of
the Code Compressor. This is typically a result of placing a data table in the
‘text’ area.

10.6 Up against the Wall?

The Code Compressor will take into account that it may have to start with code
that is larger than the available memory. It assumes that the ROM is 20-25%
larger and then attempts to pack the code into the proper ROM maximum size.

Messages for code compression appear following the Linker step of compi-
lation/build.
50 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Section 10. Code Compression
10.7 Additional Things to Consider When Using Code Compression

1. Timing loops based on instruction cycles may change if those timing
instructions are optimized.

2. Jump tables can change size. If the JACC instruction is used to access
fixed offset boundaries in a table and the table includes entries with LJMP
and/or LCALL, these can be optimized to relative jumps and/or calls.

3. ROM tables in general should be placed in the “lit” area. The Code Com-
pressor expects code only to be in the ”text” area.

4. The Code Compression is “turned off” when an “effective suspend Code
Compression” NOP instruction is seen. This instruction is OR F,0 (or
Suspend_CodeCompressor). Code compression resumes when a RET or
RETI is encountered or another “effective resume Code Compression” NOP
instruction (or Resume_CodeCompressor) is seen; ADD SP,0. This is
useful when you wish to guard an instruction based cycle-delay routine.
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 51

PSoC Designer: C Language Compiler User Guide
52 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Appendix A. Status Window Messages
Following is a complete list of preprocessor, preprocessor command line, com-
piler, compiler command line, assembler, assembler command line, and linker
errors and warnings.

1.1 Preprocessor

Note that these errors and warnings are associated with C compiler errors and
warnings.

Appendix A. Status Window Messages

Table A.1: Preprocessor Errors/Warnings

Error/Warning

not followed by macro parameter

occurs at border of replacement

#defined token can't be redefined

#defined token is not a name

#elif after #else

#elif with no #if

#else after #else

#else with no #if

#endif with no #if

#if too deeply nested

#line specifies number out of range

Bad ?: in #if/endif

Bad syntax for control line

Bad token r produced by ## operator

Character constant taken as not signed

Could not find include file

Disagreement in number of macro arguments
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 53

PSoC Designer: C Language Compiler User Guide
Duplicate macro argument

EOF in macro arglist

EOF in string or char constant

EOF inside comment

Empty character constant

Illegal operator * or & in #if/#elsif

Incorrect syntax for `defined'

Macro redefinition

Multibyte character constant undefined

Sorry, too many macro arguments

String in #if/#elsif

Stringified macro arg is too long

Syntax error in #else

Syntax error in #endif

Syntax error in #if/#elsif

Syntax error in #if/#endif

Syntax error in #ifdef/#ifndef

Syntax error in #include

Syntax error in #line

Syntax error in #undef

Syntax error in macro parameters

Undefined expression value

Unknown preprocessor control line

Unterminated #if/#ifdef/#ifndef

Unterminated string or char const

Table A.1: Preprocessor Errors/Warnings, continued

Error/Warning
54 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Appendix A. Status Window Messages
1.2 Preprocessor Command Line Errors

1.3 C Compiler

Table A.2: Preprocessor Command Line Errors/Warnings

Error/Warning

Can't open input file

Can't open output file

Illegal -D or -U argument

Too many -I directives

Table A.3: C Compiler Errors/Warnings

Error/Warning

expecting <character>

literal too long

IO port <name> cannot be redeclared as local variable

IO port <name> cannot be redeclared as parameter

IO port variable <name> cannot have initializer

<n> is a preprocessing number but an invalid %s constant

<n> is an illegal array size

<n> is an illegal bit-field size

<type> is an illegal bit-field type

<type> is an illegal field type

`sizeof' applied to a bit field

addressable object required

asm string too long

assignment to const identifier

assignment to const location

cannot initialize undefined

case label must be a constant integer expression

cast from <type> to <type> is illegal in constant expressions

cast from <type> to <type> is illegal

conflicting argument declarations for function <name>

declared parameter <name> is missing
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 55

PSoC Designer: C Language Compiler User Guide
duplicate case label <n>

duplicate declaration for <name> previously declared at <line>

duplicate field name <name> in <structure>

empty declaration

expecting an enumerator identifier

expecting an identifier

extra default label

extraneous identifier <id>

extraneous old-style parameter list

extraneous return value

field name expected

field name missing

found <id> expected a function

ill-formed hexadecimal escape sequence

illegal break statement

illegal case label

illegal character <c>

illegal continue statement

illegal default label

illegal expression

illegal formal parameter types

illegal initialization for <id>

illegal initialization for parameter <id>

illegal initialization of `extern <name>'

illegal return type <type>

illegal statement termination

illegal type <type> in switch expression

illegal type `array of <name>'

illegal use of incomplete type

illegal use of type name <name>

Table A.3: C Compiler Errors/Warnings, continued

Error/Warning
56 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Appendix A. Status Window Messages
Initializer must be constant

insufficient number of arguments to <function>

integer expression must be constant

Interrupt handler <name> cannot have arguments

invalid field declarations

invalid floating constant

invalid hexadecimal constant

invalid initialization type; found <type> expected <type>

invalid octal constant

invalid operand of unary &; <id> is declared register

invalid storage class <storage class> for <id>

invalid type argument <type> to `sizeof'

invalid type specification

invalid use of `typedef'

left operand of -> has incompatible type

left operand of . has incompatible type

lvalue required

missing <c>

missing tag

missing array size

missing identifier

missing label in goto

missing name for parameter to function <name>

missing parameter type

missing string constant in asm

missing { in initialization of <name>

operand of unary <operator> has illegal type

operands of <operator> have illegal types <type> and <type>

overflow in value for enumeration constant

redeclaration of <name> previously declared at <line>

Table A.3: C Compiler Errors/Warnings, continued

Error/Warning
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 57

PSoC Designer: C Language Compiler User Guide
redeclaration of <name>

redefinition of <name> previously defined at <line>

redefinition of label <name> previously defined at <line>

size of <type> exceeds <n> bytes

size of `array of <type>' exceeds <n> bytes

syntax error; found

too many arguments to <function>

too many errors

too many initializers

too many variable references in asm string

type error in argument <name> to <function>; <type> is illegal

type error in argument <name> to <function>; found <type> expected <type>

type error

Unclosed comment

undeclared identifier <name>

undefined label

undefined size for <name>

undefined size for field <name>

undefined size for parameter <name>

undefined static <name>

Unknown #pragma

Unknown size for type <type>

unrecognized declaration

unrecognized statement

Table A.3: C Compiler Errors/Warnings, continued

Error/Warning
58 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Appendix A. Status Window Messages
1.4 Assembler
Table A.4: Assembler Errors/Warnings

Error/Warning

'[' addressing mode must end with ']'

) expected

.if/.else/.endif mismatched

<character> expected

EOF encountered before end of macro definition

No preceding global symbol

absolute expression expected

badly formed argument, (without a matching)

branch out of range

cannot add two relocatable items

cannot perform subtract relocation

cannot subtract two relocatable items

cannot use .org in relocatable area

character expected

comma expected

equ statement must have a label

identifier expected, but got character <c>

illegal addressing mode

illegal operand

input expected

label must start with an alphabet, '.' or '_'

letter expected but got <c>

macro <name> already entered

macro definition cannot be nested

maximum <#> macro arguments exceeded

missing macro argument number

multiple definitions <name>

no such mnemonic <name>

relocation error
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 59

PSoC Designer: C Language Compiler User Guide
target too far for instruction

too many include files

too many nested .if

undefined mnemonic <word>

undefined symbol

unknown operator

unmatched .else

unmatched .endif

Table A.4: Assembler Errors/Warnings, continued

Error/Warning
60 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Appendix A. Status Window Messages
1.5 Assembler Command Line Errors

1.6 Linker

Table A.5: Assembler Command Line Errors/Warnings

Error/Warning

cannot create output file %s\n

too many include paths

Table A.6: Linker Errors/Warnings

Error/Warning

address <address> already contains a value

can't find address for symbol <symbol>

can't open file <file>

can't open temporary file <file>

cannot open library file <file>

cannot write to <file>

definition of builtin symbol <symbol> ignored

ill-formed line <%s> in the listing file

multiple define <name>

no space left in section <area>

redefinition of symbol <symbol>

undefined symbol <name>

unknown output format <format>
December 5, 2003 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 61

PSoC Designer: C Language Compiler User Guide
62 Document #: 38-12001 CY Rev. *B CMS Rev. 1.17 December 5, 2003

Index
Symbols

#pragma Fastcall Conventions for Argument Pass-
ing 26
#pragma Fastcall Conventions for Return Value 27
* 19
pragma Directives #pragma interrupt_handler 19

A

Absolute Memory Locations 29
Accessing M8C Features 29
Accessing the Compiler 7
API Software Library Functions 26
Assembly Interface and Calling Conventions 30

B

Bit Twiddling 30

C

char LED 18
Character Type Functions 21
Code Compression

Additional Things to Consider 51
Build Messages 50
Code Compressor and the AREA Directive 49
Code Compressor Process 47
PSoC Designer Integration of the Code Com-

pressor 48
Theory of Operation 47
Up against the Wall? 50

Compilation Process 43
Compiler Arguments 44

Arguments Affecting the Driver 45
Compiler Argument Prefixes 44
Compiler Arguments 45
Linker Arguments 45
Preprocessor Arguments 45

Convention for Restoring Internal Registers 36

D

Driver 43
December 5, 2003 Document #: 38-12001 CY
E

Enabling the Compiler 7
Errors/Warnings

Assembler 59
Assembler Command Line Errors 61
C Compiler 55
Linker 61
Preprocessor 53
Preprocessor Command Line Errors 55

Expressions, Supported 16

F

File Name Conventions 8, 12
Files

Library Descriptions 11
Startup File 11

I

Inline Assembly 31
Interfacing C and Assembly (Fastcall) 26
Interrupts 31
IO Registers 32

L

Librarian 39
Adding or Replacing a Module 42
Compiling a File into a Library Module 39
Deleting a Module 42
Listing the Contents of a Library 42

Library Functions 21
Linker Operations 37

Customized Linker Actions 38
Long Jump/Call 32

M

Mathematical Functions 24
Memory Areas 33

Data Memory 33
Flash Memory Areas 33

Menu Options 8
Index
 Rev. *B CMS Rev. 1.17 63

PSoC Designer: C Language Compiler User Guide
O

Operators, Supported Operators 14

P

Pointers 17
pragma Directives 18

#pragma abs_address
 18

#pragma end_abs_address 19
#pragma fastcall GetChar 18
#pragma ioport LED 0x04 18
#pragma nomac 19
#pragma text 19
#pragma usemac 19

Processing Directives (#’s) 17
pragma Directives 18
Preprocessor Directives 18

Product Upgrades 4
Program and Data Memory Usage 33

Data Memory 34
Program Memory 33
Program Memory as Related to Constant Data

34
Purpose 3

R

Re-entrancy 17
Reference Materials

ANSI C Programming 4
PSoC Designer 3

S

Section 1. Introduction 3
Section 2. Accessing the Compiler 7
Section 3. Compiler Files 11
Section 4. Compiler Basics 13
Section 5. Functions 21
Section 6. Additional Considerations 29, 37
Section 7. Linker 37
Section 8. Librarian 39
Section 9. Command Line Compiler Overview 43
Section 10. Code Compression 47
Section Overview 4
Stack Architecture and Frame Layout 35
Statements, Supported 16
String Functions 21
Strings 35
Support 5

T

Types, Supported Data Types 13
64 Document #: 38-12001 CY
V

Virtual Registers 36
 Rev. *B CMS Rev. 1.17 December 5, 2003

Index
December 5, 2003 Document #: 38-12001 CY
 Rev. *B CMS Rev. 1.17 65

Document Revision History

Document Title: PSoC Designer: C Language Compiler User Guide
Document Number: 38-12001
Revision ECN # Issue Date Origin of Change Description of Change

** 115167 4/23/2002 Submit to CY Document Control.
Updates.

New document to CY Document Con-
trol (Revision **). Revision 1.15 for
CMS customers.

*A UWE Added “Convention for Restoring Inter-
nal Registers.”

*B HMT

--Added code-compression details.
--Options using custom.lkp.
--Reworked “Compiling a File into a
Library Module.”
--Added typedef and fixed Inline
Assembly example.
--Added ftoa, updated address/links.

	Table of Contents
	List of Tables
	Two-Minute Overview
	Documentation Conventions
	Introduction
	1.1 What is the PSoC Designer C Compiler?
	1.2 Section Overview
	1.3 Product Upgrades
	1.4 Support

	Accessing the Compiler
	2.1 Enabling the Compiler
	2.2 Accessing the Compiler
	2.3 Menu Options

	Compiler Files
	3.1 Startup File
	3.2 Library Descriptions

	Compiler Basics
	4.1 Types
	4.2 Operators
	4.3 Expressions
	4.4 Statements
	4.5 Pointers
	4.6 Re-entrancy
	4.7 Processing Directives (#’s)

	Functions
	5.1 Library Functions
	5.2 Interfacing C and Assembly

	Additional Considerations
	6.1 Accessing M8C Features
	6.2 Addressing Absolute Memory Locations
	6.3 Assembly Interface and Calling Conventions
	6.4 Bit Twiddling
	6.5 Inline Assembly
	6.6 Interrupts
	6.7 IO Registers
	6.8 Long Jump/Call
	6.9 Memory Areas
	6.10 Program and Data Memory Usage
	6.11 Program Memory as Related to Constant Data
	6.12 Stack Architecture and Frame Layout
	6.13 Strings
	6.14 Virtual Registers
	6.15 Convention for Restoring Internal Registers

	Linker
	7.1 Linker Operations

	Librarian
	8.1 Librarian

	Command Line Compiler Overview
	9.1 Compilation Process
	9.2 Driver
	9.3 Compiler Arguments

	Code Compression
	10.1 Theory of Operation
	10.2 Code Compressor Process
	10.3 PSoC Designer Integration of the Code Compressor
	10.4 Code Compressor and the AREA Directive
	10.5 Build Messages
	10.6 Up against the Wall?
	10.7 Additional Things to Consider When Using Code Compression

	Status Window Messages
	1.1 Preprocessor
	1.2 Preprocessor Command Line Errors
	1.3 C Compiler
	1.4 Assembler
	1.5 Assembler Command Line Errors
	1.6 Linker

	Index

