

Hall Effect Sensor IC

in CMOS technology

Features:

- operates from 4.3 to 24 V supply voltage with reverse voltage protection
- operates with magnetic fields from DC to 20 kHz
- overvoltage and reverse-voltage protection
- on-chip temperature compensation circuitry minimizes shifts in on and off points and hysteresis over temperature and supply voltage
- the decrease of magnetic flux density caused by rising temperature in the sensor system is compensated by a built-in negative temperature coefficient of hysteresis
- ideal sensor for speed measurement, revolution counting, positioning, and DC brushless motors
- short-circuit protection

Specifications

- switching type: bipolar
- output turns low with magnetic south pole on branded side of package
- output can change, if magnetic pole is removed

Marking Code

Туре	Temperature Range				
	Е	С			
HAL 115UA	115E	115C			
HAL 115S	115E	115C			

Operating Junction Temperature Range

E: $T_J = -40 \ ^{\circ}C \ to \ +100 \ ^{\circ}C$

C: $T_J = 0 \ ^{\circ}C$ to +100 $^{\circ}C$

Designation of Hall Sensors

HALXXXPP-T

Example: HAL115UA-E

- \rightarrow Type: 115
- → Package: TO-92UA
- \rightarrow Temperature Range: T_J = -40 °C to +100 °C

Solderability

- Package SOT-89A: according to IEC68-2-58
- Package TO-92UA: according to IEC68-2-20

Fig. 1: Pin configuration

Functional Description

This Hall effect sensor is a monolithic integrated circuit that switches in response to magnetic fields. If a magnetic field with flux lines at right angles to the sensitive area is applied to the sensor, the biased Hall plate forces a Hall voltage proportional to this field. The Hall voltage is compared with the actual threshold level in the comparator. The temperature-dependent bias increases the supply voltage of the Hall plates and adjusts the switching points to the decreasing induction of magnets at higher temperatures. If the magnetic field exceeds the threshold levels, the open drain output switches to the appropriate state. The built-in hysteresis eliminates oscillation and provides switching behavior of output without bounce. The output is short-circuit protected by limiting high currents and by sensing excess temperature. Shunt protection devices clamp voltage peaks at the Output-Pin and V_{DD}-Pin together with external series resistors. Reverse current is limited at the V_{DD} -Pin by an internal series resistor up to -15 V. No external reverse protection diode is needed at the V_{DD}-Pin for values ranging from 0 V to -15 V.

Fig. 2: HAL115 block diagram

Outline Dimensions

Fig. 3: Plastic Small Outline Transistor Package (SOT-89A) Weight approximately 0.04 g

Dimensions in mm

Fig. 4: Plastic Transistor Single Outline Package (TO-92UA) Weight approximately 0.12 g Dimensions in mm

Absolute Maximum Ratings

Symbol	Parameter	Pin No.	Min.	Max.	Unit
V _{DD}	Supply Voltage	1	–15	28 ¹⁾	V
V _{OH}	Output Off Voltage	3	_	28 ¹⁾	V
I _O	Continuous Output On Current	3	_	20	mA
I _O	Peak Output On Current	3	_	250 ²⁾	mA
–I _{DD}	Reverse Supply Current	1		25 ¹⁾	mA
Ts	Storage Temperature Range		-65	150	°C
TJ	Junction Temperature Range		-40	150	°C
$^{1)}$ as long as $T_J max$ is not exceeded $^{2)}$ t<2 ms					

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	1	4.3	_	24	V
I _O	Continuous Output On Current	3	0	_	12.5	mA
R _S	Series Resistor	1	_	_	270	Ω

Electrical Characteristics at T_J = -40 °C to +100 °C, V_{DD} = 4.3 V to 24 V, Typical Characteristics for T_J = 25 °C and V_{DD} = 12 V

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Test Conditions
V _{OL}	Output Voltage	3	Ι	125	250	mV	I_{O} = 12.5 mA, T_{J} = 25 °C
V _{OL}	Output Voltage over Temperature Range	3	_	125	400	mV	I _O = 12.5 mA
I _{OH}	Output Leakage Current	3	-	-	1	μΑ	B < B _{OFF} , T _J = 25 °C V _{DD} ≤ 20 V
I _{OH}	Output Leakage Current over Temperature Range	3	-	-	10	μΑ	B < B _{OFF}
I _{DD}	Supply Current	1	6.5	8.3	11	mA	$T_J = 25 \ ^\circ C, \ V_{DD} = 12 \ V$
I _{DD}	Supply Current over Temperature Range	1	5.5	8.3	12	mA	

Electrical Characteristics, continued

Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Test Conditions
t _{en(O)}	Enable Time of Output after Setting of V_{DD}	3	_	6	50	μs	V _{DD} = 12 V
t _r	Output Rise Time	3	-	85	400	ns	V _{DD} = 12 V, RL = 820 Ohm, CL = 20 pF
t _f	Output Fall Time	3	-	60	400	ns	V _{DD} = 12 V, RL = 820 Ohm, CL = 20 pF
R _{thJSB} case SOT-89A	Thermal Resistance Junction to Substrate Backside		-	150	200	K/W	Fiberglass Substrate, 30 mm x 10 mm x 1,5mm pad size see Fig. 6
R _{thJA} case TO-92UA	Thermal Resistance Junction to Soldering Point		_	150	200	K/W	Leads at ambient tempera- ture at a distance of 2 mm from case

Magnetic Characteristics at T_J = -40 °C to +100 °C, V_{DD} = 4.3 V to 24 V, Typical Characteristics for T_J = 25 °C and V_{DD} = 12 V

Magnetic flux density values of switching points. Positive flux density values refer to the magnetic south pole at the branded side of the package.

Parameter	Min.	Тур.	Max.	Unit
On point B _{ON}	-10.7	1.2	12.5	mT
Off point B _{OFF}	-12.5	-1.2	10.7	mT
Hysteresis B _{HYS}	1.8	2.4	7	mT

Fig. 6: Recommended pad size SOT-89A Dimensions in mm

HAL115

Note 1: In the following diagrams "Magnetic switch points versus ambient temperature", the curves for B_{ON} min, B_{ON} max, B_{OFF} min, and B_{OFF} max refer to junction temperature, whereas typical curves refer to ambient temperature.

Note 2: The dropping characteristic of the supply current versus the supply voltage is caused by the internal power dissipation.

Application Note

Because of inherent reverse voltage protection, no diode is needed at pin 1 for reverse voltages ranging from 0 V to -15 V.

For electromagnetic immunity, it is recommended to apply a 330 pF minimum capacitor between V_{DD} (pin 1) and Ground (pin 2).

For applications requiring robustness to conducted disturbances (transients), a 220 Ω series resistor to pin 1 and a 4.7 nF capacitor between V_{DD} (pin 1) and Ground (pin 2) is recommended.

Because of the I_{DD} peak at 4.1 V, the series resistor should not be greater than 270 $\Omega.$

The series resistor and the capacitor should be placed as close as possible to the IC.

Ambient Temperature

Due to the internal power dissipation, the temperature on the silicon chip (junction temperature T_J) is higher than the temperature outside the package (ambient temperature T_A).

$$T_J = T_A + \Delta T$$

At static conditions, the following equations are valid:

– for SOT-89A:	$\Delta T = I_{DD} * V_{DD} * R_{thJSB}$
- for TO-92UA:	$\Delta T = I_{DD} * V_{DD} * R_{thJA}$

For typical values, use the typical parameters. For worst case calculation, use the max. parameters for I_{DD} and R_{th} , and the max. value for V_{DD} from the application.

Recommended Application Circuit for DC Fans

Data Sheet History

1. Final data sheet: "HAL115 Hall Effect Sensor IC", May 7, 1997, 6251-414-1DS. First release of the final data sheet.

MICRONAS INTERMETALL GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@intermetall.de Internet: http://www.intermetall.de

Printed in Germany by Simon Druck GmbH & Co., Freiburg (05/97) Order No. 6251-414-1DS All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery dates are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, MICRONAS INTERMETALL GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Reprinting is generally permitted, indicating the source. However, our prior consent must be obtained in all cases.