

DM7403

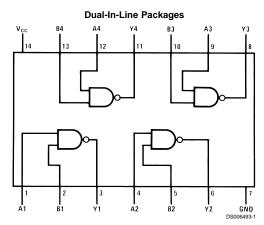
Quad 2-Input NAND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Where: N_1 (I_{OH}) = total maximum output high current for all outputs tied to pull-up resistor

 N_2 (I $_{\rm IH}$) = total maximum input high current for all inputs tied to pull-up resistor


 $\rm N_3~(I_{\rm IL})$ = total maximum input low current for all inputs tied to pull-up resistor

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC} \left(Min\right) - V_{OH}}{N_1 \left(I_{OH}\right) + N_2 \left(I_{IH}\right)}$$

$$\mathsf{R}_{MIN} = \frac{\mathsf{V}_{CC} \left(\mathsf{Max}\right) - \mathsf{V}_{OL}}{\mathsf{I}_{OL} - \mathsf{N}_{3} \left(\mathsf{I}_{IL}\right)}$$

Connection Diagram

Order Number DM5403J or DM7403N See Package Number J14A or N14A

Function Table

$$Y = \overline{AB}$$

Inputs		Output		
Α	В	Υ		
L	L	Н		
L	Н	Н		
Н	L	Н		
Н	Н	L		

H = High Logic Level L = Low Logic Level **Absolute Maximum Ratings** (Note 1)

Operating Free Air Temperature Range

Supply Voltage Input Voltage Output Voltage 7V 5.5V 7V

DM74 Storage Temperature Range

DM54

-55°C to +125°C 0°C to +70°C -65°C to +150°C

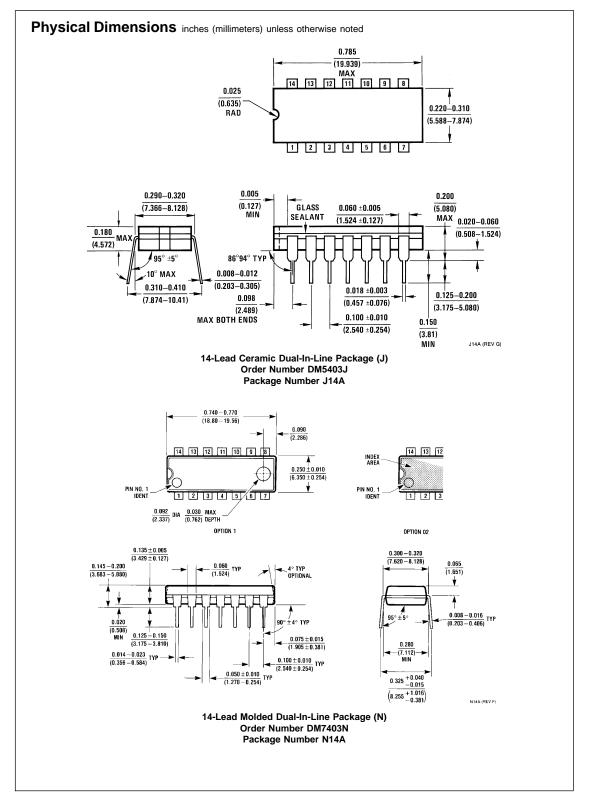
Recommended Operating Conditions

Symbol	Parameter	DM5403		DM7403			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.8			0.8	V
V _{OH}	High Level Output Voltage			5.5			5.5	V
I _{OL}	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions	Min	Тур	Max	Units
				(Note 2)		
V _I	Input Clamp Voltage	V_{CC} = Min, I_{I} = -12 mA			-1.5	V
I _{CEX}	High Level Output	V_{CC} = Min, V_{O} = 5.5V			250	μA
	Current	V _{IL} = Max				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max		0.2	0.4	V
	Voltage	V _{IH} = Min				
I ₁	Input Current @ Max	$V_{CC} = Max, V_I = 5.5V$			1	mA
	Input Voltage					
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$			40	μA
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
I _{CCH}	Supply Current with	V _{CC} = Max		4	8	mA
	Outputs High					
I _{CCL}	Supply Current with	V _{CC} = Max		12	22	mA
	Outputs Low					

Switching Characteristics

at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	C _L = 15 pF		45	ns
	Low to High Level Output	$R_L = 4 k\Omega (t_{PLH})$			
t _{PHL}	Propagation Delay Time	$R_L = 400\Omega (t_{PHL})$		15	ns
	High to Low Level Output				

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas

Customer Response Center Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86

Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 8 141-35-0

English Tel: +44 (0) 1 793-85-68-56

Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179