HAL400, HAL401
Linear Hall Effect
Sensor ICs
HAL400, HAL401

Linear Hall Effect Sensor ICs in CMOS technology

Release Notes: Revision bars indicate significant changes to the previous edition.

Introduction

The HAL 400 and HAL 401 are Linear Hall Effect Sensors produced in CMOS technology. The sensors include a temperature-compensated Hall plate with choppered offset compensation, two linear output stages, and protection devices (see Fig. 2).

The output voltage is proportional to the magnetic flux density through the hall plate. The choppered offset compensation leads to stable magnetic characteristics over supply voltage and temperature.

The HAL 400 and HAL 401 can be used for magnetic field measurements, current measurements, and detection of any mechanical movement. Very accurate angle measurements or distance measurements can also be done. The sensor is very robust and can be used in electrical and mechanical hostile environments.

The HAL 400 operates linear in the magnetic field range from –75 mT up to 75 mT.

The HAL 401 operates linear in the magnetic field range from –50 mT up to 50 mT.

The sensor is designed for industrial and automotive applications and operates in the ambient temperature range from –40 °C up to 150 °C.

The HAL 400 and HAL 401 sensors are available in the SMD-package SOT-89A.

Features:

- switching offset compensation at 147 kHz
- low magnetic offset
- extremely sensitive
- operates from 4.8 to 12 V supply voltage
- wide temperature range $T_A = –40°C$ to $+150°C$
- overvoltage protection
- reverse voltage protection of V_{DD}-pin
- differential output
- accurate absolute measurements of DC and low frequency magnetic fields
- on-chip temperature compensation
- low 1/f-noise

Marking Code

<table>
<thead>
<tr>
<th>Type</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>HAL400SO</td>
<td>400A</td>
</tr>
<tr>
<td>HAL401SO</td>
<td>401A</td>
</tr>
</tbody>
</table>

Operating Junction Temperature Range (T_J)

A: $T_J = –40°C$ to $+170°C$

E: $T_J = –40°C$ to $+100°C$

C: $T_J = 0°C$ to $+100°C$

The relationship between ambient temperature (T_A) and junction temperature (T_J) is explained on page 15.

Hall Sensor Package Codes

HAL XXXPA-T

Temperature Range: A, E, or C

Package: SO for SOT-89A

Type: 400, 401

Example: HAL401SO-E

→ Type: 401
→ Package: SOT-89A
→ Temperature Range: $T_J = –40°C$ to $+100°C$

Hall sensors are available in a wide variety of packaging versions and quantities. For more detailed information, please refer to the brochure: “Ordering Codes for Hall Sensors”.

Solderability

- Package SOT-89A: according to IEC68-2-58

Fig. 1: Pin configuration
Functional Description

The Linear Hall Sensor measures constant and low frequency magnetic flux densities accurately. The differential output voltage V_{OUTDIF} (difference of the voltages on pin 2 and pin 3) is proportional to the magnetic flux density passing vertically through the sensitive area of the chip. The common mode voltage V_{CM} (average of the voltages on pin 2 and pin 3) of the differential output amplifier is a constant 2.2 V.

The differential output voltage consists of two components due to the switching offset compensation technique. The average of the differential output voltage represents the magnetic flux density. This component is overlaid by a differential AC signal at a typical frequency of 147 kHz. The AC signal represents the internal offset voltages of amplifiers and hall plates that are influenced by mechanical stress and temperature cycling.

External filtering or integrating measurement can be done to eliminate the AC component of the signal. Resultingly, the influence of mechanical stress and temperature cycling is suppressed. No adjustment of magnetic offset is needed.

The sensitivity is stabilized over a wide range of temperature and supply voltage due to internal voltage regulation and circuits for temperature compensation.

Offset Compensation (see Fig. 3)

The Hall Offset Voltage is the residual voltage measured in absence of a magnetic field (zero-field residual voltage). This voltage is caused by mechanical stress and can be modeled by a displacement of the connections for voltage measurement and/or current supply.

Compensation of this kind of offset is done by cyclic commutating the connections for current flow and voltage measurement.

- First cycle:
 The hall supply current flows between points 4 and 2.
 In the absence of a magnetic field, V_{13} is the Hall Offset Voltage ($+V_{Offs}$). In case of a magnetic field, V_{13} is the sum of the Hall voltage (V_H) and V_{Offs}.
 $$V_{13} = V_H + V_{Offs}$$

- Second cycle:
 The hall supply current flows between points 1 and 3.
 In the absence of a magnetic field, V_{24} is the Hall Offset Voltage with negative polarity ($-V_{Offs}$). In case of a magnetic field, V_{24} is the difference of the Hall voltage (V_H) and V_{Offs}.
 $$V_{24} = V_H - V_{Offs}$$

In the first cycle, the output shows the sum of the Hall voltage and the offset; in the second, the difference of both. The difference of the mean values of V_{OUT1} and V_{OUT2} (V_{OUTDIF}) is equivalent to V_{Hall}.

Note: The numbers do not represent pin numbers.

Fig. 3: Hall Offset Compensation
Outline Dimensions

![Outline Dimensions Diagram]

Dimensions of Sensitive Area

0.37 mm x 0.17 mm

Position of Sensitive Area

- **SOT-89A**
 - $x = 0 \pm 0.2$ mm
 - $y = 0.98 \pm 0.2$ mm
- x is referenced to the center of the package

Fig. 4: Plastic Small Outline Transistor Package (SOT-89A)
- Weight approximately 0.04 g
- Dimensions in mm

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Pin No.</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Supply Voltage</td>
<td>1</td>
<td>-12</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>$-I_{DD}$</td>
<td>Reverse Supply Current</td>
<td>1</td>
<td></td>
<td>501</td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDZ}</td>
<td>Supply Current through Protection Device</td>
<td>1</td>
<td>-300^2</td>
<td>3002</td>
<td>mA</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Voltage</td>
<td>2, 3</td>
<td>-0.3</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>I_O</td>
<td>Continuous Output Current</td>
<td>2, 3</td>
<td>-5</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{O\text{max}}$</td>
<td>Peak Output Current</td>
<td>2, 3</td>
<td></td>
<td>502</td>
<td>mA</td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>Output Current through Protection Device</td>
<td>2, 3</td>
<td>-200^2</td>
<td>2002</td>
<td>mA</td>
</tr>
<tr>
<td>T_S</td>
<td>Storage Temperature Range</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature Range</td>
<td></td>
<td>-40</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

1 as long as $T_{J\text{max}}$ is not exceeded
2 $t \leq 2$ ms
3 $t < 1000$ h

Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the “Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Pin No.</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_O</td>
<td>Continuous Output Current</td>
<td>2, 3</td>
<td>–2.25</td>
<td>2.25</td>
<td>mA</td>
<td>T_J = 25 °C</td>
</tr>
<tr>
<td>I_O</td>
<td>Continuous Output Current</td>
<td>2, 3</td>
<td>–1</td>
<td>1</td>
<td>mA</td>
<td>T_J = 170 °C</td>
</tr>
<tr>
<td>C_L</td>
<td>Load Capacitance</td>
<td>2, 3</td>
<td>–</td>
<td>1</td>
<td>nF</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Magnetic Field Range</td>
<td></td>
<td>–75</td>
<td>75</td>
<td>mT</td>
<td>for HAL 400</td>
</tr>
<tr>
<td>B</td>
<td>Magnetic Field Range</td>
<td></td>
<td>–50</td>
<td>50</td>
<td>mT</td>
<td>for HAL 401</td>
</tr>
</tbody>
</table>

Fig. 5: Recommended Operating Supply Voltage

![Image of recommended supply voltage range](image-url)
Electrical and Magnetic Characteristics

at Recommended Operation Conditions (Fig. 5 for T_A and V_{DD}) as not otherwise specified in the column “Conditions”.

Typical characteristics:
- $T_J = 25°C$, $V_{DD} = 6.8\, \text{V}$ and $-75\, \text{mT} < B < 75\, \text{mT}$ for HAL400
- $T_J = 25°C$, $V_{DD} = 6.8\, \text{V}$ and $-50\, \text{mT} < B < 50\, \text{mT}$ for HAL401

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Pin No.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Supply Current</td>
<td>1</td>
<td>11</td>
<td>14.5</td>
<td>17.1</td>
<td>mA</td>
<td>$T_J = 25°C$, $I_{OUT1,2} = 0, \text{mA}$</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Supply Current over Temperature Range</td>
<td>1</td>
<td>9</td>
<td>14.5</td>
<td>18.5</td>
<td>mA</td>
<td>$I_{OUT1,2} = 0, \text{mA}$,</td>
</tr>
<tr>
<td>V_{CM}</td>
<td>Common Mode Output Voltage $V_{CM} = (V_{OUT1} + V_{OUT2}) / 2$</td>
<td>2, 3</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>V</td>
<td>$I_{OUT1,2} = 0, \text{mA}$,</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>2, 3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>mV/V</td>
<td>$I_{OUT1,2} = 0, \text{mA}$, CMRR is limited by the influence of power dissipation.</td>
</tr>
<tr>
<td>S_B</td>
<td>Differential Magnetic Sensitivity $S_B = \Delta V_{OUT1,2}/\Delta B$</td>
<td>2–3</td>
<td>37</td>
<td>42.5</td>
<td>50</td>
<td>mV/mT</td>
<td>for HAL400: $-60, \text{mT} < B < 60, \text{mT}$, $T_J = 25°C$</td>
</tr>
<tr>
<td>S_B</td>
<td>Differential Magnetic Sensitivity</td>
<td>2–3</td>
<td>37</td>
<td>42.5</td>
<td>50</td>
<td>mV/mT</td>
<td>for HAL401: $-50, \text{mT} < B < 50, \text{mT}$, $T_J = 25°C$</td>
</tr>
<tr>
<td>S_B</td>
<td>Differential Magnetic Sensitivity over Temperature Range</td>
<td>2–3</td>
<td>33</td>
<td>42.5</td>
<td>50</td>
<td>mV/mT</td>
<td>for HAL400: $-60, \text{mT} < B < 60, \text{mT}$</td>
</tr>
<tr>
<td>S_B</td>
<td>Differential Magnetic Sensitivity over Temperature Range</td>
<td>2–3</td>
<td>33</td>
<td>42.5</td>
<td>50</td>
<td>mV/mT</td>
<td>for HAL401: $-50, \text{mT} < B < 50, \text{mT}$</td>
</tr>
<tr>
<td>B_{offset}</td>
<td>Magnetic Offset</td>
<td>2–3</td>
<td>-1.0</td>
<td>-0.2</td>
<td>1.0</td>
<td>mT</td>
<td>for HAL400: $B = 0, \text{mT}$, $I_{OUT1,2} = 0, \text{mA}$, $T_J = 25°C$</td>
</tr>
<tr>
<td>B_{offset}</td>
<td>Magnetic Offset over Temperature</td>
<td>2–3</td>
<td>-1.25</td>
<td>-0.2</td>
<td>1.25</td>
<td>mT</td>
<td>for HAL400: $B = 0, \text{mT}$, $I_{OUT1,2} = 0, \text{mA}$</td>
</tr>
<tr>
<td>B_{offset}</td>
<td>Magnetic Offset over Temperature</td>
<td>2–3</td>
<td>-1.5</td>
<td>-0.2</td>
<td>1.5</td>
<td>mT</td>
<td>for HAL401: $B = 0, \text{mT}$, $I_{OUT1,2} = 0, \text{mA}$</td>
</tr>
<tr>
<td>$\Delta B_{OFFSET}/\Delta T$</td>
<td>Magnetic Offset Change</td>
<td>2–3</td>
<td>-15</td>
<td>0</td>
<td>15</td>
<td>$\mu\text{T/K}$</td>
<td>for HAL400: $B = 0, \text{mT}$, $I_{OUT1,2} = 0, \text{mA}$</td>
</tr>
<tr>
<td>$\Delta B_{OFFSET}/\Delta T$</td>
<td>Magnetic Offset Change</td>
<td>2–3</td>
<td>-25</td>
<td>0</td>
<td>25</td>
<td>$\mu\text{T/K}$</td>
<td>for HAL401: $B = 0, \text{mT}$, $I_{OUT1,2} = 0, \text{mA}$</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth (~3 dB)</td>
<td>2–3</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>kHz</td>
<td>without external Filter1</td>
</tr>
<tr>
<td>NL_{diff}</td>
<td>Non-Linearity of Differential Output</td>
<td>2–3</td>
<td>–</td>
<td>0.5</td>
<td>1.5</td>
<td>%</td>
<td>for HAL400: $-60, \text{mT} < B < 60, \text{mT}$</td>
</tr>
<tr>
<td>NL_{diff}</td>
<td>Non-Linearity of Differential Output</td>
<td>2–3</td>
<td>–</td>
<td>0.5</td>
<td>2</td>
<td>%</td>
<td>for HAL401: $-50, \text{mT} < B < 50, \text{mT}$</td>
</tr>
<tr>
<td>NL_{single}</td>
<td>Non-Linearity of Single Ended Output</td>
<td>2, 3</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>f_{CH}</td>
<td>Chopper Frequency</td>
<td>2, 3</td>
<td>110</td>
<td>147</td>
<td>170</td>
<td>kHz</td>
<td>$T_J = 25°C$</td>
</tr>
<tr>
<td>f_{CH}</td>
<td>Chopper Frequency over Temp.</td>
<td>2, 3</td>
<td>80</td>
<td>147</td>
<td>180</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>$V_{OUTACpp}$</td>
<td>Peak-to-Peak AC Output Voltage</td>
<td>2, 3</td>
<td>–</td>
<td>0.6</td>
<td>0.8</td>
<td>V</td>
<td>for HAL400</td>
</tr>
<tr>
<td>$V_{OUTACpp}$</td>
<td>Peak-to-Peak AC Output Voltage</td>
<td>2, 3</td>
<td>–</td>
<td>0.6</td>
<td>1.3</td>
<td>V</td>
<td>for HAL401</td>
</tr>
<tr>
<td>η_{m}</td>
<td>Magnetic RMS Differential Broadband Noise</td>
<td>2–3</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>μT</td>
<td>BW = 10 Hz to 10 kHz</td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Pin No.</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td>Unit</td>
<td>Conditions</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>fCflicker</td>
<td>Corner Frequency of 1/f Noise</td>
<td>2–3</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>Hz</td>
<td>B = 0 mT</td>
</tr>
<tr>
<td>fCflicker</td>
<td>Corner Frequency of 1/f Noise</td>
<td>2–3</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>Hz</td>
<td>B = 65 mT</td>
</tr>
<tr>
<td>R<sub>OUT</sub></td>
<td>Output Impedance</td>
<td>2, 3</td>
<td>–</td>
<td>30</td>
<td>50</td>
<td>Ω</td>
<td>I<sub>OUT1,2</sub> ≤ 2.5 mA, T<sub>J</sub> = 25 °C, V<sub>DD</sub> = 6.8 V</td>
</tr>
<tr>
<td>R<sub>OUT</sub></td>
<td>Output Impedance over Temperature</td>
<td>2, 3</td>
<td>–</td>
<td>30</td>
<td>150</td>
<td>Ω</td>
<td>I<sub>OUT1,2</sub> ≤ 2.5 mA</td>
</tr>
<tr>
<td>R<sub>bUSB case</sub></td>
<td>Thermal Resistance Junction to Substrate Backside</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>200</td>
<td>K/W</td>
<td>Fiberglass Substrate 30 mm x 10 mm x 1.5 mm pad size see Fig. 29</td>
</tr>
</tbody>
</table>

1) with external 2 pole filter (f_{3db} = 5 kHz), V_{OUTAC} is reduced to less than 1 mV by limiting the bandwidth.
Fig. 6: Typical output voltages versus magnetic flux density

Fig. 7: Typical magnetic offset of differential output versus supply voltage

Fig. 8: Typical differential output offset voltage versus supply voltage

Fig. 9: Typical magnetic offset of differential output versus ambient temperature
Fig. 10: Typical differential magnetic sensitivity versus supply voltage

Fig. 12: Typical differential magnetic sensitivity versus ambient temperature

Fig. 11: Typical non-linearity of differential output versus magnetic flux density

Fig. 13: Typical non-linearity of differential output versus magnetic flux density
Fig. 14: Typical single-ended non-linearity versus magnetic flux density

Fig. 16: Typical non-linearity of single-ended output versus magnetic flux density

Fig. 15: Typical chopper frequency versus supply voltage

Fig. 17: Typical chopper frequency versus ambient temperature
Fig. 18: Typical common mode output voltage versus supply voltage

Fig. 20: Typical common mode output voltage versus ambient temperature

Fig. 19: Typical output AC voltage versus supply voltage

Fig. 21: Typical output AC voltage versus ambient temperature
Fig. 22: Typical supply current versus supply voltage

Fig. 23: Typical supply current versus temperature

Fig. 24: Typical supply current versus supply voltage

Fig. 25: Typical supply current versus output current
Fig. 26: Typical dynamic differential output resistance versus temperature

Fig. 27: Typical magnetic frequency response

Fig. 28: Typical magnetic noise spectrum

Fig. 29: Recommended pad size SOT-89A
Dimensions in mm
Application Circuits

The normal integrating characteristics of a voltmeter is sufficient for signal filtering.

Display the difference between channel 1 and channel 2 to show the Hall voltage. Capacitors 4.7 nF and 330 pF for electromagnetic immunity are recommended.

Fig. 30: Flux density measurement with voltmeter

Fig. 31: Filtering of output signals

Fig. 32: Differential HAL40x output to single-ended output

R = 10 kΩ, C = 7.5 nF, ΔR for offset adjustment, BW_{3dB} = 1.3 kHz
Ambient Temperature

Due to the internal power dissipation, the temperature on the silicon chip (junction temperature T_J) is higher than the temperature outside the package (ambient temperature T_A).

$$T_J = T_A + \Delta T$$

At static conditions, the following equations are valid:

$$\Delta T = I_{DD} \times V_{DD} \times R_{\text{thJSB}}$$

For typical values, use the typical parameters. For worst case calculation, use the max. parameters for I_{DD} and R_{th}, and the max. value for V_{DD} from the application.

Application Notes

Mechanical stress on the device surface (caused by the package of the sensor module or overmolding) can influence the sensor performance.

The parameter $V_{OUTACpp}$ (see Fig. 3) increases with external mechanical stress. This can cause linearity errors at the limits of the recommended operation conditions.
Data Sheet History

 Major changes:
 – Marking code

 Major changes:
 – Electrical and Magnetic Characteristics
 – diagram: Typical output voltages versus magnetic flux density
 – page 14: “Ambient Temperature”

 Major changes:
 – additional new type HAL401
 – various changes in the electrical and magnetic characteristics
 – page 4: package diagram outline dimensions changed

MICRONAS INTERMETALL GmbH
Hans-Bunte-Strasse 19
D-79108 Freiburg (Germany)
P.O. Box 840
D-79008 Freiburg (Germany)
Tel. +49-761-517-0
Fax +49-761-517-2174
E-mail: docservice@intermetall.de
Internet: http://www.intermetall.de

Printed in Germany
Order No. 6251-346-4PD

All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery dates are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, MICRONAS INTERMETALL GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Reprinting is generally permitted, indicating the source. However, our prior consent must be obtained in all cases.